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In this paper we study the valence electronic structure of 3d transition metal compounds
in an Anderson impurity approximation. Using simplified models we arrive at a
classification scheme (in terms of several parameters) for the nature of the band gaps in these
materials. Mott-Hubbard insulators, in the simple sense, are special cases in this scheme.
Another important class of insulators is characterized by light holes of ligand p character and
heavy d-like electrons (charge-transfer semiconductors). Within the same theoretical basis
we develop the theory describing the photoemission and inverse photoemission spectra from
which one can obtain values for the parameters in the Anderson impurity Hamiltonian.
Using an exact two particle Green’s function formalism the photoemission of CuCl; is studied
and it is shown that this compound is a charge-transfer semi-conductor. For the more
general case an approximate, easy to use method is developed and is applied to the (inverse)
photoemission of NiO. It is shown that NiO can be characterized as being intermediate
between the Mott-Hubbard and charge-transfer regimes.

§1. Introduction

It is well established that the electronic structure of many 3d transition metal
compounds (TMC’s) cannot be described by standard band structure theory. This is
most clearly evidenced by the presence of large conductivity gaps in many of these
materials for which bandstructure theory predicts (nearly) metallic behaviour.
Mott" and Hubbard® provided a basic solution to this problem by pointing out that
an (effective) one electron description of solids is expected to break down if the
Coulomb and exchange energies U involved in charge fluctuations of the type d.”d;”
-d”'d;"*' (where 7 and j label sites and # the d orbital occupation) are large
compared to the one electron dispersional width (W). For U> W polarity fluctua-
tions as above are surpressed and a correlation gap of order U is found in the
excitation spectrum.

The Mott-Hubbard theory in its simplest form (i.e., taking into account only the
TM d orbitals) is not sufficient to account for the bewildering variety of physical
properties encountered in these compounds. According to the Mott-Hubbard theory
the band gap is a d-d gap. However, it is known that at least for compounds of Ni,
Co, Fe and Mn and the high 7: cuprates the gap scales with the ligand
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electronegativity which is indicative of a gap of the charge transfer type (ligand p-TM
d).? 1t is also difficult to understand that many chalcogenides are metals® since this
would require a reduction of U from 7~10eV in the oxides®” to 1~2eV in the
sulfides. These observations all point at the importance of especially the ligand
p-charge degrees of freedom, and the p-d covalency, with respect to the electronic
properties of TMC’s. The importance of ligand p states is manifest by the qualitative
success of ligand field theory for the description of the low energy properties of these
systems® such as the covalent reduction of the free ion Racah parameters as observed
by optical spectroscopy and the spin delocalization as evidenced by transferred and
supertransferred hyperfine fields. In ligand field theory it is the hybridization of the
d-orbitals with (mainly) the ligand p orbitals which is of central importance.

In the past, a more detailed understanding of the nature of the bandgaps in these
compounds has been hampered by the lack of clear experimental information concern-
ing the energetics of the charge degrees of freedom. Central to the older work® are
transport studies, but the interpretation of these measurements is severely hampered
by the presence of many defects even in the most pure materials and the importance
of electron lattice interactions (mobility) which obscure the view of the global
electronic properties. Also the optical data could not be interpreted in an unambigu-
ous way.¥? A great improvement has come about with the advent of modern high
energy spectroscopies (core-photoemission, Auger, X-ray absorption, (inverse)
photoemission). With these spectroscopies the electronic degrees of freedom in the
solid are directly probed and, moreover, they share a sensitivity to the correlated
nature of the electrons. For instance, the understanding of such data in the field of
mixed-valence materials, has played a key role in understanding their physical
properties (for a recent review see Ref. 10)). Another example is the band narrowing
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Fig. 1. An artist concept of the possible situations encountered for strongly correlated impurities in
solids. Dashed lines indicate the effect of hybridization.
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and two-hole satellite observed in the photoemission spectra of elemental Ni which
illuminates the correlated nature of this material.'’ Recent interpretations of core
level spectroscopies of transition metal compounds have also yielded important
information concerning the valence electronic structure.'?"*¥

Perhaps the most direct probe of the valence electronic structure is the combina-
tion of valence-photoemission and inverse photoemission. If the post-collisional
interaction between the emitted electron and the system left behind can be neglected
(sudden approximation), which is usually assumed to be the case, this combination is
precisely the Lehman spectral representation of the single electron Green’s function
convoluted with the optical matrix elements. In Fig. 1 we have sketched a zero-order
picture of what can be expected for this quantity in the specific case of transition
metal compounds.” In Fig. 1(A) we illustrate the well-established situation in mixed
valence materials. In the ground state the correlated ions will have integral valence
(d™) if the mixing with the metallic band states is neglected. The addition or
removal of a d-electron will lead to the multiplet split d**! and d"! manifolds. A
measure for the strength of the Coulomb interaction between the d electrons is (IR,
denotes the Hunds rule ground state irreducible representation)

Uesr=E(d"™", IRo0)+ E(d"*', IR))—2E(d", IR.) .

If this quantity is large, these manifolds will be well separated as indicated in the
figure. The basic correctness of this picture for the rare earths is nicely demonstrat-
ed by Lang et al. in the (inverse) photoemission spectra.”® Upon switching on the
hybridization between the f-states and the band states the spectral line shape becomes
complicated. The component (f*! and f**') states broaden and shift and most
important of all a sharp peak develops at Er which is identified with the Kondo
resonance. As Gunnarsson and Schénhammer showed, these line shapes for rare
earth systems can be described in fair detail using the Anderson Impurity model.?®'"

In transition metal compounds a sowewhat similar situation is expected. Again
we would expect the d”** and d"* manifolds to show up in the (inverse) photoemis-
sion. Moreover we have also to consider the non-d electronic degrees of freedom and
with respect to these we can rely on band structure theory. Band structure calcula-
tions indicate that one usually has a relatively narrow (=4 eV) occupied ligand p band
separated by a large gap from the unoccupied TM 4s like conduction band™® (as
shown in Fig. 1(B)). The d” manifolds can now be positioned in different ways with
respect to these bands, as indicated in Figs. 1(B)~(E). The direct relationship with
the nature of the band gap is clear: The gap can be either of d-d (Mott-Hubbard,
1(A)), d-4s (1(C)) or p-d (1(D), 1(E)) character.

As in the case of mixed valence compounds the photoemission line shapes have,
at first glance, not so much in common with this simple picture. It is however clear
that the spectra cannot be interpreted in a one-particle framework. Satellites are
seen in the spectra'® and in ionic compounds it is possible to correlate the near
threshold structures with the &” ! multiplet structure?~?® The first attempt to
interpret these spectra in a many-body framework is by Van der Laan et al.*® who
used a simple configuration interaction model of a small cluster, including p-d
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hybridization, to interpret the photoemission spectrum of CuCl.. More recently,
Fujimori and Minami®® showed that the results of a similar, although more extensive,
calculation compare reasonably with the observed Nio and NiCl: photoemission line
shapes. According to this calculation the lowest energy band in the photoemission
spectrum of NiO is of strongly mixed O2p-Ni3d character. Subsequently, Sawatzky
and Allen® and Hiifner et al.” recognized that the character of the lowest ionization-
and affinity states as determined from the electron spectroscopies is intimately related
to the nature of the conductivity gap. From the work of Fujimori and Minami
together with the d-like signature of the lowest affinity states in the BIS spectrum,
they concluded that the conductivity gap in NiO is not a Mott-Hubbard gap (d-d gap)
but instead closer to a p-d (charge transfer) gap.

From the work of Fujimori and Minami®® the important role of the p-d hybridiza-
tion becomes clear. This hybridization is quite strong in the TMC’s and to arrive at
a sensible description of the (inverse) photoemission spectra and the bandgap it is
necessary to take it fully into account. The multiplet splitting is quite large (=8 eV)
and should also be treated in full detail.?® On the other hand, it is assumed in the
cluster approach that the width’s of the bands can be neglected. This is reasonable
for the d-band because its dispersional width is quite small (=0.5 eV) according to the
bandstructure calculations.'”® However, the width of the ligand bands is relatively
large (=4 eV) and a bandstructure approach for these states is more realistic as
confirmed by recent angular resolved measurements.?”~2%

In this paper we investigate the valence electronic structure of TMC’s using a
broken (translational) symmetry calculation for the TM-ions. This is equivalent to
treating the d-states of the TM as impurity states in an anion lattice. Using impurity
many-body theory'®?” it is then possible to give a full account of, on the one hand, the
d-d Coulomb interactions including the atomic term splittings and, on the other hand,
the p-d covalency and the itinearant nature of the ‘host’ valence and conduction
bands. We showed previously that the core XPS and XAS' can be understood in
this approach as well as the optical spectra and the superexchange.®”

In § 2 we study the nature of the band gap using simplified models. We first
consider a spin degenerate model and we obtain analytical expressions for the one
electron Green’s function using a two-hole Green’s function technique®’ and an
average T matrix method from Kanamori®® We point out the analogy with the
Auger spectroscopy of filled impurities®®~* and we arrive at a qualitative characteri-
zation of the band gap for situations where the conduction 4s, p band can be neglected.
Our findings are summarized in Fig. 1. If the d"! valence band separation is large
compared to the hybridization (Fig. 1(D)) the gap will be of charge transfer character
as indicated, irrespective of the ground state covalency. If the d" ! state approaches
the bottom of the valence band, a bound state will be pushed out of the valence band
due to the p-d hybridization and the lowest ionization state is of strongly mixed p-d
character (Fig. 1(E)). If the d" ' state is further lowered we finally arrive at a
Mott-Hubbard gap (Fig. 1(B)). Subsequently it is shown that the above picture also
holds for the highly degenerate 3d-ions®® using numerical results obtained from a
model in which multiplet effects are neglected.

In § 3 we show that the powerful two-hole Green’s function techniques can be
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generalized for highly degenerate impurities if the ground state can be approximated
by a one-hole problem. Term splittings can be easily incorporated and the effect of
these is discussed. This method applies to Cu(I) compounds and the high 7t cup-
rates.

Section 4 is aimed at the derivation of some controllable approximations which
simplify the tedious calculations for many hole compounds. Using this method, the
(inverse) photoemission spectrum of NiO is studied and it is concluded that this
material is in between the Mott-Hubbard and change transfer regime.

§ 2. The systematics of band gaps

2.a. Spin degenerate model

In order to gain insight in the physics of a strongly correlated impurity in an
insulating host it is instructive to consider a simple spin degenerate model. Assum-
ing that the impurity states can be described with a tight binding orbital, the
Hamiltonian is written as

ﬁ:ﬁo+ﬁ1 »
ﬁ]z Uﬂth Rday . (2'1)

H, describes the Coulomb interaction between the impurity (‘d’) electrons) and Ho
contains the one electron interactions which can be modelled by for instance the
Anderson Impurity Hamiltonian®®

. B o
Ho=zdf[—sdnda—/_‘Bde(eL—i—e)nea-i-/E‘c dEEnsa

+ f zdeV(e)(da+ceg+h.c.)+ f jdEV(E)(da*CEmLh.c.)] . (2-2)

The first term in Eq. (2:2) describes the impurity orbital, the second term the host
valence band with width W=2B and the third term the host conduction band. The
last two terms describe the hybridization between the impurity state and the valence-
respectively conduction band states. The host states as appearing in Eq. (2:2) are
projected in the impurity point group so that the k-labels have to be replaced by
energy labels.!2"9)

If U could be neglected (or taken into account in an average way) this problem
would be solved by constructing single-particle eigenstates, in second quantization,

b,%za,-*df%—/deﬂl*(e)c:a-i-/dEy,-*(E)c;{g, (2-3)
and the ground state would be given by
Er
]q)o>=l'£b?a|vac> ) _ (2-4)

However, if U becomes large compared to the hybridization many more determi-
nants like in Eq. (2+4) would be important in the ground state of the system. It is then



236 J. Zaanen and G. A. Sawatzky

more practical to start with the eigenstates of the unhybridized problem as a zero
order with the hybridization as the perturbation. For a half filled impurity shell we
have the zero order ansatz

ld>=d,*|¢", (2-5)
where |¢”> denotes the filled host valence band

lg>= II cislvac) . (2-6)

The state (2-5) couples to states like
|d2ey=d,*d, ce, |9, 2.7
where an electron has hopped from the valence band into the impurity shell and
|d°E>=ck ", (2-8)

where the impurity electron has hopped into the conduction band. The states in Egs.
(2-7) and (2-8) are in turn coupled to states with a (conduction) electron-(valence) hole
pair like

|d1EE>°Cdo'+CEo'/Ceo'"|¢’> . (2'9)

These states are similar to the state we started with (Eq. (2-5)) except for the
additional electron-hole pair and in principle we should continue this basis expansion
to infinity. In metallic hosts the electron-hole pair can be placed at the Fermi-level
with the consequence that the states in Egs. (2:5) and (2:9) are degenerate. This
leads to the infrared divergencies which makes the Kondo- and Mixed Valence
problems difficult to handle.’®'” However, for a non-zero host gap these divergen-
cies around the Fermi-level are removed and the states in Eq. (2:5) have a finite
weight in the ground state wave function. In principle it is therefore possible to find
the ground state wave function to any desired accuracy using this expansion.

Having the late 3d-compounds in mind we can introduce a further simplification.
It is well known that the valence band-3d mixing is of much more importance than the
conduction band-3d mixing. The reason is that the on site 3d-4s mixing is at least
in cubic point groups symmetry forbidden and the hybridization is therefore with the
next nearest-neighbours. Furthermore, normally the bottom of the conduction band
is relatively high lying in the late 3d compounds. It is therefore a sensible approxi-
mation to neglect the coupling to the conduction band states. In this case only a finite
number of holes have to be treated. For instance, in order to obtain the ground state
of a d" impurity only 10—#=N holes have to be considered and a complete
configuration interaction basis is given by all possible distributions of these holes
among the host valence band and impurity states. In the same way the
photoemission- and inverse photoemission spectra (and therefore the character of the
bandgap) can be determined by considering N+1 and N —1 hole problems.

For the specific example of a spin-degenerate half-filled impurity these problems
can be worked out analytically and the picture we obtain is in essence similar to that
obtained for 3d impurities which will be investigated in detail in the next sections.
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Considering the ground state of the half-filled impurity we notice that only a single,
for instance spin-up, hole is present in the ground state. There are no other holes
present to correlate with, so a single particle description will suffice for the ground
state. We write

| To>=bo, | 0> . (2-10)
Here |@) represents the filled band system
lp>=d,\*d,*|¢"> (2-11)
and
=a*dis+ [deB*(e)cts, (2-12)

where bos creates a hole in the highest occupied one-particle level. Using straight-
forward variational theory'® we find for the ground state energy (with respect to

<p|H|p>=0)
Eo=6d+8, (213)

where ¢ is the hybridization shift determined from

B de| V(e)? :
oo [rever. o1
where d=eq4+ U<{na,>— €1, {ma,>=1 is the energy required to transfer the hole from
the impurity to the centre of the ligand band which we call the charge-transfer energy.
Also the d-hole count can be determined
-1/2
<ndf>E<nd>E,a0l2—(1+ g{:‘ Z(E)E ) . (2'15)
Having specified the nature of the ground state we now turn to the calculation of

the d electron addition/removal spectra as seen in (inverse) photoemission spectra.
The inverse photoemission spectrum is in the sudden approximation given by

pd>(w)=%2d!ImG§a(w— i0%),

G§6(2)2< %lddﬁdaﬂ Ty ’ (2'16)

where we only consider the filling of the d-states. It is evident that only the complete-
ly filled state in Eq. (2-11) can be reached by adding an electron. In the absence of
U it is essential that 4+ 8=0 in order to have Eq. (2:10) as the ground state. In the
correlated case this will turn out to be an arbitrary choice for the Fermi energy.
Using this convention we find a single line in the BIS spectrum with weight {x4> at
ZEero energy

o (0)=<n>d(w) . (2-17)

The photoemission spectrum (assuming only d-emission) is given in the sudden
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approximation by
pa (w) =%E‘T_‘.ImG§a(a) —10%),
Gis=<Wolds" Gds| W),

G=(z+H—E,)™". (2-18)

Upon removing an electron from the ground state things are not trivial because now
two holes are present which are correlated for non-zero U. In order to calculate the
spectrum we treat the d-d Coulomb interaction (H:) as the perturbation and we write

G=Got+GoTGo, (2-19a)

T=mH+HGT (2-19b)
with

Go=(z+ Ho— Eo)™". (2:20)
Combining Eqgs. (2:18) and (2-19a) we find for the spin down emission

G35, =< W|d,* God, | Wo> +< Wil d,* Go TGod, | o> . (2-21)
In order to evaluate Eq. (2-21) we introduce the uncorrelated two-hole basis

lpu>=b:b51 0> . (2:22)
We have the useful equalities

@il Gol s> = 8.500xg:(2) (2-23)
with

gi(z)zm}i—_zj,

E:=<p|bisHobis| 0> (2-24)
and

<&\|d,*|pi>=a:. (2-25)

Equation (2-21) can be expanded using the identity operator 1=2Xl;l¢s><¢s;| and
together with Egs. (2-23)~(2-25) we find

Gii(2)=Zal’9:(2) + Tar* g:(2) peol T @ 10>+ 9:(2)a; (2-26)
The matrix elements of T are zero except

T#={gld,*d,* Td,d,|¢>= U+ Ugdd(2) T (2+27)
with

93(z)=<pld,*d,* God. d,|@>, (2-28)
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and we find
U
dd __ .
Ti4= = Ok (2-29)
From Egs. (2-27) and (2-22) it follows that
<¢io| T|¢jo>= Ia’o|2a’ia’j* Taa. (2-30)

Combining Eqs. (2:26), (2-29) and (2-30) we finally arrive at
G5.(2)=0i(2) + @) ndT—p s 0d(2) (2-31)

where we defined
9:4(2) =2l a:lg2) . (2-32)

Considering Eq. (2:31) we first notice that g.* is the usual one-particle impurity
Green’s function as would follow from a (mean-field) calculation of the neutral state
of the system. Alternatively we can write

* ol w)dw
94"(2)= [ w—p—z(_—)w—, (2-33)
where p4(w) is the single-hole partial d density of states. We see that for zero U the
non-interacting limit is reproduced. Because the lowest pole of Eq. (2:33) coincides
in energy with the ground state no energy gap is present in this case.

For non-zero U however, the imaginary parts of Eq. (2-31) would be determined
by the poles and branch-cuts of the 7-matrix Eq. (2:29). A close analogy can now
be drawn with the Auger spectroscopy of filled d-band metals®® and impurities,?-*¥
The photoemission spectra of these materials are usually quite well described by band
structure theory. For instance, in the angular resolved photoemission spectra of the
noble metals sharp peaks are seen which show a strong angular dependence indicating
the bare hole £ is a good quantum number. A satisfactory agreement is found with
the dispersion curves obtained from local density theory.®” In Auger spectroscopy it
is basically the local two-hole density of states which is measured. In the one-
particle picture one should expect to find the self-convolution of the one-hole density
of states but instead one finds experimentally a spectrum which resembles the Auger
spectrum of the free atom.*®

An explanation is offered by the theory of Cini and Sawatzky. In its simplest
formulation one considers an impurity Hamiltonian like in Eq. (2+-1). The Auger
spectrum is given by

32)

pdd(w)=—17;1mcgg(w— i0%) | (2-34)

where

Ggg(z)=<¢'df+d¢+—z—_1—ﬁ_d¢+df+'¢> (2-35)



240 J. Zaanen and G. A. Sawatzky

is the two-hole Green’s function. Along the same lines as in Eq. (2:29) it is easily
shown that

Gy =122 (2-36)

We can write g34(z) (Eq. (2-28)) as the self-convolution of the one-hole Green’s
functions

gD = | degd(0—8)as (&), (2-37)

and it is found that for U> W the imaginary part of Eq. (2-36) is dominated by a pole
at = U corresponding with a state where both holes are localized on the same site,
which explains the atomic signature of the spectrum.

The parallel with our case may be clear. The ground state of the filled impurity
corresponds with the state reached by adding an electron to the half-filled impurity.
The states reached in the Auger process of the filled impurity and the photoemission
of the half-filled impurity are the same although the intensity distribution in these
spectra is different because of the different initial states involved, as is reflected in the
differences between Egs. (2-31) and (2-36).

In order to discuss the physical content of Eq. (2:31) we can roughly follow the
analysis given by Drchall and Kudrnovsky and others®®~** of the Auger spectra. We

A:U=0 «— A+16l —
/IN\\__,’,’\\
// \\
/ \
L\ ’Il‘\
B: Im 944
< u
/-\/\
c:04 <~ N-1 Nel —>
<— A+161 l—>
|
|
|
A
ENERGY Er

Fig. 2. States and continua as found in the calculation of the photoemission of the spin-degenerate
impurity. In Fig. 1(A) the one-hole impurity D. O. S. is indicated together with the peak in the BIS
spectrum and the host density of states (dashed lines). In Fig. 1(B) we show the different
contributions to the uncorrelated two-hole density of states and in Fig. 1(C) we show an artist’s
impression of the (inverse) photoemission spectrum for U as indicated.
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are interested in the situation where in the one-particle picture the d-band is located
at Er and the ligand band lies considerably below Er. We write the one-hole
impurity Green’s function as

gdd(2)=%‘i+ R(z), (2-38)

which is composed of a pole at Er=0 with weight {#,> and a regular part R(z)
corresponding to the d-character mixed into the host valence band (see Fig. 2(A)).
Inserting Eq. (2-38) in Eq. (2:37) we find

0#(2)="2" 4 s’ n>R(2)+ S(2), (2-39)
where
— 1 ("p- .
S(@)= = R(z—&R(£)dE . (2-40)

The three terms in Eq. (2-39) give three different types of the states of a pair of
holes with opposite spin for U=0. The first term corresponds to a localized state
with both holes in the bound one-particle state (see Fig. 2(B)). The second term gives
mixed states where one hole is in the ligand band while the other is localized and the
third term corresponds to states where both holes are in the ligand band. These three
terms characterize the Auger spectrum for the filled impurity for U=0. In our case
the ground state hole would be bound to the impurity while the second hole created
in the photoemission process would either also be bound or in the ligand band in the
non-interacting limit.

For U >0 the zero energy pole in the photoemission spectrum vanishes (as in the
Auger spectrum). For 20, g%~ <{n.>/z, 933(z) = <{ns>*/z and we find from Eq. (2-31)
that Ga*(2) is real for z—0

limGa<(2) = (U(<nd>1§§§21:r>5(z)) —1) (2-41)

As a result, a gap appears between the affinity state |@> and the lowest ionization state
with the Fermi-energy somewhere in this gap, and an insulator is predicted.

New poles will be found if the denominator of the 7 -matrix vanishes, that is
under the conditions

Reg#é(En)=7;,  Imoi(Ea)=0. (2:42)

Besides these bound states, spectral weight will also be found in the regions where
R(z) of S(z) have a non-zero imaginary part, corresponding with band-like holes.
Considering the limit U>4+|68|, R(z)~(1—<%+>)/z and S(z)~(1—<%4>)?/z and a pole
results in G< for z=U with weight {z#4)>. In the ionic limit ({#s>=1) we therefore
find the ‘atomic’ spectrum with a ‘d? line in the BIS spectrum and a ‘do’ line in the
photoemission separated by U. On the other hand, if the ground state is to some
extent covalent, only a fraction {x#s> of the total intensity goes into the two-hole
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satellite and the remainder (1—<#%.>) goes into the bands (see Fig. 2(C)).

It will be clear that in this limit no pole can be found above the top of the R(z)
band, at least if the valence band density of states is continuous. This implies that
the lowest electron removal states correspond with states where one hole is bound to
the impurity (in the same way as in the ground state) while the other hole moves freely
in the host valence band. According to the parametrization used in Egs. (2-13) and
(2-14) the splitting between the top of the R(z) band and the affinity peak, which is the
band gap in this regime, equals 4+|8|—+ W (see Fig. 2(C)). This is the energy
required to move a hole from the cation to the anion and therefore we called this gap
a charge-transfer gap.*

This implies for the concentrated limit that the electrons are moving in a narrow
Hubbard-like band with a width (according to canonical perturbation theory®*¥) we
o< V2/4. On the other hand, the holes move in the broad host valence band and will
experience only an exchange interaction with the spins of the holes localized on the
cations. It is this large difference between the electron- and hole effective mass
which is the outstanding property of these class of materials. We notice that this
picture holds, in principal, rather independently of the degree of covalency. Also for
non-integral valence the charge-degrees of freedom of the hole localized on the
impurity are projected out so that the difference between ‘Kondo’- and ‘Mixed-
valence’ regimes as is relevant to metals does not apply to the insulators.

Returning to the model, upon decreasing U for fixed 4 at a certain point condition
Eq. (2-41) will be fulfilled in the region above the host valence band maximum and a
bound state will be pushed out of the R(z) band. This state will correspond with a
hole which is still quite delocalized due to the strong admixing of the ligand band
states. At the same time it has the symmetry properties of the singly ionized bare
impurity which will become more evident in §§ 3~5. There we consider 3d-im-
purities and we show that the multiplet spectrum of the bare 3d"! impurity is to some
extent reflected in the gap region of the host.

Upon further decreasing U we enter a point where U is smaller than the charge
transfer gap. In this regime the gap magnitude scales with U and the Mott-Hubbard
theory becomes a better starting point for the study of the low lying electronic
excitations. Asis evident, the holes and electrons will now move in bands of roughly
similar width (according to the canonical perturbation theory) wecc V2/4, wy=V?>
/l4—1U|.

2.b. Highly degenerate model

In order to show that this picture of the band gap systematics also applies to the
highly degenerate 3d-impurities we finish this section with a model calculation which
applies more directly to the late 3d-compounds. The generalization of Eq. (2-1) for
a 3d-impurity reads'® (under the neglect of the conduction band)

H:Hhost+ Hlmp+thbr ,

HPost—= — ;/dg(s— EL)C:mCem ’
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H™=—Xcundn*dn+ Zl} U(ijim)d:*d;d," dnm
m iilm

thbrzg-/‘dEVm(S)(dm_"Csm‘i‘C;‘mdm) . (2‘43)

Compared to Eq. (2:1), in Eq. (2-2) the summation # now includes besides of ¢ also
the m; quantum numbers. Further, the d-shell can be split in subshells because of the
crystal field interactions (ey and t, in the usual O, symmetry). Finally, the d-d
interactions are not only described by the monopole term (Fp) but also by the higher
order interactions which give rise to multiplet splitting.

In order to have a tractable model which at the same time applies to Mn, Fe, Co
and Ni compounds we introduce some simplifications. First, it is well known that the
m-like transfer integrals are considerably smaller than the o-like transfer integrals
which allows us to neglect the former. In O, symmetry this means that the hybridiza-
tion of the #, states is neglected and we assume that the %, holes, if present, can be
considered as spectator holes. Second, we neglect the multiplet effects arising from
the exchange and multipole d-d Coulomb interactions. These effects will be treated
extensively in the next sections. Under these assumptions the calculation of the gap
of high spin Ni to Mn compounds involves a two e;-hole problem for the ground state,
a single eg-hole affinity problem and a three eg-hole electron removal problem.
Unfortunately, it is not possible to extend the two-hole Green’s function approach to
a three-hole problem (at least no closed solutions are found). An alternative is then
the approach where we expand the problem in a Hilbert space spanned by all ionic
configurations with the hybridization as the perturbation.

As a reference state we take

ld™5 =TI dm+meljl=ldm+gc§'mlvac>, (2-44)

metag

where the eg- and host valence band are completely filled while we allow for a partly
filled f;¢ band. A filled £, band would correspond with a Ni-compound and a half-
filled %y band with a Mn-compound. For the ground state we take the zero order
ansatz

|d™>=dids|\d™*?> , (2-45)
where the symmetry labels now refer to 1=dz2_y2 and 2=dhs.2-r.. This state couples

to

|d"+le>=—;§(d1cez+c€1d2)|dn+2> , (2-46)

where we combined degenerate states as in 1/N theory which gives the non-diagonal
matrix elements

A" H|d™'e>=V2V(e). (2-47)

The states in Eq. (2-46) couple in turn to states where both eg-holes are delocal-
ized in the valence band. In the same way we can find the basis for the electron
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n-1(UPS) nlOptical) n+1(BIS) addition and the electron removal
states. In the latter case we use the
zero order ansatz

dno2L3_ 2
! |d"*>=dydads|d™?> (2-48)
H 22
i }I where ds corresponds with a spin
ol ! a2 ? tw down hole in either the dr2_y2 Or dszz_r2
! ! ! orbital. A survey of all the basis
: Uia i states and matrix elements can be
oz JI' i oha found in Appendix A and these
a0 ! ! findings are summarized in a total
¢ ula i d"‘1g$ i energy diagram (Fig. 3). We have
L :_B‘ 4 ! E parametrized the diagonal matrix as
N ‘\_?"-1 A?Ed‘EL s E_F 70! follows: With respect to <d”|H|d">=0
g T aL E:(";,,, it costs €aq to create a d electron and &
— t L to create a ligand hole such that 4=¢4
Fig. 3. Total energy diagram indicating the states +e. is the charge tranfer energy.
and continua entering the model calculation as Moreover, with this definition of &4 the
described in the text. Hybridization shifts are d"! state is located at —eq+ U and
also indicated the d"*? state at 2es+ U. The other

matrix elements follow easily.

It is not possible to find analytical solutions using this expansion (except for the
trivial one-hole problem) as discussed by Gunnarsson and Schénhammer.'® Instead,
we discretize the valence band in N. (equidistant) states using as a model density of
states

|V (&)= VZTZB7(62+BZ)1’2; —B<e<B. (2-49)

The ground states of the resulting three large eigenvalue problems can be found by
using the efficient Chebyshev-polynomial method.'”

In Fig. 4 we show results obtained with N.=40 for the band gap magnitudes,
obtained from

Egn=Eo(N+1)+E(N—1)—2EoN), (2-50)

where Eo(N +1), Eo(N—1) and Eo(N) are the ground state energies of respectively the
electron addition, electron removal and neutral states of the system. These are
derived for different U, 4 and W in units of V. Further we show the average charge
of eg symmetry present on the transition metal ion in these ground states as a function
of the same parameters.

First we notice that for U=0 always a zero band gap is found and the d-counts
follow statistical rules ({za)" =2{n>" ", {nad"*'=3{na>"""), as in one electron the-
ory. This is a difficult limit and these results show the accuracy of the calculation (a
total of 12341 configurations are involved in the N—1 calculation).

For non-zero U these results reaffirm the qualitative picture of the previous
section. For 4> U the gap is proportional to U, corresponding with the Mott-
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Fig. 4. Results of the band gap magnitudes as a function of 4 for various values of U (in eV) and
bandwidth (W, in eV) ((A), (C), (E)). Dashed lines indicate Egsp=4— W/2. In (B), (D) and (F)
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eV and the same bandwidths as in (A), (C) and (E).
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Hubbard insulators. We write in this regime
gap=U+6N+l+6N_l_26N , (2‘51)

where 6%, 8¥*! and 6" ! are the hybridization shifts measured from respectively the
|[d™>, |d¥*'> and |d¥ ') basis state energies. For 4 large compared to both V?, U and
W bound state perturbation theory can be applied and it is found that .

L3V VAV
Ee>Ut g 4

-2 (Y) =

which indicates that the gap is always somewhat less than U because of the covalen-
cy.

On the other hand, for 4< U the band gap magnitude is roughly proportional to
4—(1/2)W. Considering the charge distribution it is seen that in this regime <{#.>" !
={nqs>" showing that the additional hole created in the ionized state is fully delocal-
ized in the host valence band. It turns out that (8%, 8! both measured as indicated
in Fig. 3)

Egap=A—%W+|a”| , (2+53)

and we called this in the last section a charge-transfer gap. Finally, we find a
continuous cross over regime between the Mott-Hubbard and charge-transfer regions,
where a bound state is pushed out of the ligand band due to the interaction with the
|[d™ 1> state.

It would be expected from Eq. (2:53) that the gap closes for 4+|8"|=(1/2)W.
This indeed happens according to our calculations which is interesting because it
shows that a metal-to-insulator transition can be driven by a mechanism unrelated to
the Mott-Hubbard mechanism. For instance, the charge transfer energy (J4)
decreases for decreasing anion electro-negativity and an insulator to metal transition
is expected as a function of ligand electro-negativity. This explains for instance why
the sulfides are usually metallic and the oxides insulators.”

Although we do not believe that this insulator calculation is suited to discuss the
nature of the metallic state in detail it at least tells us why the transition occurs. As
can be seen from Fig. 4(F) the ground state has changed its nature in the metallic
regime. For large U the local hole count {z#s>¥ =N +1 which implies that one hole
is now delocalized in the ligand band. In the concentrated case this implies that the
Fermi-level is located within the ligand band. This category of materials is common-
ly called p-type metals and well-known examples are CuS.*® Also the semiconduct-
ing pyrites are in this class where the ligand holes drive a Peierls like transition
resulting in the formation of sulfur pairs.*”
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§3. (Inverse) Photoemission of one-hole compounds

As we showed before, it is possible to calculate the (inverse) photoemission
spectra using the scheme described in the previous section. However, these results
compare rather poorly with experiment which is caused by the neglect of multiplet-
splittings. The typical spread of multiplet energies, relevant to photoemission, is of
the order of 5eV and it is clear that these effects have to be taken into account
explicitly. Upon inclusion of the multiplet effects the calculations become quite
tedious and we will present in the next section a reasonably accurate and easy to
handle approximate method which can be applied to a wide range of compounds.
However, in the case where the ground state can be approximated by a single hole in
a filled band it is again possible to use the two-hole Green’s function technique of § 2.a,
generalized for the highly degenerate case. In this section we will work this out in
detail and apply it to the valence photoemission spectra of Cu(II) compounds.

In analogy with Egs. (2:10)~(2-12) we write for the ground state of the one-hole
impurity in the highly degenerate case

l@o; I'>=bos|@> , (3-1)
where I represents the ground state irreducible representation of the point group and

|¢>=1_;[b$nlvac> (3-2)

represents the state of the system in which both the ligand band and the d-shell of the
impurity are filled. The single particle operators are written as

bin=a*(m)dn* + f deB(€) i, (3-3)

and bo, creates a hole in the highest occupied orbital, with symmetry y (for instance,
in Dsn, =2B; and y=b1,).
The photoemission current is, in the sudden approximation given by

piot(w) OC%MZ,!#ImG&( ymm', ®—i0") (3-4)

with
Gsl(ymm’, 2)=< @o; I'| An* (k) GAnkr)| @o; ', (3-5)
where G=(z+ H—E,)™!, H given by (2-43) and

An(kr)= fdeAL(kF, €)Com+ Ad(kr)dm (3-6)

with the transition matrix elements
Ad(kF) =< qfulﬁ'ﬁl wdm) ,
AL(kr, &)=< U |A*p| > , 37
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where |¢xr>, |fam> and |¢gem> denote respectively the wave function of the emitted
electron, the impurity- and host orbitals. For simplicity we neglected the -
dependence of the photoemission amplitudes.

Focussing first on d-emission only (A.=0) we consider the Green’s function
Gsi(ymm’, 2)=< @y; I'|dn* Gdw|®o; T'> , (3-8)

and this can be evaluated in a similar way to Eq. (2:18). We first write Eq. (3:8) in
the T -matrix form and the resulting expression is evaluated using the uncorrelated
two-hole basis

|@u(mm,)>=bm im’ o> , (3°9)
and we find
Gaa(ymm’, 2)=g4(m, 2)Omm + g (m, 2)Xnsd Tix - g*(m’, 2) , (3-10)

where <n4>=|a(7)|? is the hole count on the impurity and (Ein=<¢|binHobin|@>)

p _s_lam)l® _ [~psm, w)do .
oim, )=kl [ oum.o @1

are the single-hole Green’s functions, related to the single-hole partial d-densities of
states (oa(m, ). In order to simplify the evaluation of the 7 matrix (7T ™"
=< @|dn* dn Tdnrdmr|®>) it is convenient to project Eq. (3:10) on the two-hole irreduc-

ible representations of the point group (I7)

Gsd(ymm!, z)=§< ym} ALY ym’> - Gaa(ymmd, z; T)

Gas(lymm', z; I1)=ga*(m, 2)0mm+ ga*(m, 2) i (1) g (w0, 2) . (3-12)
In Eq. (3:12) <ym|}I> is a short hand for the coefficients of fractional parentage

Table I. Electrostatic matrices of d® in Dix.

3A2 b1b2 e? 1Bl a1b et

bib: | A+4B 6B ab | A+2C —2BY3

et 6B A—5B & | —2BJ/3 A+B+2C

3E eb: ea, eb; g eb ea; eb,

eby | A—5B —3B/3 3B eby | A+B+2C —B/3 —3B
es; | —3BJ3 A+B —3BJ/3 em —BY3 A+3B+2C —B/3
eb; 3B —3BJ3 A-5B eb: —3B —BJ/3 A+B+2C
lAl alz blz bz2 62 a1b1 3B1=A_SB
a® | A+4B+3C 4B+C 4B+C (B+C)W2 bib, 'A;=A+4B+2C
b’ 4B+C A+4B+3C c (BB+C)W2

ba? 4B+C C A+4B+3C  (3B+C)2

e | (B+C)W2 (3B+CW2 (3B+C)W2 A+TB+4C
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Kd(y)d'(m)|}ym; I>. The matrix elements of the 7" matrix can be found by solving
the system of linear equations

(I =Him (I + 33 Hiy" (I gmon(2) TatwAT7) , (3-13)

where H%2'(I't) are the matrix elements of the electrostatic d-d Coulomb matrices.
These are given together with the coefficients of fractional parentage, in Table I for
the I. R.’s of the point group Dsx (42). The uncorrelated two-hole Green’s functions
are obtained by convoluting the single-hole Green’s functions
g (2) =5 = / 9a*(m’, z— £)g*(m”, £)dE . (3-14)

In order to calculate the photoemission spectra we need, aside from the electro-
static matrices of Table I, only the one-hole Green’s functions. As we argued in § 2
it would make sense to use first principle band structure information for these. Here
we will present results obtained by using the Anderson Impurity Hamiltonian to
model the single particle interactions. The Cu(Il) ions are usually in a square planar
environment and the appropriate point group is Ds». In this symmetry the d-shell is
split into b1, a2, b2 and e (all gerade) single-hole states and the ground state is of &
character. We model the one-hole Green’s functions as

gdd(bld, z)=(z—6— Vezl"(z—6+d))‘1 R
gae(a10, 2)=(z— 8 +4Ds+5Dt — VI (z—8+4))7!,
9a%(b20, 2)=(2—8+10Dg— V2 I'(z— 8+ 4)) 7!,

g:%(eo, 2)=(z—6+10Dg+3Ds—5Dt — V2 I'(z— 5+ 4))™! (3-15)
with
_ [~ole)de .
F(Z)“L e (3-16)

and we use the semi-elliptical density of states Eq. (2:49) to model the valence band.
In order to reduce the number of free parameters we have assumed in Eq. (3-15)
that the covalent contributions to the crystal field splitting are not affected in going
from O to Dux so that the eg(O.) derived states (b1, @1) mix with an e, transfer
integral (V.) and the other states with a #,,(Os) transfer integral. We account for the
additional splittings in D by the electrostatic parameters Ds and Dt.** The hybridi-
zation energy & and the d-hole count {#z4> of the ?B, ground state are found from

/ - p(e) 28 e,

(nay= (1+ v, ﬁde)—l (3-17)

In Fig. 5 we show results for the (inverse) photoemission spectra of one-hole
compounds obtained in this way. We used for the single particle parameters 4=4
eV, W=4eV, Ve=2eV, Vi=1eV, Dg=0.1¢eV, Ds=0.1eV and Dt=0.05eV. This
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Fig. 5. Results for the photoemission (heavy line) and inverse photoemission (solid line) spectra for 4
=4 and A=0(A), 3(B), 6(C) and 9(D) eV. The arrows indicate the onset of the ligand band. Also
indicated are the triplet and singlet components of the photoemission spectrum (lower ﬁgurés). In
(A) we show the independent particle spectrum and in (D) the model DOS used for the ligand band
(dashed lines).

results in an independent particle spectrum as indicated in Fig. 5(A) with the dashed
line (‘lifetime’ broadening 0.4 eV FWHM). We obtained theoretical spectra including
the d-d correlation effects by using for the Racah parameters B=0.15eV and C=0.75
eV and we varied A (A=0, 3, 5, 9 eV in Figs. 5(A) ~(D)) which is equivalent to varying
Fy (B and C are expected to be insensitive to screening effects'®). In the lower part
of the figures we also indicate the contributions to the photoemission spectra from the
singlet and triplet T.R.’s separately which are obtained by summing either the triplet-
or the singlet I.R.’s in Eq. (3:12).

Focussing on the low energy end of the spectrum, the trend we discussed in § 2 is
recognized. For large A(=9eV) it is seen that the low energy cutoff of the
photoemission spectrum coincides with the threshold of the host valence band and in
this case we have a charge transfer material (the C.T. gap magnitude 4—(1/2) W +|4|
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is indicated by the arrow). If we lower A bound states are formed below the valence
band threshold. In contrast to the results of § 2 more bound states can be found in the
gap region due to the multiplet splittings. The distribution of these gap states
resembles the distribution of the bare ionic d® multiplet. Considering for instance
Fig. 5(C) it is seen that the triplet bound state is rather well bond while the singlet
bound state is barely bound. On the other hand, the energy spread of the gap states
is much smaller than the spread of the bare ionic multiplets. These are the essential
characteristics of the multiple charge gap states as observed in semiconductor 3d
impurity systems.”” If A is further lowered (Fig. 5(A)) most of the d®terms can be
distinguished above the valence band maximum although still their energy spread is
sowewhat reduced compared to the bare ion by covalency effects. Note that we find
for A=0eV a negative Ues."*

It is interesting to compare this to the high 7¢’s and recent calculations for CuO.
The strong square planar like structure in these materials causes the transfer integral
Ve to be a factor of /3 larger for the & than the @ orbital. This is sufficient to cause
the singlet state 'A: to be lower in energy than the triplet.*® In this case the gap
states are inverted in energy as compared to the d® states. This has important
consequences for describing the high 7¢’s.*®

Considering the overall aspects of the spectra it is seen that for increasing A the
intensity is gradually moved to the high energy side of the spectrum which is a
well-established trend.'® For relatively-small A (Fig. 5(B)) it is primarily the inten-
sity in the ligand band region which is enhanced and for larger values of A (A>4)
a two-hole satellite starts to develop. Naively one would expect that the shape of
this satellite would resemble the d® multiplet with a weight distribution given by the
fractional parentage coefficients. The figure shows that this relationship is rather
obscured in the parameter range investigated in the figure (compare Fig. 5(A) with
Fig. 5(D)). The reason is that even for A=9eV the real part of g4 is strongly
varying in the energy region of the d® multiplet due to the presence of the S(z) band
(Eq. 2-41). The indirect mixing between the d°® and the ‘d'°L? states turns out to be
sufficiently strong to obscure the ionic multiplet structure.

In order to apply this formalism to the (inverse) photoemission of Cu compounds
we have to incorporate the emission of ligand p-electrons, which is quite important in

ARB UNITS

-20 -16 -12 -8 -4 0
ENERGY (eV)

Fig. 6. Comparison of the experimental (Hell) photoemission spectrum of CuCl. (Ref. 25)) with a
theoretical fit.
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for instance the photoemission of Cu dihalides.” In Appendix B we show that this
additional channel is easily incorporated using the two-hole Green’s function tech-
nique. In Fig. 6 we compare the experimental spectrum of CuCl: (hw=42eV) as
obtained by van de Laan® with a theoretical result derived from Eqs. (B+5)~(B-7)
where we used Egs. (3:15)~(3:17) to model the one-hole Green’s functions and a
semi-elliptical band (p(e)) with width W=3 eV to model the valence band.

In the experimental result we see a structured two-hole satellite centered at
= —11eV and a broad, band-like feature at low energy. In order to reproduce this
theoretically we used A=6.5eV and 4=2 eV, together with V.=1.7¢eV. The abso-
lute magnitudes of A and 4 are uncertain because the line shape is primarily sensitive
to the difference between these parameters. In order to determine these parameters
we need also the band gap magnitude which is unknown (with this choice Egp=1 eV,
{nay=0.7). Also with respect to the crystal field parameters additional (band-
structure, optical) data would be quite helpful. The values we used for these ( V./V:
=1.9, Dg=0.05eV, Ds=0.1eV, Dt=0.05eV) should be regarded as rough estimates
because these only affect the detail of the (satellite) line shape.

The low energy region corresponds with the charge-transfer band according to
the calculation. We used for the Cl 3p and Cu 3d photoemission amplitudes the ionic
ratio Ar/As=—045" and we assumed these channels to be coherent (see Appendix
B). We note that this assumption together with the sign of this ratio mainly affects
the detail valence band shape for this choice of the parameters. The most significant
aspect of the Cl 3p-emission is that it changes the satellite main band intensity ratio
drastically, compared to the 3d only spectra (see Fig. 11). The reason for this is that
the 3d weight is spread over the full energy range while the 3p weight is limited to the
valence band region and a relatively small increase of the 3p cross section gives then
rise to a large increase of the satellite main line ratio.

In conclusion, we have shown that the photoemission spectrum of CuCl: gives
strong evidence in favour of the charge transfer nature of this compound.

§4. Approximate method for many-hole problems

For most of the compounds we have to handle a large number of holes in order
to calculate the ground state and the spectral functions. As we argued, the two-hole
Green'’s function method is not useful in these cases and an alternative is the brute
force expansion of § 2.b. In principle this expansion could be used to obtain exact
results, also if multiplet effects are included. Such a calculation is however very
tedious and, considering the inaccuracies introduced by the use of model-
Hamiltonians, we can live with some loss of accuracy. Making use of the large
numbers in the problem (U, and to some extent 4) reasonably accurate results can be
obtained by introducing some approximations which simplify the calculations greatly.

The first approximation is the neglect of d”*? (and higher lying) states in the
ground state calculation. These are at least at an energy 24+ U compared to the d”
state and for the usual values of U and 4 found in TM compounds these can be safely
neglected. The ground state is then calculated using the |d”> and |d" &) states as a
basis. In some occasions more than one |d”> multiplet has to be considered as for
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instance in Co®" in O, (I.R. *T1). Because the d"** configuration is also subjected to
termsplitting, the d” states hybridize with a set of |d"*'e> continua. If I3’ is the
ground state I.R. we can label these states and continua as

lio>=|d"a; I"> ,
ljoe>=|d"**(I'us)es; 1%, (4-1)

where a labels the components of d”(I3°), I'as the components (8) of the d"*' L.R.’s (I'4)
and 1 refers to a single-hole representation. We will have non-zero electrostatic
matrix elements involving the d” states (4%°)- as well as |joe) states (%5, 8(e—¢’)) and
also transfer matrix elements between the states and continua

h{;°(€)=<l'o|H|]'0€>=v Nh <d”a; Rol}dNH(FAﬁ)/_?l; H)O> Vl(E) , (4 '2)

where N, is the number of holes in the ground state and <|}> is a (subshell) fractional
parentage coefficient (%; denotes a i-hole at infinity).

A problem consisting of a number of bound states coupling to a number of
continua is easy to solve. Using the Dyson equation it can be shown*'®

<io| Gligy= Gz;;f’(n)")=g3:a,oiro+g;:§[h£;’°+1§: / dehfs(s)gf;°(e)h§;°(e)]G:-'r’%(m) ,
(4-3)

where G=(z— H)™! and g.*=<k|(z— Ho)™!|k> (H, is diagonal). We could repeat this
procedure for all L.R.’s of the neutral state (I3) and we showed before that the
imaginary parts of these Green’s functions (G2(I")) directly relate to the d-d optical
spectra.®” The ground state wave function of the system can be written as

|06 1% =San(io)io> + 3 f debo(jo, €)|joc , (4-4)

and the coefficients @o(i0) and bo(jo, €) as well as the ground state energy (&) can be
determined using straightforward variational theory.'®

The calculation of the BIS spectrum can be simplified in a similar way by the
neglect of |d"3ece’> states which is even a better approximation than the neglect of
|d"*?ee’y states in the ground state calculation. The photoemission problem is
however less straightforward and we have to introduce a second approximation.
Considering only d-emission we write

G Tmm’, 2)=< @o; [°|dn* Gdm| Do; [
=;<@m(t=0);ﬂ|5|@mr(t=0); Iy, (4-5)

where we projected the prepared state on the N—1 electron LR.’s (I7). These states
can be written in a compact form as

|On(t=0); T1>=Salio, i>+ T [deblin, j, s>, (4°6)

where (7 labels the components of |d"%; I1>)
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li>=d""r; I,

je>=ld"(Li)el> (4-7)
and the coefficients in Eq. (4:6) are given by

a(io, 1)=ao(@)X[d"a; I°1km; I1}d" 7, It ,

b(jo, j, €)=boljo, XX A" (L'as) s Is°Vkem; I1|}d™(Toa) ber; I . (4-8)

In the ionized state we have non-diagonal matrix elements between the states in
Eq. (4-7)

T=CG|H|i",
1 (e)=<i|H|je>=vVNn+<d" y; [} d"(Toa) b I Vi(e) (4-9)

and matrix elements between the |je> states, which are further coupled to |d"*'ee”>
states (see for instance Appendix A). In order to evaluate Egs. (4:5) and (4-6) we use
the folding-back procedure as introduced by Gunnarsson and Schénhammer.'® We
write the Hamiltonian in the ‘ionic’ basis as

H=H,+H +H;, (4-10)

where H, contains the diagonal part of H, H; the matrix elements in Eq. (4+9) and H:
the non-diagonal matrix elements between the |je> states and all the other states we
did not consider explicitly. We have

G=(z—98+H)'=G+GH.G,
G~=(Z‘6+H0+H2)—1=Go+ GonG R

Go=(z—8+Hy)™. (4-11)
Using Eq. (4-11) we find after some algebra®® the compact expression for Eq. (4+5)

Gsa(I"mm’, z)=;}[iZ‘.i,(Ai+F,)(Ai'+Fz~r)G,-"'+B] , (4-12)
where

Ai=§a(io, i),

Fi= 3 [[dede'blio i, €) 35 h3(e),

J0sJ ]

B=_ 3 [[dede'b(n, i, €) 35 b, 7, €, (4-13)

305307 5753"

and the Green’s functions G can be derived from
G =<ilGli>=gibuw+ oS hi+ S [[dede' ni (&) i hi () |GE, (414)

where we defined

Fie=elGliey . (4-15)
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The problems are in the evaluation of Eq. (4:15). Due to the hybridization
between the |d"e> and |d"ee’> states these are non-diagonal in € as may be inferred
from the example in Appendix A. The rigorous (numerical) evaluation of Eq. (4-15)
is tedious'® and instead we aprroximate Eq. (4-15) as follows:

Gre=<d"(ha)e: I1|Gld™(ITa)er; Ity
~ G (Ipa; z—0+er+e)dle—¢), (4-16)
where
G (hha)=<d"a; I1|G|d"a’; Iy,

which can be determined from Eq. (4-3) and these relate directly to the d-d optical
spectra as we argued before. Using Eq. (4-16) it is straightforward to evaluate
Egs. (4-12)~(4-14).

In Eq. (4-16) we have assumed that the extra valence band hole in the ionized
state can be viewed as a spectator with respect to the mixing of the |d™ and |d"*'e>
states. This automatically yields the exact result that the charge transfer gap
magnitude equals 4—(1/2)W+|8|. In order to see how well it works in other
respects we compare results obtained with this scheme for Cu(Il) impurities with the
exact results of § 2.b. In order to avoid irrelevant complication we have assumed
octahedral (O,) symmetry. The Green’s functions in Eq. (4-3) are simply the one-hole
Green’s functions from Eq. (3:11) which we model as

C(2)=(2— Vi I(z+4)7,
Gi(2)=(z2+10Dg— VI (z+ )", (4-17)

and the (E) ground state is found according to Eq. (3:17). The fractional parentage
coefficients are easily determined and the ¢:'’s and % can be determined from the
electrostatic matrices as tabulated by Griffith.*® We end up with

Giu(’E, 2)= 3} Gislemm’, 2)~ 3 Gisemm, 2)
GS§<(3T1)+ GeK(st)‘f‘ 3 GE<(A,)

+2 G““Tl)+ G“<1Tz)+G“2< 'E) L Ga A1), (4-18)

where

Ga<(IT)=<{n>l(1+ An(2)?GEx(I7)+ Bn(2)],
An(z)=Ve / a’ep(e) Gmm(z—é‘—f—erl—e),

Bu(2)= V2 [0y G (z— b+ e1+ ), (4-19)

and G &(I7) can be derived from Eq. (4:14). We note that we omitted terms
Gs«emm’, z) with m=+m’ in Eq. (4-18) to simplify matters further. Using the formal-
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Fig. 7. Comparison of ‘exact’ photoemission line shapes (solid lines) with approximate results (dashed
lines) for the one-hole impurities. Parameters are as in Fig. 5 except A=7 eV and 4 as indicated.

ism of §2.b we also derived the ‘exact’ photoemission spectra and in Fig. 7 we
compare these with the approximate results derived from Egs. (4:18) and (4:19). We
used the same parameters as in Fig. 5 except that A=7eV and values for 4 as



Photoemission and the Electronic Structuve of Tramsition Metal Compounds 257

indicated in the figure.

It can be seen from the figure that the approximated results mimic quite well the
exact results. The major deviations are in the host valence band region and the
results in Appendix B indicate that it is anyhow unrealistic to expect that the line
shape in this region can be understood in full detail using model Hamiltonians. It is
also seen that the binding energy of the bound gap states is sowewhat underestimated
in the approximate results. In the approximation we used it is literally the case that
for large U in the valence band region one hole is bound to the impurity while the
other hole moves independently in the host valence band. The failure of the approxi-
mation indicates that this conception, as put forward in §2.a, is somewhat
oversimplified. It indicates that for non-integral valence the valence band hole
interacts with the spin of the localized hole, although this interaction is, in the charge
transfer regime, to small to bind the itinerant hole to the impurity.

§5. Application to nickel compounds

Recently the divalent Ni-compounds have been subject to several spectroscopic
investigations. The 2p-XPS,'® XAS"™ and d-d optical spectra®” of several of these
compounds have been analyzed by us in the impurity model framework, from which
we obtained already some insight in the electronic structure of these materials. Also
the valence photoemission spectra of these are well documented,”” especially the
spectra of NiO*”®" which will be analyzed in detail in this section.

The insulating Ni compounds are characterized by two-hole ground states. The
ground state symmetry is usually 342 (O») and the ground state wave function has the
simple form under the neglect of |dce’> states (see also Ref. 12))

|@o; 3A2>=ao(|d8; 3A2>+/dsbo(6)|d962; 3Az>) , (5' 1)

because no term splittings enter. We find for the ground state hybridization energy
and coefficients

_ o2 [0(e)de
0=2Ve J5—J—¢"

|do|2:<1 +2 Vezfdsp(e)(é—d— 45)‘2>_1 ,

bo(€)=v2 Veaop**(e)(6 —d—e)™. (5-2)

The inverse photoemission spectrum is a simple one-hole problem which can be
calculated in the space spanned by the |d®> and |d'%e.> states. The latter states are
at high energy (4+ U) and to be consistent with the approximation for the ground
state it is better to neglect these. The inverse photoemission spectrum consists then
of a single line at ea+J((Az2)+|8| (J(*Az2) is the exchange stabilization of the |d%; 242>
state) and weight |aol? if only the filling of d states is considered.

The calculation of the photoemission spectra is a three-hole problem and is
therefore less trivial. We calculate these using the method of the previous section.
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Table II. States and matrix elements used in the calculation of the photoemis-
sion spectrum of NiO.

2

T

[ =[£%, [2>=|t*CTh)e, [D=It(T)ed, [4>=|te’CA2)>, 15>=|te*( E)>,
[6>=|t2CE)ke>, |T>=|2(CE)ke>, 18>=|X(A)k:>, 195=|t2C T1) ke,
[10>=|et.C Tk, [11>=|t2C Tk, [12>=|ets(C T3)E:D, 13> =|etsC To) koD,
[14>=|etz(C T2) ko>, 115> =|et:(* T1)ked, 116> =|eto(* TV keD, 117> =|62(* T2) ke,
118> =|ete(* T2)ked, 119> =|82( To) ks>, 20> =|ets(* To) k:>, |a>=|e*(PAa)),
|6>=|eke(*As)>

l6>=— Vi, <111>= Viv/3/2, <1|19>= Vi/ V2, <2|9>= V., <2]12>=—+/3/8,
<214>= Vi/ /8, <2/|16>=3V:///8, <2||20>=— V.v/3/8, <3|12>=— V./3/8,
3l14>=—3V:/V8, <3I16>=— Vi/V/8, BI17>= V., <3|20>=— V:v/3/8,
4|8>= TV, <410>=— V./2, <4|13>= V./2, <4]155=— V.v/3/4, <4]18>= V./3/4,
5I7>= Vi, <5|10>= Vev/3/4, <5135 = Vey/3/4, <5||15>=— Ve/2, <5|18>=— V./2.
<alt.4>=—v2/3, <bl#.]10>=1/V12, <b]1,]13>=—1/V12,

<bllt.1155=1/2, <blt.18>=—1/2

‘T

ID=[6"CTed, [2>=|te*C A, [=[6"C Tk, W>=letC Tk,
|5>=|t22(3 Tl)kt>, |6>=|€t2(3n)k:>, |7>:I222(3A2)kt>, |8>=Ietz(3T1)ke>,

19> =|et T3) ke,

3>= Ve, <14>= Vi/3/2, <1||6>=V2/v/2, 2UT>= V., <2|8>= V.,
Ql=-"7.,

<altI2>=1, <b|#18>=1/V2, <bl#]9>=—1/V2, <alt.|2>=1/V3,
<blt.lI8>=1/V8, <blt.19>=—1//6
2E

[1>=|e®, [2>=|t*CE)e), |3>=|t*(A))ed, [4>=|t>, |5>=|e*(Az)ke),
[6>=|2CE)ke>, |T>=|t2CE)ke, |8>=|e*(*A1)ke>, |9>=|t*("A1) ke,
[10>=|etaC To) k>, 11>=|ets(* To)ke>, 1125=|2C Ta) ke, 113> =|et(C T1) ke,
|14>:|t22(3T1)kt>, |15>=|€tz(l Tx)k:), '16>=|63(3A2)ké>,

15> =Vev3/2, <1l6>= Ve, <1I8>=Ve/V2, <27>=~ V., <2|10>=V./3/4,
Q11> = Vi/2, <2|13>=— Vi/3/4, <2l15>=— V./2, <3|9>= V.,

<3|10>= Viv/3/4, <3l11>= V./2, <3|13>= V.v/3/4, <3|155= Vi/2,

312>= V372, Bl14>=— Vi/3/2,

dle1>=1, <ble.|5>=1/V12, <ble.[6>=1/V2, <ble.I8>=1/2,
<blle.l16>=—1//6

A nice feature of this method is the direct use which can be made of the information
obtained from the optical spectra. We presented a detailed analysis of the d-d
excitons using the ‘exact’ two-hole Green’s function formalism elsewhere?” As it
turns out, essentially the same results are found if the d'° states are neglected and we
used Eq. (4:3) to calculate the two-hole Green’s functions needed as an input for the
photoemission calculation. Finally we need the electrostatic matrices of &7 (4.” in
Eq. (4-14)) which can be found in Griffith’s book*” and the fractional parentage
coefficients (Egs. (4-8) and (4:9)) which are summarized in Table II. These are
determined in the electron gauge according to the phase conventions of Griffith and
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Fig. 8. Summary of the most important d” states and d°L continua in the approximate calculation of
the photoemission spectrum of divalent Ni-compounds.

therefore the electrostatic matrices for ¢ and d® have to be used.

In Fig. 8 we summarize the most important states and couplings as present in the
calculation of the photoemission spectrum. Only the *731, 271 and 2E three-hole IL.R.’s
are accessible by the removal of a d electron from the *A, ground state. We have
then to handle resp. 2-, 4- and 5- dimensional electrostatic matrices for ¢ and in the
figure we only indicate the strong field components of d” which are directly populat-
ed in the photoemission process. We indicate also the thresholds of the |d®¢)> bands
and the hybridization matrix elements between these and the d” terms. Already on
this level the picture is complicated but using Eqgs. (4:12)~(4-14) all these contribu-
tions are easily collected and the lengthy expression obtained in this way can be
evaluated numerically.

Because the information in the optical spectra can be used we can get rid of all
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Fig. 9. Photoemission/inverse photoemission spectrum for ‘optical’ parameters and A=85 eV
compared to the experimental spectrum of NiO (Ref. 48)). The contribution of different IR’s to
the photoemission spectrum are also indicated.

one-particle parameters. Using B=0.13eV and C=0.6 eV for the Ni** (d®) racah
parameters a reasonable fit for the optical spectrum of NiO is found using 4=5.5¢€V,
Ve=16eV, V:;=06eV and Dg=0.7eV. We modelled o(e) after the 02p DOS
obtained from bandstructure calculation (see inset Fig. 9)."® The only free parame-
ters left are the d’-Racah parameters. We can rely on free ion values for the B and
C parameters (B=0.14 eV and C=0.68 eV*®) and only A (d”"—d®) has to be deter-
mined by comparison with experiment. The main line-satellite splitting is deter-
mined by A—4 and in this way we find A=8.5 eV for NiO and the spectrum obtained
is indicated in Fig. 9. This result is compared in the figure with the experimental
spectrum obtained by Oh et al. (hw=120eV).*? It is seen that the agreement between
theory and experiment is poor. First we note that the satellite in the theoretical
spectrum is much too large. One could argue that is due to the neglect of
0O2p-emission (see Appendix B), but this seems unlikely because it is known®® that the
02p cross section is relatively low compared to the Ni3d cross section at high photon
energy. A second major discrepancy is the band-like appearance of the main line in
the theoretical spectrum which badly compares with the sharp peak seen in the
experimental spectrum.



Photoemission and the Electronic Structuve of Tramsition Metal Compounds 261

Apparently it is not possible to model the neutral and charged system with
exactly the same effective Hamiltonian. This is not surprising because in the real
system many more, relatively small, interactions are present which are neglected in
our model Hamiltonian. In the analysis of the core spectra we faced a similar
problem. We found there'® that smaller transfer integrals had to be used in the
2p-XAS final state compared to the transfer integrals in the (charged) final states of
the 2p-XPS process. We argued that in the Anderson model Coulomb interactions
are neglected of the form

AT =¢edl el (5:3)

where c is a core-hole and L a ligand electron. These will cause an increase of the
effective transfer integral. Assuming a screening length significantly larger than the
interatomic separation, which is realistic for insulators, we estimated this interaction
to be of the order of 0.5eV. We showed in Ref. 12) that this modest transfer integral
renormalization has a large impact on the spectral line shapes. We note that in more
covalent materials 47 has the opposite sign.*"

The d-wave functions have a rather small radial extent and also in the photoemis-
sion final state such an effect is expected, affecting mainly the magnitude of the

— To1
-—- EXP

-2y

INTENSITY (ARB UNITS)

1 1 1 I 1 1 1 1
-16 -12 -8 -4 ] 4
ENERGY (eV)

Fig. 10. As Fig. 9 but now with an enhanced d’-d°L hybridization and A=6.5 eV. In the inset we
show the DOS used to model the ligand band.
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{d"|H|d®e)> transfer integrals. In Fig. 10 we show the results obtained by increasing
these transfer integrals by a factor of 1.4. In order to reproduce the main line
satellite splitting we had to reduce A to a value of 6.5eV and 10Dg by 0.3eV. The
other parameters were kept the same. The reduction of 10Dg seems to us barely
significant because it is expected that in this region the O2p emission (which we
neglected) is quite important. Again it is observed that a modest increase of some
transfer integrals has a large effect on the line shape, which is mainly due to the large
degeneracy factors N,+1 which amplify the one-body transfer integrals in a many-
body calculation. The satellite intensity has dropped down to an acceptable magni-
tude and it is even more significant that a (nearly) bound state is now found at
threshold.

It is interesting that according to the calculation the relative orientations of the
impurity spin and the spin of the hole is of great importance. We also noticed such
an effect in § 3 and it is clear that this is due to the large termsplittings in the d”’
manifold. Because the d” *T; states are at relatively low energy a bound state of * 7}
symmetry is pushed out of the valence band while the low energy doublet states are
still of charge-transfer nature because these d” states are at much higher energy. As
a result, the main line is quartet &’ like (NiO is well inside the intermediate regime)
and the shoulder corresponds with charge tranfer (=|d®¢)) doublet states. Consider-
ing the resonant photoemission behaviour it is expected that the d’-like state will
show a much more pronounced anti-resonance behaviour than the charge-transfer like
shoulder. This is actually seen in the EDC’s obtained by Oh et al.*” where the main
line intensity becomes comparable in magnitude to the shoulder at resonance.

Because of the importance of the ligand p emission in the Ni-dihalides we have
not attempted to produce quantitative fits for the photoemission of these materials.
However, some observations can be made. If we compare the photoemission spectra
of NiO and for instance NiCl,*” it is observed that the main line-satellite splitting is
considerable smaller in the latter case, while the conductivity gaps are similar.?*?
Hiifner suggested, based on this observation that the U in NiCl: would be consider-
ably smaller compared to the finding for NiO.*® However, it can also be observed
that the appearance of the main line in NiCl; is much more band-like than in NiO
which indicates that this material is well inside the charge-transfer regime. This is
confirmed by the resonant photoemission measurements where no significant change
in resonance behaviour is seen for different points in the main band. This together
with the reduced mainline satellite splitting, indicates that the transfer integrals are
smaller in NiCl: compared to NiO, which is not surprising. We found in fact that a
reduction of the V’s by 209% keeping the other parameters the same, can account for
the differences between the photoemission spectra of NiCl: and NiO.

§ 6. Conclusion and final remarks

In this paper we have presented a new way of looking at the valence electronic
structure of TMC’s based on the neglect of the dispersional width of the d-bands. In
this way we arrived at a classification scheme for the band gaps in these compounds
(charge-transfer, intermediate and Mott-Hubbard gaps) and we presented direct
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evidence for the validity of these ideas by a detailed analysis of the (inverse)
photoemission spectra of CuClz and NiO. This scheme gives us a basis to understand
the systematics of the valence electronic structure of TMC’s. As we show
elsewhere®®® it is indeed possible to account for all known band-gap trends of at
least the divalent insulating compounds within this scheme.

The theory is also suggestive with respect to the nature of the carriers in these
materials. Focussing on the late 3d-compounds it is expected that in nearly all cases
the electron move in the narrow ‘d”*" like bands. On the other hand, the hole mass
is expected to decrease for decreasing anion electronegatively. In the charge-
transfer regime the holes are much lighter than the electrons and the conduction is
expected to be exclusively p-type. This has been confirmed recently by photocon-
ductivity measurements on the (charge-transfer) Ni-dihalides.’” Other examples are
the semimagnetic semiconductors like Cdi-z:Mn.Te where the holes are known to be
of Te 5p character,”™ although in these cases the electrons are also light because of the
small host bandgap.

Some points deserve further attention. Although the neglect of the dispersional
width of the d-bands is certainly allowed if the high energy scale is considered it is
necessary to include the translational symmetry of the TM-ions to get a more precise
description of the low energy quasi-particles in this materials. This is not only of
academic interest. In recent studies Sternberg et al.?® Shen et al., and Brooks et al.?®
identified dispersion in the d like bands with angular resolved photoemission. A
promising approach to study these questions seems to be the canonical perturbation
expansion introduced by Chao et al. some time ago in the study of the Hubbard
Hamiltonian.*®

As in the case of the core-spectra we found again that the parameters have
to be altered as the system is perturbed by ionization, which points at the incomplete-
ness of the effective Hamiltonian used by us. We find, as for the core-spectra, that the
discrepancies are removed when we allow for a relatively modest renormalization of
the effective hybridization. In order to investigate this problem better first principle
calculation could be of great help. In any case, it is a quite significant development
that both first principle quantum chemical cluster calculations®® and local density
supercell calculations®” obtain parameters close to those in our semi-empirical pic-
ture.
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Appendix A

In this appendix we present a survey of the states and matrix elements used in the
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gap calculation for large degeneracy of § 2.
We have for the N electon problem
ld”>=dld2|d”+2> ,

|d"+16>=‘%—5(d1692+ Celdz)ld"+2> ,

|d™*2ee)=Ce1Cea|ld™® ,

|d"+266/>=—;‘§(6e105'2+ Ce'1Ce2)|dn+2> s (€< 6') (A ° 1)

with matrix elements
d"H|d™»=0, <d""e|lH|d""'e>=4d+¢,

{d"?e¢’|H|d" " ?ee’>=24+U+e+¢
and

A" H|d"e>=v2V(e),

(d™e|H|d" 2ee>=1/2V(e),

Kd"'e|lH|d"?ee>=V(e), <d""'e¢|H|d"?ee>=V(e). (A-2)

We note that for N.— o states like |d"=e’> (e=¢€’) have a vanishing contribution. For
N.=30 however they have still some (small) influence.
The N+1 electron problem is trivial

|d™ > =dh|d"*?)
|d"2e>=cei|d™*?®>

(A-3)
with matrix elements

A" H|d"")=¢eald"?e|H|d"Pe>=ecat+d+U+te, (d"'|H|d"Pe>=V(e).

The N —1 electron problem is evaluated in the basis
|dn+1>=dld2d3|dn+2> ,

ld"s) =’:}§(dld2€e3 +diCe2ds+ Celdzds)ldn+2> ,

|d”+1€6>=%(d10526‘e3+ Celdzcea+ Celcezda)ldn+2> ,

Iam+168/>=%(dlce205’3+ diCeaCest CerdzCers

+ cendaCest Ce1Ceradst Cent Ce2d3)|d"+2> ,

|d"?eee) = Ce1Ce2Cesl d™2)
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|d"2eee’y =—;—§( Ce1CeaCerst Ce1CeraCes+ CennCezCes)|d™ >, (e< )

1
Idn+2€€/€”>=ﬁ(6'el Cer2Cer3t Ce1Cen2Cerat Cer1CeaCens

+ Cem1CeaCerst CenCenaCest Cemcences)|d™ >, (e<e’<e”). (A-4)

We have for the diagonal matrix elements <d"!|H|d" >=U—A4d+ e, <d"e|H|d"e>
=er+te, d"ee’|H|d" ee’>=er+ A+ e+¢, {d"?ee’e”|H|d" 2ee’e”>=¢e,+24+ U
+e+&+¢&” and for the non-diagonal matrix elements

(d"'|H|d"e>=V/3V(e),

{d"e|H|d"'ee>=2V(e),

(d"e|H|d"ee>=y2V (&), (d"¢|H|d"ee>=V2V(e),

(d"eelH|d eee>=+/3V(e),

Kd""'ee|H|d"?eee>=V(e’)  (etc),

Kd"ee'|H|d"2eee’>=V2V(e)  (etc.),

{d"'ee’'|H|d"%ee’e”»=V (")  (etc.). (A-5)

Appendix B

If other channels for photoemission are present besides of the d channel the
relationship between the local d-density of states and the observed photoemission
spectrum is rather indirect. Van der Marel has studied this matter in detail for
uncorrelated impurities® and has shown how to obtain (under certain model assump-
tions) the local d-density of states of the impurity from difference spectra. With
respect to correlated systems one would at first glance expect that, if host photoemis-
sion is dominant, the spectral features are quite well described by the single particle
dispersions of the host bands. However, because of the d-host band hybridization
also in this case we are faced with a many-body problem and these many-body effects
may have a profound influence on the spectral line shape, at least in the concentrated
limit.

The two-hole Green’s function method can be used to obtain some rigorous results
for this problem. Equation (3:5) can be rewritten as

GislCymm!, 2)=|Adkr)* Gia(ymm/, 2)
+ /de{AL*(kF, E)Ad(kF) G ymm', z)
+ Ai(kr, €)Ad*(kr) Gs(ymm’, 2)}

n f dede’ Ac*(ke, &) A(kr, &) GSlymm!, 2)+ Gu(2) Smmr (B-1)



J. Zaanen and G. A. Sawatzky

266

INCOHERENT

COHERENT
L EMISSION

—— 3D EMISSION

o= — === =

-16

-20
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Fig. 11.

In (A)~(C) the Racah A is 3, 6 and 9 eV, respectively.

quasi-isolated impurity model.
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with Gs.z given by (3+8) and
GSymm!, 2)={@o; I'|ctnGeerm|@o; T’ ,
Ga(ymm’, 2)=< @v: I'|ctnGdn| @o; "> . (B-2)

In Eq. (B+1) we have also included a contribution to the photoemission of ligand
electrons which are non-bonding with respect to the d-shell of the impurity (G"2(z),
m=m., ms, [+2). Along the same lines as for Gsz we find

Gsymm’, 2)= g (m, 2)Smm + g(m, 2)<nad> T 95 (m/, ),
G&(ymm’, 2)=ge*(m, 2) Smm + ge2(m, 2)<nad> T 9 (m, 2) . (B-3)

The one-hold Green’s functions appearing in Eq. (B:3) are given in the Anderson
model by

9<% (m, 2)=ge(2)8(e— &)+ ge(2) Vau*(€)ga™(m, 2) V(&) ger(2)
9% (m, 2)=g4*(m, z) Vn*(€)ge(2) ,
ge(2)=(z—6+4+¢e)". (B-4)
Combining Egs. (B:1)~(B-4) finally yields
Gsil(ymm', 2)=CcA*(m, 2) A(m’, 2) Gs.(ymm', 2)+ B(m, 2) Snm+ Gn®(2) 67» , )
B-5

where

Alm, 2)=Adke) + [deAulkr, €) Va*(€)ge(2)

B(m, Z)=/d€|AL(kF, e)Pge(2) . (B-6)

In Eq. (B+5) we also include the impurity concentration (¢). By setting Van(e)
= Vup"*(e) and A.(e, kr)=AL(kr)0"*(¢) Eq. (B+6) are further simplified to

A(m, Z)=Ad(/€F)+AL(kF) Vm*F(Z— o+4) ,
B(m, z)=|Ac(kr)*T'(2— 8+ 4) (B-7)

with I'(z) defined in Eq. (3-16). With these definitions A4 and A. can be compared
to atomic (d and p) ionization amplitudes.

In order to mimic the concentrated systems we set ¢=1 in Eq. (B+5) and to
account for G we assume that we have for each cation twelve anion bands of
different m, corresponding with the 12 p orbitals on the nearest-neighbour ligands in
the cluster calculation of Cu dihalides.”® Ten of these are of d symmetry such that
we have to add 2 non-bonding bands. Finally we note that Eq. (B-5) is only appropri-
ate at relatively low kinetic energy. At high kinetic energy (>50 eV) the wavelength
of the emitted electron becomes substantially smaller than the interatomic distance
and the uncertainty in the real space positions of the atoms destroys the coherence
between the different ionization channels (direct vs indirect transition model). In
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terms of our calculation this means that terms proportional to A.*(kr)A4(kr) and
Ar(kr)Ad*(kr) in Eq. (B+5) have to be neglected for E(kr)>50eV.?®

In Fig. 11 we show results obtained from Eq. (B-5) for the same parameter range
as in Fig. 5 (we omitted A=0eV). For each parameter set we compare p-emission
only (A.=1, Azs=0) 3d-emission only (A.=0, As=1) and both p and 3d emission (A.
=1, As=—1) including-(‘coherent’) and excluding (‘incoherent’) the interference
terms. Focussing first on the p-emission only it is seen that this is mainly concen-
trated in the valence band region. Although the satellite barely shows up in this
spectrum, the shape of the valence band still depends rather strongly on the magnitude
of U, which is not surprising because of the strong hybridization with the 4 states.
This is a subtle problem, as can be illustrated by a simple cluster calculation.
Taking a cluster with spin degenerate ‘d’ and ‘L’ orbitals which are hybridized (7T
=<{d|H|L>) and assuming that these orbitals are at the same energy we obtain for U
=0 a bonding (¢s=(ld>+|L>)//2) and an antibonding (pa=(|d>—|L>)/{/2) molecular
orbital. In the ground state of the cluster we take a single up spin hole in the
antibonding level. Considering the ‘majority spin’ photoemission we then find two
lines with equal intensity in the spectrum, corresponding with the antibonding (at E
=0) and bonding (at E=—2|T|) orbitals. It is instructive to consider the U — <o limit
where at least the influence of the ‘d” configuration on the ‘valence band’ region is
removed. The two-hole eigenstates of the cluster are found to be (see also Ref. 25))

le>=(L,d,>+|d,L.>+v2|L,L,>)/2,

le2>=(L,d.>—|d,L.>)/V2,

lp>=(|L,d,>+|d,L.>—2|L.L,)/2,

lp>=|d,d,> . (B-8)

The relative positions of the valence band states (|¢1), |@2), |¢s>) are now +,/27T, 0
and —,/27T and for the intensities of these lines in the L, spectrum we find ;=1
—1//2)%/4, L=1/4 and L=(1+1/,/2)?/4. This example shows the untrivial nature of
the problem and it gives some feeling why the valence band is (also for large U)
strongly distorted while also intensity is found below the bottom of the valence band
where the ‘S(z)’ two-hole states are located.

Considering the interplay of d- and p-emission it is seen that p-emission favours
strongly the intensity in the valence band region. This is because the d-weight is
spread over the full spectral range while the p weight is concentrated in the valence
band region. In the incoherent case the p and d only spectra are simply added but in
the coherent case interference terms are present. One effect of this interference is
that the satellite-main intensity ratio is changed. This effect is however minor and
the major effect is that the shape of the valence band is strongly changed. In our
example the valence band seems to narrow for opposite phases of A, and A, and to
broaden®® if the phases are the same. It is expected that, because of the changes in
phase and magnitude of the photoemission cross sections, the line shape of the ligand
band will be strongly photon-energy dependent at relatively low energy. This may
explain the vastly different main line shapes observed in the He (I) and He (II) spectra
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of CuCl® and the similar behaviour in the EDC’s of other transition metal compounds
in the synchrotron study by Kakizaki et al.*”
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