The variable star SY Muscae, by 7. Uitterdijk. The variability of this star was discovered by Miss Cannon (H.C. 184). It is H D. 100336 and does not occur in the C.P.D. The spectrum is very peculiar, the following description is given in the Draper Catalogue: ".... Four bright lines are seen, three of which are $H\beta$, $H\gamma$, and $H\delta$ and the fourth appears to be the band 4650, present in spectra of Class O. The spectrum resembles that of Z Andromedae and also several new stars at late stages of their history. (The lightcurve of Z Andromedae, given in HC 168 resembles that of new stars in having sudden outbursts in light)...." I estimated the star together with AY Muscae $(B.A.N.\ 240.\ e)$ between the same comparison stars a, b, c, d, e and f (see Fig. 3; AY Muscae is the bright star preceding f). The variable SY Muscae being always fainter than c, I now arbitrarily choose the step value of c to be zero. The magnitudes of the comparison stars were determined by means of the Harvard Sequence of the Selected Area 193, which is in the field of the plates used. They are given here, together with the step values, derived from the estimates themselves. Together with eight estimates on plates taken before 1924 the 400 observations cover an interval of 22 years (see Table 2). In this interval the brightness FIGURE 2 | | TIGURE 3. | | |-----|-----------|-----| | | N | | | | • • c | 25' | | • | | d•• | | • | f. | e | | | • | | | • . | o • | | of the variable is always only slowly altering and no sudden outbursts in light like in the case of Z Andromedae have been found. A periodical change of 625 days satisfies all observations very well. There is no indication of irregularity in the length of the period or in the form of the lightcurve of the different periods, except perhaps in one case, viz. the minimum reached in the year 1924 when the variable seems to be somewhat too bright. TABLE 2. | number of
observations | limiting J.D. | mean
J.D. | mean
brightness | number of
observations | limiting J.D. | mean
J.D. | mean
brightness | number of
observations | limiting J.D. | mean
J.D. | mean
brightness | |--|--|--|---|---|--|---|---|--|--|--|---| | 2
1
1
1
1
5
6
2
11 | d d 2418794—8799 8834 2421287 1401 2084 3550 3788—3801 3883—3887 3904—3916 3930—3946 | 2418797
8834'3
2421287'3
1401'2
2084'3
3550'3
3794'3
3885'2
3910'4
3940'4 | st
6.7
7.7
4.9
8.3
8.6
4.9
7.18
8.03
8.0
8.11 | 39
30
6
2
2
1
1
30
22
16 | d d
2424281—4291
4292—4298
4559—4566
4586
4918
5025
5206
5328—5337
5348—5354
5355—5362 | d
2424288'3
4294'8
4560'8
4586'5
4918'5
5025'4
5206'5
5331'0
53352'5
5359'7 | st
3'39
3'37
8.10
7'05
3'8
6'4
7'5
5'39
4'80
4'78 | 4
2
11
4
8
9
5
13
12 | 5015
5702—5714
5807—5816
5830—5836
6007—6013
6029—6031
6087—6096
6113—6121
6122—6129 | d
2425452:8
5615:5
5710:0
5809:5
5833:4
6031:1
6030:2
6094:7
6117:8
6125:2 | 5.4
7.81
9.03
8.11
3.88
3.10
3.82
3.60
3.26 | | 17
10
10
34 | 3958—3977
3985—3990
3991—4000
4258—4264 | 3968·9
3988·1
3995·3
4260·9 | 7.49
6.94
6.33
3.49 | 21
15
9
3 | 5378—5386
5388—5393
5414—5420
5435—5441 | 5383.0
5392.3
5417.0
5437.3 | 3'49
3'15
3'73
3'2 | 3
17
1
3 | 6439—6452
6469—6480
6891
6924—6926 | 6447'9
6474'9
6891'2
6924'9 | 8.9
8.15
6.4
7.73 | Accordingly a mean lightcurve has been constructed, using the reciprocal period dolor on taking J.D. 2420000 as zeropoint (Table 3). This lightcurve given in Fig. 4 is remarkable. There are two maxima of equal height which are separated by a secondary minimum of relatively short duration. There is some