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Summary. I present some elementary calculations of the acceler-
ation of gaseous bullets by radiation pressure. For simplicity, the
radiating surface is assumed to have a blackbody spectrum, and
to be either flat, or a hollow disk, or a narrow cone. The
temperature of the disk is either constant, or decreases as a power
of the height above the disk midplane; the surface is either a
Lambert radiator, or has a cosine limb darkening.

In all these cases, it is seen that the combined effect of
acceleration by photons that are emitted near the cloud, and
deceleration by aberrated blueshifted photons that were emitted
far away, produces a finite “magical” terminal speed v/c = §,, that
is rather less than the speed of light. Besides finding that B,,=

%(4~\ﬁ) for acceleration above an infinite flat radiator, I show
that §,,<0.8 in cases where the temperature of the driving surface
decreases upward and outward, and that f,<0.4 in conical
funnels with an opening half-angle of 40° or less.

In order to try and obtain higher final speeds, as are implied
in superluminal radio sources, I investigate the various physical
effects that influence f,,. Among these is the effect of making the
driving radiation vary in time. Although f,, does go up, I show
that the required value f,, ~ 0.99 can be obtained only for huge
temperature increases, and corresponding luminosity bursts ex-
ceeding a factor 10, which are almost certainly unacceptable.
The situation can be saved, however, if the scattering of the
radiation is “coloured” according to x oc v™" instead of the
colourless Thomson scattering. For n=3, it is shown that
B,,=0.99 can be achieved with a photon burst from a disk in
which the temperature increases by a factor 10. ’

Key words: relativity —acceleration mechanisms — galaxies: nuclei
of —hydrodynamics

1. Jets versus clouds

It is clear from the synchrotron lifetimes of fast electrons in
nonthermal radio sources that said sources must have their
energy replenished by means of matter that contains very few
highly relativistic electrons, if indeed any at all. Models for such
replenishment were proposed long ago (Scheuer, 1974; Blandford
and Rees, 1974.) The striking linear morphology of the inner
parts of radio galaxies (Bridle, 1984) provided prima facie evi-
dence for the correctness of these hydrodynamic jet models, and a
thriving industry of supersonic flow calculations has sprung up
(Ferrari and Pacholczyk, 1983; Bridle and FEilek, 1984; Begelman

et al., 1984; Centrella et al., 1985; Winkler et al., 1987, and
references therein.)

It seems certain that bulk kinetic energy feeds large scale
radio lobes, but it is not necessary that this energy is supplied in
the form of continuous streams. The first unambiguous case
against continuous jets was put forward by Rudnick (1982) and
by Rudnick and Edgar (1984), who noted that many radio
sources show clear evidence of interruptions in the flow that feeds
the outer lobes of these sources. The interruptions occasionally
show some regularity, maybe indicative of “flip-flop” ejection of
gas alternating between the two sides of radio nuclei. Some shy
attempts at bucking the trend have been made (Wiita and Siah
1981; Saikia and Wiita 1982; Icke 1983), but continuous jets are
still the industry standard for models of radio galaxies (Norman
et al., 1982, 1983; Winkler et al., 1987.)

The observations need not imply the existence of continuous
flow. Whenever we actually see something move, what moves is a
blob. This is true for diminutive radio doubles like the galactic
source SS 433 (Margon, 1984; Schilizzi et al., 1984; Vermeulen et
al., 1987) as well as VLBI nuclei of radio galaxies (e.g. Fanti et al.,
1984, passim.) Even thermal sources, like the galactic bipolars
(e.g. Mundt, 1985; Lada, 1985) and the spindle-type planetary
nebulae (Balick et al., 1987) show unmistakable signs of pro-
pagating blobs. Moreover, there is now ample evidence that the
broad line regions of active galactic nuclei, which are thought to
be very close to the central engine, are chock full of clouds; these
might well serve as ammunition, given proper circumstances.
Indeed, the parameters of gaseous bullets which I will derive
below are quite comparable to what is needed for broad-line
clouds.

A prime example of moving blobs is provided by the moving
optical features in SS 433 (Margon, 1984), and the corresponding
VLBI blobs (Vermeulen et al., 1987) show unambiguously that
the density in the SS 433 “beams” (whatever they are) must vary
by many orders of magnitude as a function of time and position.
The trajectories of the moving features can be fitted with an
expulsion speed of 0.26 ¢ to a remarkable precision; this excludes
the possibility that the blobs observed in SS 433 are due to
moving internal shocks, except under extremely contrived cir-
cumstances.

It seems very unlikely that the acceleration and collimation
mechanism in SS 433 is purely hydrodynamic. The reason is
again that the density in the beams is variable over many powers
of 10, whereas the speed remains virtually constant. Hydrody-
namic acceleration processes have a manifest tendency to keep the
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momentum density constant, so that one expects high-
density flow to go more slowly than low-density gas. In the
following I will present an acceleration mechanism that produces
a constant terminal speed rather than a fixed momentum
density.

The existence of nuclear jets in radio galaxies is unproven, at
least if “jet” has its usual meaning of continuous, collimated
hydrodynamic flow. I shall instead adopt the hypothesis that the
activity near compact accreting objects produces gaseous cannon-
balls that are shot out of the central engine assembled around the
accretion source. This hypothesis has a venerable history (e.g. De
Young and Axford, 1967; Christiansen, 1971). 1 will argue,
though, that the most easily accelerated clouds are not
“plasmons”, but relatively cool clouds (at least initially,) with
parameters rather reminiscent of clouds in the interstellar
medium.

Some of the severe problems that jets encounter when they
must propagate in an external medium, and especially when they
must bend (Icke, 1989) can be avoided in the case of pro-
pagating blobs, which are not necessarily harmed by the re-
entrant flow that wreaks havoc in jets. Also, it is much easier to
radiatively accelerate a blob than a jet, because a blob has a
backside that can be kicked, and the optical-depth problems that
plague radiatively accelerated jets do not occur. On the other
hand, blobs also have a front side, which may cause too rapid a
deceleration as the cloud interacts (almost certainly via a bow
shock) with the surrounding medium. Among the possible solu-
tions to this objection are either a surrounding tenuous medium
that moves with the cloud (“gunsmoke”), or having clouds that
are fairly dense. As will be seen below, the latter situation is
favourable to radiative cloud acceleration.

There is indirect evidence that what some think is a jet is
really a stream of blobs: the best-fitting models of radio sources
on a large scale, often showing great complexity, are all basically
ballistic-blob models (Blandford and Icke, 1978; Icke, 1981; Go-
wer et al., 1982; Hjellming and Johnston, 1982; Owen et al., 1985;
Yokosawa and Inoue, 1985.) Some attempts at three-dimensional
hydrodynamics of the interaction between a jet and an inter-
galactic wind have been made (Williams and Gull, 1984); this
might prove to be interesting, but the numerical resolution is still
quite small. Finally, there is no reason why a continuous jet
should end up with a precisely determined speed, as in SS 433; I
will show below that photon-driven gas clouds do possess a
“magical speed”.

Once one has supposed that gaseous bullets are responsible
for the observed behaviour of nonthermal radio sources, several
main lines need to be pursued, among which are (1) how does a
supersonically moving gasball behave, (2) how does it get colli-
mated, and (3) how is it accelerated? Subjects (1) and (2) are being
investigated separately; here, I wish to present some calculations
on the acceleration of gaseous bullets, in the case that radiation
pressure provides the requisite push. It will be seen, among other
things, that there is a “magical” speed associated with such a
mechanism; that the speed of 0.26 ¢ in SS 433 can be produced by
this mechanism; that the photon pressure may help confine blobs
when they are being accelerated; and that one must expect a
correlation between the variability of a source and the speed to
which gaseous bullets are accelerated by it. These conclusions
follow from exact solutions to somewhat idealized acceleration
geometries. The equations given do allow application to more
complex situations.
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2. Photon surfing above a steady blackbody
2.1. The equation of motion

Consider an infinite flat surface that radiates a blackbody spec-
trum with temperature 7. Fix a right-handed Cartesian coordi-
nate system K such that the x- and y-axes lie in the radiating
surface. Let an object with rest mass m, which absorbs all incident
radiation equally, be allowed to move along the z-axis. Attach a
coordinate system K’ to m, such that the z'-axis coincides with
the z-axis, (x', y') are parallel to (x, y), and m occupies the origin of
K’, as usual.

Suppose that m has reached point z, with speed v at time ¢, in
K. The radiation it instantaneously receives in K’ at its corre-
sponding proper time t', coming in at angle 6’ with the positive z'-
axis, left the z=0 plane at radius R and at time t—% . /R?+22,
under an angle 6 with the positive z-axis. Evidently, tan 6 =R/z,
and Lorentz symmetry produces the familiar aberration

tan 0=R/ sin ' )1
an0=R/z= ———— .
y(cos '+ B) @D
The incoming radiation left the emitting surface at time
R <[5’ cosf’' + 1
et c\cos@+p ) (22

If the light was emitted at frequency v, it is received at v/, where

v=9yV(1+pcos0), (2.3)
(e.g. Rybicki and Lightman, 1979.) Now if B, is the specific
intensity of the radiating plane, the contribution dA’ of the
photons in the frequency band dv' to the acceleration A’ is given
by

D
dA'(v)= — B, dv/, 2.4)
mc

in the direction 0’ of the incoming radiation; here D is the cross
section of m. Assuming D to be independent of frequency, and
assuming that m is symmetric about the z’-axis, one finds that the
total acceleration A’ is directed along the z-axis, and has a
magnitude

D © 0m
A=— J av f d0’B, cos 0’ (2msin 0). (2.5)
mc Jo 0

Using the Lorentz invariance of v 3B,, this can be written as

2zD ! uB,
A= —r dv du4—; s

me Jo —g Y1+ pu)
Performing the usual integration of B, over frequencies, one
obtains

) aD ! ( T >4
A= — ———— | uduy,
2m J _g \y(1+ Pu)

in which a=7.56510"'¢Jm~3 K ~* is the blackbody radiation
constant, and 7'= T'(u) is the temperature seen in the direction u,
and emitted at the retarded time specified by Eq. (2.2):

1
trel=t—i<ﬁu+ )
c\p+u

(2.6)

(2.8)

(2.9
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Note, for future applications, that one may extend the functional
dependence of T'to T (u, t, R), connecting R to t and u by Eq. (2.1):

B z\/1+u2
© yu+p)

To derive the equation of motion of m, assume that A’ acts
during an infinitesimal time interval At’, thereby increasing the
speed of m in K’ from zero to Av. By using the relativistic
addition of velocities one easily shows that, seen in K, the
acceleration of m is

dv__

. (2.10)

ooy 2.11

i (211
Inserting A’ from Eq. (2.8), one obtains

d D ! T \*

—ﬁ=a—y-7f ( ) udu 2.12)
dt  2mc _p \1+pu

For future reference, I note that the radiation pressure on each
unit of the surface of m is proportional to

< T(u) >“
P={———] .
y(1+ Bu)

Now I will make Eq. (2.12) dimensionless by introducing a
temperature unit T, and a time unit ty; then if 7—-7/T, and
t—t/t,, One obtains

(2.13)

dp (! T \*
L=y’ udu, (2.19)
dt s \1+pu
acDT §t, 2mLt,
=— "% 2.15
Q 2mc? E (2.13)

Here L is the luminosity intercepted by m, and E is the rest mass
energy of m.

2.2. Estimates of parameter values

Let us consider some plausible values for Q, and see if clouds can
be expected to have the parameters necessary to make Q> 1 (i.e.
rapid acceleration.) If the cloud has radius r, then D=nr? and

Q=2nar’T §ty/mc?, (2.16)
in which 6=5.67010"8 Wm 2K ~* is Stefan-Boltzmann’s con-
stant. If we adopt the light crossing time t,=r/c as the character-
istic time scale, then

2neT§r® 30 T}

210 315210732 Tép,

= 2.17
mc3 2¢3 p @17

where p is the mean mass density of the cloud. Assuming that the
cloud is pure hydrogen, this can be expressed by means of the
particle density n as

0=188210"°T%/n. (2.18)

For any given temperature T, of the driving radiation, this
imposes an upper limit to the density of the gaseous bullet; above
this limit, the acceleration occurs on a time scale much larger
than the photon crossing time of the cloud.

There is also a lower limit on the density, because if n is too
small the cloud becomes transparent to the driving photons, and
not enough momentum would be transferred. Thus, the mean

free path 1 of the photons in the cloud must be much less than the
cloud radius r. Together with Eq. (2.18) I obtain the limits

1.50310%8

i=1/noy <r; n>» lfror= ———m~3, (2.19)
r

n<19107¢Tdm™3, (2.20)

in which o is the Thomson cross section (other scattering cross
sections could of course be substituted, but give roughly the same
limits on n.) Together, these equations establish limitations for 7,
and r:

To > 2.989 108 14, (2.21)

For example, gaseous bullets with a caliber of 10'” mm (i.e. 3.2
milliparsec or 670 A.U.) are efficiently accelerated at tempera-
tures above 910* K; the cloud density must not be less than
about 10'2 m ™3 (see Fig. 1). The bullet parameters also apply at
much smaller scales; for example, in the X-ray emitting zone of
SS 433 one has roughly r=10° m (Watson et al. 1986). Thus, we
must have n>1.510'° m~3 and 7> 1.7 10° K. Assuming that the
emission comes from a region with volume 3, one finds an X-ray
luminosity Ly = 1.41074° T '2p2 W (Rybicki and Lightman

3 A N NN T N N S B S

10 20

Logyp r

Fig. 1. Temperature T, of the driving blackbody versus radius r of the
driven cloud. Combinations of T, and r above the diagonal line provide a
good match between a galactic howitzer’s charge and the caliber of its
bullet. An allowed combination of parameters (for example, at the
asterisk) admits bullets with parameters spanned by the horizontal and
vertical intersections from the point (r, T,), as shown by the arrows.
Numbers above the diagonal line show log;, n(m~3), below it
log,om(M ). The example at the asterisk shows that a howitzer with a
driving temperature of 106 K can accelerate dense low-mass gasballs with
n=1510""m™3, m=410"* M, which are small (10'*> m radius grape-
shot), or less dense and more massive ones, up to n=1510"*m™3,
m=526 M, (10'>m balls.) The clouds in broad line regions have para-
meters within this range (Katysheva, 1984). To obtain a given mechanical
luminosity, the required firing rate at the “magical f” muzzle speed is
inversely proportional to m
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1979, p. 162), or Ly ~4.110>® W. From the Exosat observations,
Watson et al. (1986) derive Ly=10>° W. The bullet mass is
2.510'° kg, its kinetic energy is 7.6 10%* J, and the kinetic lumi-
nosity of a single bullet is + mv®/r=5.9 1033 W. The latter is about
20 times larger than is commonly accepted for the mean kinetic
luminosity of SS 433 (Margon 1984), so the firing rate of that
howitzer must correspond to a duty cycle of 5%; in other words,
one 1-day event per 20 days. This is compatible with the observed
repeating rate of the VLBI blobs in SS 433 (Vermeulen et al.,
1987).

The derived constraints on n indicate that one should expect
gaseous bullets to be comparatively dense. They surely can
account for the energies observed: a 10'7 mm bullet with density
10'* m~3 and mass 0.3 M, can be accelerated to f~0.5 by a
radiation field with Ty~ 1.6 10° K; even an extremely powerful
radio source of 103° W would need only one such blast every year
or so to keep up its extended emission.

If Q ~ 1, then Eq. (2.15) suggests that, during the acceleration
phase, the cloud can attain an internal thermal energy on the
order of kT ~mc?. This may be responsible for the appearance of
polarized compact radio sources: Jones and O’Dell (1977; see
also Jones et al. 1985) show that relativistic electrons may well
outnumber less energetic ones by a large margin. Of course this
can lead to expansion of the accelerated cloud, but it will be
shown below that the radiation pressure distribution on the
surface of the cloud is such that the photons help to confine the
cloud. After the acceleration phase, expansion to the low densi-
ties implied by the Compton optical depth of about 10~ ° (Jones,
1979) is easily attained. If n, & 10° m 2 in clouds of a few parsec
in size (Jones 1979; Katysheva 1984), then these have a mass of
about one solar mass at most, and would have had the required
optical depth of about unity at the time their radius was 10'* m.
This is an allowed combination for quick acceleration (see Fig. 1).

Values of the acceleration parameter Q much in excess of
unity are not excluded per se; as far as the equation of motion
(2.14) is concerned, a change in Q only means a change of the
timescale. In pdrticular, nothing of what follows below regarding
the behaviour of § is influenced by Q. But a very large value of Q
implies an influx of energy well in excess of mc?; thus, it would
appear that a very large Q can be maintained only if the cloud
can lower its temperature by radiation rather than by adiabatic
expansion.

2.3. Solutions of the equations of motion

Let us now assume that the bullet and its howitzer are matched
such that Q ~ 1. If the dimensionless temperature T is constant
with time (and, without loss of generality, we may set T=1), the
integral over angles in the equation of motion can be found
analytically:

i WZ”[ R T
a2 5 p T 20 gy iy

1 4 1 —
=0\5 — 2B+ 58 )15 2.22
QQ 3ﬂ+2ﬁ)J B (222)
Evidently, the right hand side is zero when
B=Pn= 44— /7)=0451. 2.23)
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At this “magical” speed, the force due to the redshifted photons
that would accelerate the cloud from behind is equal and oppo-
site to the force due to the blueshifted photons that are so strongly
aberrated that they hit the cloud from the front (cf. Sikora and
Wilson, 1981). Several remarks about this magical speed are in
order:

1) the root cause of the occurrence of a finite f,<1 is the
combination of aberration and redshift, as is evident from the
factor y3 in Eq. (2.11);

2) the decelerating photons that are responsible for establishing
P come from far away on the driving surface, because they
were emitted at 0 <90°; p

3) therefore, a finite or limb-darkened disk would produce a
larger value of §,,;

4) contrariwise, a funnel in a thick disk, surrounding the cloud,
would produce a smaller f,, inside the funnel; once the cloud
leaves the funnel, a higher f is possible;

5) the value of 8, is a little above the speed 0.26 ¢ observed in SS
433 (Margon, 1984) and the speed 0.19 ¢ inferred for Cygnus
X-3 (Icke 1973), but the geometry and the brightness distribu-
tion of the disk might take care of that;

6) however, the values of y up to about 10 inferred for superlumi-
nal VLBI cores (e.g. Pearson et al. 1981; Fanti, Kellermann
and Setti 1984, passim) are grossly incompatible with the f,, in
Eq. (2.23), which corresponds to y,,=1.121.

In order to get some idea what magical f’s could occur in a
funnel or above a limb-darkened driving surface, consider a
surface of revolution with the cloud moving on the axis thereof.
We cannot expect to find an analytic expression for f(t — o) if
the section of the surface with a plane through its axis is de-
scribed by a function R(h) that has an intrinsic length scale; for if
that were the case, the height z would occur in the expression for
T in a non-separable way. Curved cross-section profiles R(h) are
excluded, for these contain a length scale in the form of their
radius of curvature. Consequently, analytic solutions for f(o0)
are expected only if the driving surface is a cone. Suppose it has a
half-apex angle a. Then the integral in the equation of motion is
as before, but with a different lower bound:

V) o s s )
o \trpu) M7 B sta g~ 204 gy
uy =(cosa+ B)/(1+ fcosa). (2.24)

Some straightforward algebra shows that the integral is equal to

1 4 1 1
I=(1—-p%"3| =sin?a—B| - + cosa+ — cos? >+— 2sin? ],
(1-8?) [2 o ﬂ<3 o 3 o 25 o

(2.25)
which is zero for the magical value
Bu=w— /w1,
1 /4 1
w= —— (— +cosa+ — cos? a>. (2.26)
sina \3 3

A graph of B, as a function of o is plotted in Fig. 2; for
amusement, values of a>90° (i.e. convex cones) have been in-
cluded. From this we see, for example, that the value f=0.26,
observed in SS 433, is equal to the magical § of a comparatively
shallow cone with half-apex angle 67°; the value 8=0.19 that is
expected in Cygnus X-3 (Icke 1973) is the magical value for a disk
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Fig. 2. Equilibrium “magical” speed §,, as a function of the opening half-
angle a of the driving cone (see sketch.) The value for a flat disk, x=90° is
Pu=04- \/ 7)/3. Only extremely unrealistic convex surfaces (o> 160°)
reach really high S,

0

with half-apex angle 58°. A conical shape of the driving surface
always depresses f,,. From the point of view of acceleration by
radiation pressure, there is no virtue in a narrow funnel, such as
the superthin tube of Abramowicz et al. (1980).

Only after the cloud has left the funnel, can appreciable
acceleration take place. This sequence is not analysed below,
because I have restricted myself to self-similar situations; the case
of finite funnels, which of necessity contain an intrinsic length
scale, will be considered later (Eulderink and Icke, in prepara-
tion.) The introduction of a length scale implies, among other
things, that the parameter Q can no longer be absorbed into the
time scale, so that §,,= B(Q). Basically, this happens because at a
low value of Q the effective acceleration is small, so that the
funnel has been left behind before the terminal value of B has
been reached.

Next, suppose that T depends on the distance h above the
z=0 plane. Again, T(h) must be self-similar in order to obtain a g,
that is independent of z; therefore,

T=Bh™k 2.27)
h=z(1+tana/tan6)~ 1. (2.28)
A magical value of § then must fulfill the condition

1
J u(14 Bu) 41 +y(u+B) (1 —u?)~ 2 tan a)* du=0. (2.29)

Convergence for u—1 is obtained only if T increases sufficiently
slowly when z—0, namely

O<k<i. (2.30)

In general, Eq. (2.29) does not have simple analytic solutions;
some numerical solutions for various values of k are shown in
Fig. 3. Clearly, even a modest decrease of temperature with
height produces a significant increase of B,; for example, the
value of B,,=0.26 is attained if Toc h~%2 in a funnel having
a=34°

0.5 /

0

90°

Fig. 3. Magical speed above driving cones with opening half-angle «.
Numbers on the curves indicate the power k with which the temperature
T of the driving surface decreases as a function of the height h above the
z=0 plane: Toc h™*

Finally, consider the consequences of limb darkening. To a
first approximation, we can take this into account by adding a
factor cosf to B, in frame K. In frame K’, this gives a factor
(B+cos 6')/(1+ Bcos &), so that instead of Egs. (2.22, 23) I obtain

@ _, _7J' wprw 0
a7 aapey T g
[x(x+ﬁz) 2x + 2 1 ]'”
X
(+x* " 3(1+xP  3(1+x? ],
=%(4—9/3+4/32),\/1—ﬂ2, (2.31)
Bn=(9—/17)/8=0.610. (2.32)

Some gain is made over Eq. (2.23), but it is not especially
impressive, and certainly. not good enough for superluminal
sources.

3. Time-dependent surfing
3.1. Instantaneous temperature jump: catching a wave

The above estimates demonstrate that it is rather difficult to
achieve the large values of y that are implied by the VLBI
observations of radio cores, even if we consider radiative driving
by disks whose temperature drops with height. As we had seen,
the magical value of f§ is determined by the blueshifted, aberrated
photons which brake the cloud as f increases. Now these
photons were emitted at grazing angles, 0 <90°, and therefore
must have come from far away on the driving surface. Conse-
quently, the accelerated cloud receives these photons from a
retarded time that is much larger than the time lag with which it
receives the photons at @x0° which are responsible for the
acceleration. This immediately suggests trying to achieve values
of B well above the stationary f,, by using a time-dependent
driving surface.
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The time scale on which the cloud responds to a change in
driving pressure can be obtained by calculating how quickly it
approaches = f,, at constant 7. The equation of motion (2.22)
can be written, to good approximation, as

@ _ 1Q(1 B/Bm) (3.1)
e 2 e :
in which B,, is given by Eq. (2.23). The solution is clearly

B = Bum+(Bo—Pn)e™ 212, (3.2

As expected, the time scale for the adjustment of B is 28,,/Q; since
Bn~0.5 in many cases, this justifies the requirement Q ~ 1 for
good acceleration.

First, let us consider a driving blackbody plane that in-
stantaneously steps up its temperature at t=t,, from T=1 to
T=T,. The equation of motion is

- <T(u, t))"'
a =2 g v

The temperature 7 must be evaluated at the retarded time in the
z=0 plane. The light travel time from a point (R, 0) to the cloud
at (0, z) is, in the dimensionless units used above,

1+ 0’
to=z/cosO=z (—f&>
f+cos b’

(3.3)

34

Therefore, the temperature seen by the cloud in the direction ¢’ is
1+

T, 1)= T(t—z ﬂ“).
B+u

In the case that T is a step-up from T=1to T=T,, at t=t,, one
has

{1
T=
T,

Two sample solutions of Egs. (3.3, 6) for Q=1 are shown in
Fig. 4. It is immediately clear that f(t) overshoots the magical
number in Eq. (2.23) and approaches a rather higher value. The
reason for this is quite interesting. On the equator of the cloud
(i.e. 0'=90°% u=0), the incoming photons have a retardation
to=z/p. If the speed of the cloud is constant, one has z=z,+ ft,
so that t,=t+const. In other words, the distance which the
photons must travel from their point of departure to the cloud
equator increases with the speed of light! The distance between the
driving surface and the bottom of the cloud (0 <u <1) increases
more slowly, and the distance from the disk surface to the cloud
top (—p <u<0) increases faster than the speed of light. Con-
sequently, the forward-facing hemisphere of the cloud receives
progressively more retarded photons, whereas the hemisphere
facing the driving surface sees radiation from increasingly later
times. Thus, the angle 6’ corresponding to the switch-on time t,
steadily approaches the equatorial value 90°, but never surpasses
it. Seen in the frame of the cloud, the retardation becomes more
noticeable as f increases. The retardation tends to freeze the
accelerating field, so that the cloud “catches a wave,” riding the
crest of the luminosity increase. As time goes by, the integral in
Eq. (2.24) approaches the value at which T=1 in the interval
—p<u<0, (=forward hemisphere) and T=T,, in the interval
0<u<1 (=back hemisphere). Accordingly, dB/dt=0 at that

(3.5)

if t <t +z(1+4 Bu)/(B+u);

. (3.6)
at later times.
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Fig. 4. Speed of a radiatively accelerated bullet above a flat blackbody
that increases its temperature everywhere simultaneously (in its rest
frame) from T=1 to T, =2, at time t,= 1. Clouds start from rest or from
their magical speed B, =0.451. The value §=0.72, towards which the
clouds converge as t— oo, is the solution of Eq. (3.8) for T, =2

value of f which obeys

. ! 1 X 4.

131+ pu) ~ 2(l+ﬁu)2:|_ﬂ 5[ 1o=0. 3.7
This condition is fulfilled when
T4=p*G-p)CB+H'1-p > (3.8)

The corresponding graph of the maximally attainable Lorentz
factor for a given value of T, is shown in Fig. 5. Apparently, a
time-changing T can lift §,, above the value given in Eq. (2.23),
even though all photons must ultimately overtake the cloud.
Naively, one might expect that this overtaking must always cause
the cloud to decelerate towards f8,,=0.451. The reason that this
does not happen is, that when a photon emitted after the switch-
on reaches the cloud - as of course it must — it does so with a
value of u such that 0 <u<1; in other words, the “hot” photons
always hit the backward facing side of the cloud (yet another
advantage of the fact that a cloud has a backside.) Clearly, a value
of y~ 10 can be attained only for big temperature jumps, on the
order of T, ~40, or a luminosity increase by a factor of three
million.
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In the case of a flat surface with a limb darkening factor cos 0,
it follows straightforwardly from Eq. (2.31) that

)

*\1-p/\ap+7p +4p2+p*)
As can be seen from its graph in Fig. 5, this curve differs only
0.15 dex from that of Eq. (3.8).

(3.9)

3.2. Other temperature changes

In reality, of course, we do not expect the driving surface to
maintain its high state foreover. Therefore, I will consider the
response of the cloud to a finite burst of higher luminosity. A
simple model of this is given by a temperature that varies as a
Lorentz profile in the course of time:
T(t)= T0+(Tmax_ TO) [(t—tmax)zb—2+ 1] (310)
This is merely an example, chosen for simplicity. For general
time-dependent temperatures, the integral on the right hand side
of Eq. (3.3) cannot be found analytically, so that numerical
integration is called for. Good numerical accuracy then requires
proper resolution of 7'(¢) in the retarded time frame. To achieve
this, it is preferable to change variables by introducing the new
dimensionless quantities

qE(tret_t)/z; Lg=t—2 (lﬂ-:_ﬂuu>a

3.11)

=
(6]

T I I

LogioYm

—_

0.5

0 | ! I !
0 1 LogpTe 2

Fig. 5. Magical Lorentz factor y,, that can be attained by a cloud if the
blackbody surface that propels it abruptly increases its temperature from
1to T,. The lower curve corresponds to Eq. (3.8) for an infinite Lambert
surface; the upper curve, from Eq. (3.9), is due to driving by an infinite
surface with a cos 0 limb darkening. Notice that the extreme superluminal
sources, which are thought to have y=x 10, can be produced by such
driving surfaces only if their temperature jumps up by a factor 30-40.

which leads to the equation of motion

@ __ef

= 3.12
o . (3.12)

[T(zq+1)/q]* (1+4PB)(q+ B)dq.

For numerical applications, this can be replaced by an integral

with a finite range:

dp (! d 0 ( B
q_ —_—

-q, bi

3 242 4,

14B)?

d+) + B>, (3.13)
in which g, is chosen large enough that T(q,)~1 (in dimen-
sionless form.) Several examples of cloud accelerations by the
temperature burst in Eq. (3.10) are shown in Fig. 6. In order to get
some impression of what happens to the cloud during all this, I
show in Fig. 7 the retarded temperature (without the relativistic
factor [y(1+ Bu)]*) as seen in the K’ frame, and in Fig. 8 is shown
the radiation pressure
P=[T(t,)/y(1+Bcos)]* (3.14)
The duration of the burst in Eq. (3.10) is rather brief (on the

order of the photon crossing time of the cloud), so f does not
manage to reach f,. To see how a cloud responds to a more

0.5

0

0

Fig. 6. Speed B versus time t for clouds driven by a Lorentz-profile
temperature burst of an infinite flat blackbody. Case A: T,,,, =2, t,=2,
b=0.5, B(0)=0.451. Case B: as A, but (0)=0. Case C: as A, but with
Tnax =3. Arrow I indicates the magical speed 0.451 for T,,=1, and II
indicates f,,=0.721 for T,,=2. The numbered points on curve B corre-
spond to those in Figs. 7 and 8. Twice the number indicated is equal to
the dimensionless proper time of the accelerated cloud. The inset shows a
vector diagram of the radiation pressure on the cloud at point 4, ie.
proper time ¢’ = 8. The cloud is moving upward on the page. The distance
from the circumference of the circle to the dashed line is proportional to
the radiation pressure. Notice that P=0 in the forward facing cone for
which cos 6’ < — B, and that the aberrated photons that come from very
far away cause P to peak on the equatorial side of this cone
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Fig. 7. Temperature T of the driving blackbody of Fig. 6, seen in the
direction 6’ in the frame K’ of the cloud. The numbers on the curves
correspond to the points on trajectory B in Fig. 6. Twice the number
indicated is equal to the dimensionless proper time of the accelerated
cloud

extended burst, consider the temperature profile

1 t—tmax
T=Ty+ (T, ~Ty) (B___ + 1). (3.15)

+ |t - tmaxl

Two examples of the motion of a cloud driven by this switch-on
are shown in Fig. 9; the corresponding T'(6') and radiation
pressure, as seen by the cloud at equal intervals of its proper time,
are shown in Figs. 10 and 11. The second case, which in-
corporates limb darkening in the driving surface, shows an
approach to the value f,,=0.815, corresponding to T, =2; here
we begin to see something that might approach the high speeds in
active galactic nuclei.

I have calculated the acceleration of clouds under the influ-
ence of several more different forms of T'(t), using the methods
described above. In these cases, temperature waves were assumed

to propagate radially outward in the disk with speed c/\/ 3. The
shapes of the temperature waves that moved outward were, first,
an abrupt increase; second, a smooth increase; third, a hot ring.
In all these cases, the results were qualitatively the same as those
reported above. Quantitatively, the final values of § (in the first
two cases) were, as expected, systematically lower than those
obtained by switching the disk instantaneously to a hotter state.
The difference was no more than 20%. In the third case, the speed
went up and down more or less as in the Lorentz-profile burst. I
have not tried inward-propagating temperature waves, because
these would evidently only lead to deceleration.

4. Coloured clouds

Amusing though it may be to hit clouds with variously tailored
photon blasts, Eq. (3.8) represents a soberingly small upper limit
to the value of 8. As we saw in Sect. 2, playing around with the
shape of the driving surface and its temperature distribution
won’t change f,, much, although excessively narrow funnels are
often bad. The velocities achieved are enough for SS 433, Cyg
X-3, and the like, but they keep falling short of the values around
0.99 that are needed for superluminal radio sources.
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Fig. 8. Radiation pressure P seen in the direction 6’ by the cloud on
trajectory B in Fig. 6. The numbers on the curves correspond to those on
the trajectory. Twice the number indicated is equal to the dimensionless
proper time of the accelerating cloud. The pressure distributon of curve 4
is shown in the inset of Fig. 6. Notice how, as time goes by, the perceived
peak of the burst creeps towards the equator of the cloud. Simulta-
neously, the relative importance of P decreases because of the steep drop
of 7%, and because the half-width of 7, as seen by the cloud, drops
steadily as the peak approaches the equator. Also, it is noteworthy that
when the main acceleration stage in frame K is over, the photon pressure
in frame K’ is still increasing, but acts mostly on the sides of the cloud.
This effect, which is due to the aberration and retardation, is quite generic
for this acceleration mechanism, and helps to confine the cloud and to
collimate it during its initial boost phase

The source of the trouble is the resistance which the cloud
encounters from aberrated, blueshifted photons. This immedi-
ately suggests that we drop the assumption, made in Sect. 2, that
the absorptivity of the cloud is independent of frequency. If we
allow the cloud to have a “colour”, let’s say by assuming that its
absorption cross section varies as v~ ", we have, instead of
Eq. (2.4),

-2 () o
(vV)=—B,|—] dv. 4.1)

mc v

This leads, via the same route that produced Eq. (2.12), to an
equation of motion of the form

%— ) —3J\1 < T )4—n
a =) Garpw) M

with suitable constant Q’, depending on the integral over v~ "B,,.
Following precisely the analysis of Sect. 3, it is a straightforward
matter to show that the magical value f,, must be a solution of

@.2)
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Fig. 9. Speed f versus time ¢ for clouds driven by the smooth step-up in
temperature prescribed in Eq. (3.15). Case A: T, =2, t,=3, b=0.5,
p(0)=0. Case B: as A, but with ¢,,=2 and $(0)=0.45. Case C: as A, but
driven by a blackbody that is limb darkened by a factor cos 6. Case D: as
C, but with (0)=0.61 and t,,=2. Arrow I indicates the magical speed S,
=0.451 for T, =1, and II indicates f,,=0.721 for T, =2. Arrows III and
IV show the corresponding values 0.610 and 0.815 in the limb darkened
case. The numbered points on curve C correspond to those in Fig. 10 and
11. Twice the number indicated is equal to the dimensionless proper time
of the accelerated cloud. The inset shows a vector diagram of -the
radiation pressure on the cloud at point 5, i.e. proper time ¢ =10

the equation

(A=p2°[B*B—n)—1]+1

4-n

= , 4.3
* (A+pr2[B(n—3)—1]+1 @)
or, in the logarithmic case n=3,
2+1 1— 2
_ Br+logi—p?) )

T —B+logl+p)

Curves of the corresponding Lorentz factors y versus T, are
shown in Fig. 12. The extreme case n=3 is best, of course. Such a
dependence on frequency is expected in free-free scattering, when
Kk oc v 3 (1 —e™"™"T); a similar frequency dependence occurs on
the blue side of an absorption edge (Rybicki and Lightman, 1979,
p. 284))

In the most favourable case, we can get y ~ 10 if the tempera-
ture jumps by a factor of about 10; at n=3, the B,, for a steady
photon source is 0.684. Thus, one would predict that compara-
tively steady radio nuclei produce blobs at v/c=x 0.6, whereas
those that vary violently, with a temperature amplitude of a
factor 10, can produce v/c ~0.99. There is one price to be paid for
a higher B, though: as can be easily seen from the equation of
motion (4.2), the characteristic time scale for the acceleration (i.e.
the response time of the cloud) scales as T%~#; thus, a higher $,, is
accompanied by a more sluggish acceleration (see also Egs. (2.17)
and (3.2).)

2 ) I T 1 T T T T [ T T T 1 1
T §e
15+ —
—
12
] S L1
0 0" o

Fig. 10. Temperature T of the limb darkened driving blackbody of Fig. 9,
seen in the direction 6’ in the frame K’ of the cloud. The numbers on the
curves correspond to the points on trajectory C in Fig. 9

Fig. 11. Radiation pressure P seen in the direction 6’ by the cloud on
trajectory C in Fig. 9. The numbers on the curves correspond to those on
the trajectory. The pressure distribution of curve 5 is shown in the inset of
Fig. 9

It is easier to take advantage of the colour of the cloud, if the
latter is only marginally optically thick. This condition is favour-
able for other reasons as well. In accelerating a cloud, we should
like to see it respond to the applied pressure more or less as a
whole. This can be achieved in either of two ways: the speed of

sound in the cloud is close to the maximally allowed value ¢/ \/ 3,
so that the blob can quickly communicate external influences
throughout its interior; or the radiation acts as a body force, in
which case the cloud must be mildly transparent. The former
possibility implies a very high temperature, which may cause
difficulties for the integrity of the cloud, whereas the latter merely
implies that Axr in Eq. (2.20). If this is the case, one would
predict that actual galactic howitzer bullets lie close to the line in
Fig. 1. Having 1~ r would also prevent the cloud from overhea-
ting. But the cloud must not be too thin, or else the momentum
transferred by the photons will be too small. It is natural to
expect that the clouds automatically adjust to the right trans-
parency condition: bullets that are too thick are not efficiently
accelerated because they are too inert, and those that are too
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Fig. 12. As Fig. 5, but for clouds that absorb radiation according to the
“coloured” opacity law x oc v™" The curves are labeled with the value of
n. For n=0, we have Eq. (3.8); n=1, 2, or 2.5, Eq. (4.3); and n=3, Eq. (4.4)

transparent are either evaporated or do not acquire enough
momentum.

5. Remarks
5.1. What makes smooth jets?

Many bipolar radio sources show very elongated structures that
appear to be quite featureless, showing little, if any, evidence of
blobs (e.g. Ferrari and Pacholczyk, 1983; Bridle and Perley,
1984.) What could these be, if not hydrodynamic jets? In the
gasblob model, there are two possibilities. First, it can be shown
that propagating gasballs must lose mass at their surface, thereby
forming a “tracer bullet” (Icke, 1988). I believe that this effect is
responsible for the low brightness plateau that is visible or
inferred to be present underneath the brightness peaks near the
central engine. Second, the gasballs can disintegrate upon impact
with an obstacle ahead, for example slower moving clouds, or
slow diffuse gas further down the source. I believe that this is the
case in sources like M 87, where the radio trail suddently bright-
ens and broadens at “knot A” (Biretta et al., 1983). If this
occurrence is generic, it could be responsible for the sudden
broadening and brightening of the inner trail in sources like
3C449 and 3C31. Thus, the question is not “what makes smooth
jets,” but rather “what makes ‘jets’ smooth.”

5.2. Conclusions

I have investigated how photon driving can establish the pro-
pulsion of gaseous bullets to a fixed speed. The predominance of
radiation as the driving agent allows the aberration and the
redshift to produce a finite magical speed that is usully well below
the speed of light. This mechanism is in sharp contrast with
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hydrodynamic mechanisms. In Newtonian dynamics, a force
causes the momentum to change; correspondingly, in hydro-
dynamics, the paramount quantity is the momentum density.
Thus, steady hydrodynamic mechanisms typically produce only
minor variations in pv. Therefore, large variations in p, which are
almost always observed, should be accompanied by comparable
variations in v. Such velocity changes are not seen in well-
observed sources like SS 433.

In summary, it appears from the above that photon surfing
can produce the gaseous bullets shot out of the vicinity of
compact objects if:

1) in sources with large f§ (superluminals) violent variations of
the driving luminosity occur;

2) the clouds are almost transparent, so they mustn’t be too large
for a given density;

3) the clouds must not be too dense, or they would respond too
sluggishly;

4) the opacity of the clouds should drop steeply with increasing
frequency, at least in those bullets that reach f.<0.99.

The quantitative expression of (1) is given in Figs. 5 and 9; of (2)
and (3), in Fig. 1; of (4), in Fig. 12.

Consequently, one might envisage a sketch of the ejection
process as follows. A cloud detaches itself in the vicinity of an
accretion source; radiation impinging on it ablates and expands
it, until it has become small enough to begin being transparent,
and its density is low enough for the radiation pressure to
become effective throughout the cloud (Fig. 1). Then the resulting
gaseous bullet is shot out, achieving a speed of roughly 0.6 ¢ at
most, and possibly much less, depending on the geometry of the
accelerating surface. Higher values of v/c can be reached only if
the radiation source is violently variable; in that case, acceler-
ation up to about 0.99 ¢ may occur (Fig. 12).

It would appear from the above, that the radiative transfer in
the accelerated cloud is of the essence for determining precisely
what happens. As was pointed out by O’Dell (1981) and Cheng
and O’Dell (1981), it is even possible to get an extra boost at the
expense of the random motions of particles in the cloud (which
they called the “Compton rocket” effect.) Coloured clouds have
different allowed combinations of density, size, and temperature
of the driving surface, because Eq. (2.20) must be modified
if kocv™". Work on this problem is in progress (Icke and
Eulderink, in preparation.) The exact solutions, presented above,
serve to define the region in parameter space where useful solu-
tions to the acceleration problem are most likely to be found. For
low-f (~0.3) sources, a steady luminosity from a thick disk with
not too narrow a funnel (30°-60° cone half-angle) will do. High-f
(< 0.9) sources are more demanding and require a driving surface
with a steep outward decrease of brightness and considerable
limb darkening, and bullets whose absorption cross section drops
quickly with increasing frequency. Sources with very high f
(about 0.99) have the same requirements as high-f ones; in
addition, they must have a violently variable driving luminosity.
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