
Quasiclassical fluctuations of the superconductor proximity gap in a
chaotic system
Beenakker, C.W.J.; Goorden, M.C.; Jacquod, Ph.

Citation
Beenakker, C. W. J., Goorden, M. C., & Jacquod, P. (2003). Quasiclassical fluctuations of
the superconductor proximity gap in a chaotic system. Retrieved from
https://hdl.handle.net/1887/1287
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/1287
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/1287


RAPID COMMUNICATIONS

PHYSICAL REVIEW B 68 220501 (R) (2003)

Quasiclassical fluctuations of the superconductor proximity gap in a chaotic System
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We calculatc the sample to sample fluctuations in the excitation gap of a chaotic dynamical System coupled
by a nairow lead to a supeiconductor Quantum flucluations of the order of magnitude of the level spacmg
piedicted by landom matnx theoiy apply if τΕ<^ϊιΙΕτ (with TE the Ehrenfest time and ET the Thouless
eneigy) Foi τΕΆϊιΙΕτ the fluctuations aie much greatei than the level spacmg We demonstrate the quasiclas
sical natuie of the gap fluctuations in the laige TE legime by conelating them to an integial ovei the classical
dwell time distnbution
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The univeisahty of statistical fluctuations is one of the
most profound mamfestaüons of quantum mechanics in me-
soscopic Systems' Classically, the conductance g of a disoi-
deied metal (measured m the fundamental unit 2e2/h) would
fluctuate fiom sample to sample by an amount of oidei
(l/L)V2<S l, with / the mean fiee path and L the length of the
conductoi" Quantum-mechanical mterfeience mcieases the
fluctuations to oidei umty, independent of disoidei 01 sample
length This is the phenomenon of umveisal conductance
fluctuations34 The same univeisahty applies to a vanety of
othei piopeities of disoideied metals and supeiconductois,
and landom-matux theoiy (RMT) piovides a umfied
descnpüon 5

Chaotic Systems (for example, a quantum dot in the shape
of a Stadium) shaie much of the phenomenology of disoi
deied Systems The same univeisahty of sample-to-sample
fluctuations exists 6~8 What is diffeient is the appeaiance of a
new time scale, below which RMT bieaks down 9 10 This
time scale is the Ehienfest time TE, which measuies how
long it takes foi a wave packet of minimal size to expand
ovei the entire available phase space If TE is laigei than the
mean dwell time rD m the System (the lecipiocal of the
Thouless energy ET=h/2rD), then mterfeience effects are
inopeiative A chaotic system with conductance g(2e2/h),
level spacmg δ, and Lyapunov exponent λ has TD

= 2TrhlgS and TC = λ ~' ln(g TO ITD), with r0 the time of flight
acioss the System u The defming charactenstic of the Ehren-
fest time is that it scales loganthmically with h, 01, equiva
lently, logaiithmically with the system size ovei Feimi
wavelength I2

The purpose of this papei is to mvestigate what happens
to mesoscopic fluctuations if the Ehienfest time becomes
comparable to, or laigei than, the dwell time, so one enteis a
quasiclassical legime wheie RMT no longei holds This qua-
siclassical legime has not yet been exploied expenmentally
The difficulty is that TE mcieases so slowly with system size
that the aveiagmg effects of melastic scatteung take ovei
befoie the effect of a finite Ehienfest time can be seen In a
computei Simulation melastic scatteung can be excluded
fiom the model by constiuction, so this seems a piomising
alternative to mvestigate the ciossovei fiom umveisal quan
tum fluctuations to nonumveisal quasiclassical fluctuations
Contiaiy to what one would expect fiom the disoideied
metal," wheie quasiclassical fluctuations aie much smallei

than the quantum value, we find that the breakdown of uni-
versahty in the chaotic system is associated with an enhcmce-
ment of the sample-to-sample fluctuations

The quantity on which we choose to focus is the excita-
tion gap ε0 of a chaotic System which is weakly coupled to a
supei conductoi We have two leasons foi this choice First,
theie exists a model (the Andieev kicked lotatoi) which pei-
mits a computei Simulation foi Systems laige enough that
TE~TD So fai, such simulations have confiimed the micro-
scopic theoiy of Ref 11 foi the aveiage gap (ε0)

 13 Second,
theie exists a quasiclassical theoiy for the effect of a finite
Ehienfest time on the excitation gap and its fluctuations u

This allows us to achieve both a numencal and an analytical
undeiStanding of the mesoscopic fluctuations when RMT
bieaks down

We summanze what is known fiom RMT foi the gap
fluctuations 15 In RMT the gap distnbution Ρ(ε0) is a uni-
veisal function of the icscaled eneigy (ε0 — E ^ ) / A g , wheie
Eg = 06Er is the mean-field energy gap and A g

= 0068gI/3i5 determmes the mean level spacmg just above
the gap The distubution function has mean (ε0) = £'(,
+ 121A g and Standard deviation ({εο)-(ε0)

2)Ι/2=<5εΚΜΤ

given by

,2/3 (D

The RMT piedictions foi Ρ(ε0), in the legime τΕ<ίτο,
weie confirmed numencally m Ref 13 usmg the Andreev
kicked lotatoi

We will use the same model, this time focusmg on the gap
fluctuations δε0 m the legime TE^TD The Andieev kicked
lotatoi piovides a stioboscopic descuption (penod r0) of the
dynamics in a noimal legion of phase space (aiea MAeff)
coupled to a supei conductoi m a much smallei legion (aiea
Nhe{f, l<ljV<IM) We icfei to this couphng äs a "lead"
The effective Planck constant is ^ eff= 1/Λ^ The mean dwell
time m the noimal legion (befoie enteiing the lead) is TD

= MIN and the conespondmg Thouless eneigy is ΕΊ

= NI2M We have set TO and ti equal to l The dimension
less conductance of the lead is g = N The pioduct δ
= 4πΕτ/§ = 2π/Μ is the mean spacmg of the quasieneigies
ε,,, of the noimal legion without the couphng to the supei-
conductoi The phase factois e'E" (m=l,2, ,M) aie the
eigenvalues of the Floquet opeiatoi F, which is the unitaiy
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matiix that descnbes the dynaraics m the noimal legion In
the model of the kicked rotatoi the matiix elements of F in
momentum lepiesentation aie given by

(2a)

(2b)

(2c)

The couphng to the supeiconductoi doubles the dimen-
sion of the Floquet opeiatoi to accommodate both election
and hole dynamics The scatteung fiom election to hole,
known äs Andieev leflection, is descnbed by the matiix

P 1/2 _

r-
- 1--V2

- l - > 2 PTP

with the piojection opeiatoi

0 otheiwise

(3)

(4)

Since we woik m momentum lepiesentation, the lead defined
by Eq (4) is a stnp in phase space of width N paiallel to the
cooidmate axis One could altematively considei a lead par-
allel to the momentum axis, if one would woik m cooidmate
lepresentation We do not expect any sigmficant diffeiences
between the two alternatives Putting all this togethei we
anive at the Floquet operatoi of the Andieev kicked lotatoi,13

(5)

The matiix JTcan be diagonahzed efficiently usmg the Lanc-
zos technique m combmation with the fast-Founei-transfoim
algouthm This makes it possible to calculate the quasi-
energies em and eigenfunctions φιη foi Systems of sizes up to
M = 5 Χ105 The gap value ε0 is given by the eigenphase of
T closest to zeio

The Floquet opeiatoi (5) piovides a stioboscopic descnp-
tion of the election and hole dynamics, which is beheved to
be equivalent to the tiue Hamiltoman dynamics on long time
scales t9> TO The suppoit foi this comes fiom two sides

(i) In the absence of supeiconductivity, and foi vaiymg
paiameteis K and Äe f f , the one-dimensional kicked lotatoi
conectly lepioduces piopeities of locahzed,18 diffusive,19

and even balhstic20 quasipaiticles in disoideied media
(u) In the piesence of supeiconductivity, the kicked An-

dieev lotatoi, and extensions theieof, adequately descnbes
quantum dots in contact with a superconductoi,n and gives a
piopei descuption of quasipaiticles m dnty i/-wave
supeiconductoi s 21

Since we will be givmg a classical mteipietation of oui
lesults, we also descnbe the classical map conesponding to
the Andieev kicked lotatoi The map lelates the dimension-

FIG l Root-mean-square value δε0 of the gap divided by the
RMT piediction <SeRMT, äs a function of the System size M for
dwell time M/N =5 and kickmg strength K— 14 The data pomts
result from the numencal Simulation of the Andreev kicked rotator
The solid hne has slope 2/3, mdicatmg that δε0 depends only on
MIN and not on M or N separately in the laige-M regime

less cooidmate xn <= (0,1) and momentum pn e (0,1) at time
(n+ I)r0 to the values at time ητ0

n + l = ρη±(Κ/2ττ)8ΐτι

+ P_n_

_Pn

' 2

Pn+l

(6a)

(6b)

The uppei and Iowei sign conespond to election and hole
dynamics, lespectively Penodic boundaiy conditions hold
both foi χ and p The quasipaiticle leaches the supercon-
ductoi if |pn + 1-£>iead|<W2M, wheie plead is the centei of
the lead At the next iteiation the election is conveited mto a
hole and vice veisa

We study a System with kickmg strength ^=14 (fully
chaotic, Lyapunov exponent λ = 195) and vaiy the level
spacmg <5=2π/Μ at fixed dwell time rD = M/N = 5
Sample-to-sample fluctuations aie geneiated by vaiymg the
Position /?ledd of the lead ovei some 400 locations The le-
sultmg M dependence of δεϋ is plotted in Fig l on a double
loganthmic scale We have divided the value <?ε0 lesulting
fiom the Simulation by the RMT piediction 5εΚΜΤ fiom Eq
(l) The numencal data follow this prediction foi MSlO3,
but foi laigei M the fluctuations aie biggei than piedicted by
RMT Foi M> I04 the latio δεο/δε^^τ giows äs M2/3 (solid
hne) Since <5εΚΜΤ<χΜ~2/3, this means that <5ε0 is mdepen-
dent of the level spacmg <?= 2 π/Μ at fixed dwell time rD

= MIN This suggests a quasiclassical explanation
To lelate the fluctuations of ε0 to the classical dynamics,

we fiist examine the conespondmg wave function ψΰ In the
RMT legime the wave functions aie landom and show no
featuies of the classical tiajectoiies In the quasiclassical le-
gime TESTD we expect to see some classical featuies
Phase-space poitiaits of the election components ψ\η of the
wave functions aie given by the Husimi function

The state \ηλ,ιιμ} is a Gaussian wave packet centeied at χ
= n v / M , p = npIM In momentum lepiesentation it leads
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FIG. 2. Left panels: Husimi function (7) for the electron com-

ponent of the ground-state wave function I/O of the Andreev kicked
rotator, for two different positions of the lead. The parameters are
M= 131072, TD = M//V=5, £=14. The calculated values are
scaled by a factor 0.019 (0.017) in the top (bottom) panel, so that
they cover the ränge (0,1), indicated by the gray scale at the top.
Right panels: The corresponding classical density plots of all tra-
jectories which have a time i>7 between Andreev reflections. The
calculated values are rescaled by a factor 0.30 (0.32) in the top
(bottom) panel.

In Fig. 2, left panels, the Husimi function of I//Q is shown
for two lead positions. A logarithmic gray scale density plot
of the Husimi function is shown, with light (dark) areas cor-
responding to low (high) density. The lead is visible äs a
light strip parallel to the χ axis. It is clear that these wave
functions are not random. We expect that the structure that
one sees corresponds to long classical trajectories, since the
wave functions are for the lowest quasienergy. To test this
expectation, we show in the right panels (on a linear gray
scale) the corresponding classical density plots for all trajec-
tories with dwell time t>t*. A total of 3 X l O5 initial condi-
tions (χ0,ρ0) f°r these trajectories are chosen uniformly in
the lead. Each new Iteration of the map (6) gives a point
(x„ ,pn) in phase space, which is kept if the time of retum to
the lead is greater than t*. We take i* = 7, somewhat larger
than the Ehrenfest time τΕ=λ~ι\η(Ν2/Μ)=4Α. The plot is
not particularly sensitive to the value of t*, äs long äs t*
> TE . There is a clear correspondence between the quantum-
mechanical Husimi function and the classical density plot.
We conclude that the wave function of the lowest excitation
covers predominantly that part of phase space where the
longest dwell times occur.

To make this more quantitative we show in Fig. 3 the gap

0.54 -

0.52 -

0.5 -

0.084

0.082

Δ

0.08
0 0.5 l

Plearf

FIG. 3. The data points (left axis) are the quantum-mechanical
gap values ε0 of the Andreev kicked rotator äs a function of the
Position piead of the lead for parameter values M =131 072, TD

= M/N=5, K=\4. The solid line (right axis) is the reciprocal of
the mean dwell time (1)^ = }^.tP(t)dt/f*fP(t)dt of classical tra-
jectories longer than f* = 7.

value from the quantum simulations äs a function of the lead
position. The solid curve results from a classical calculation
of the mean dwell time of those trajectories with t>t*, for
the same value i* = 7 used in Fig. 2. More precisely, it is a
plot of

(t).
P (t) dt

t P (t) dt
(9)

with P (t) the classical dwell-time distribution. We see that
the sample-to-sample fluctuations in the gap ε0 coiTelate
very well with the fluctuations in the sample-to-sample mean
dwell time of long trajectories. Again, the correlation is not
sensitive to the choice t*>rE. Such a correlation is in ac-
cord with the recent theoretical work,14 in which an effective
RMT description is expected to hold for the part of phase
space with dwell times greater than the Ehrenfest time. But
we should emphasize that the agreement is only qualitative.
In particular, the relation ε0~ l.S/^f}.,. — 0.07 that we infer
from Fig. 3 is different from the relation ε0 = 0.3/(ί)!|. that
would be expected from RMT. While the theory of Ref. 11
has been found to be in good agreement with the average gap
value (ε0),13 it is not clear how it compares to the data of
Fig. 3.

In conclusion, we have investigated the transition from
quantum-mechanical to quasiclassical gap fluctuations in the
superconductor proximity effect. The transition is accompa-
nied by a loss of universality and a substantial enhancement
of the fluctuations. Our numerical data provide qualitative
support for an effective random-matrix theory in a reduced
part of phase space,14 äs is witnessed by the precise correla-
tion which we have found between the value of the gap and
the dwell time of long classical trajectories (see Fig. 3). It
would be of interest to investigate to what extent quasiclas-
sical fluctuations of the conductance in a ballistic chaotic
System are similar or different from those of the supercon-
ducting gap studied here.
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