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We calculate the sample to sample fluctuations in the excitation gap of a chaotic dynamical system coupled
by a narrow lead to a supeiconductor Quantum fluctuations of the order of magnitude of the level spacing
ptedicted by random matrix theoy apply if 7,<€A/Cy (with 75 the Ehrenfest time and E; the Thouless
eneigy) Foi 7z=h/E; the fluctuations ate much greater than the level spacing We demonstrate the quasiclas
sical natuie of the gap fluctuations n the laige 7z 1egime by couelating them to an integial over the classical

dwell tume distiibution
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The universality of statistical fluctuations 1s one of the
most profound manifestattons of quantum mechanics 1n me-
soscopic systems | Classically, the conductance g of a disor-
deted metal (measured m the fundamental unit 2¢%/h) would
fluctuate fiom sample to sample by an amount of oider
/ L)m< 1, with [ the mean free path and L the length of the
conductor > Quantum-mechanical mterference mcieases the
fluctuations to order unity, independent of disotder o1 sample
length This 1s the phenomenon of umiveisal conductance
fluctuations ># The same universality apphies to a variety of
other propeities of disordered metals and superconductors,
and 1andom-mattix theoty (RMT) provides a umfied
desciption

Chaotic systems (for example, a quantum dot in the shape
of a stadium) shaie much of the phenomenology of disor
dered systems The same umveisahty of sample-to-sample
fluctuations exists °~* What 1s dfferent 1s the appeatance of a
new time scale, below which RMT bieaks down ®'® This
time scale 1s the Ehienfest ime 7, which measuies how
long 1t takes for a wave packet of mmnimal size to expand
over the entire available phase space If 7 1s larger than the
mean dwell time 7, mn the system (the teciprocal of the
Thouless energy Er=#/27p), then mterference effects are
moperative A chaotic system with conductance g(2e*/h),
level spacing &, and Lyapunov exponent A has 7p
=2ahlg S and 7=\ 'In(g7y/7p), with 7, the time of flight
acioss the system '! The defining characteristic of the Ehren-
fest tume 1s that 1t scales loganthmically with #, o1, equiva
lently, logaiithmically with the system size over Fermu
wavelength 1?

The purpose of this papet 1s to mvestigate what happens
to mesoscopic fluctuations 1f the Ehienfest time becomes
comparable to, or laiger than, the dwell time, so one enteis a
quasiclassical 1egime wheie RMT no longer holds This qua-
siclassical 1egime has not yet been exploied experimentally
The difficulty 1s that 75 incieases so slowly with system size
that the averagmg effects of inelastic scattening take over
befoie the effect of a finite Ehtenfest time can be seen In a
computer simulation ielastic scattering can be excluded
fiom the model by constiuction, so this seems a promising
alteinative to investigate the ciossover fiom univetsal quan
tum fluctuations to nonuniversal quasiclassical fluctuations
Contiaty to what one would expect fiom the disoidered
metal,2 wheie quasiclassical fluctuations ate much smaller
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than the quantum value, we find that the breakdown of uni-
versality 1n the chaotic system 1s associated with an enhance-
ment of the sample-to-sample fluctuations

The quantity on which we choose to focus 1s the excita-
tion gap g of a chaotic system which 1s weakly coupled to a
superconductor We have two 1easons for this choice First,
there exists a model (the Andieev kicked 1otator) which per-
mits a computer simulation for systems laige enough that
TgZ Tp So fai, such simulations have confiimed the micro-
scopic theoty of Ref 11 for the average gap (e,) > Second,
thete exists a quasiclassical theoty for the effect of a finite
Ehienfest time on the excitation gap and 1ts fluctuations
This allows us to achieve both a numerical and an analytical
undeistanding of the mesoscopic fluctuations when RMT
bieaks down

We summaunize what 15 known fiom RMT for the gap
fluctuations '* In RMT the gap distiibution P(gg) 1s a uni-
vetsal function of the 1escaled eneigy (eg—E,)/A,, whete
E,=06E; 1s the mean-field energy gap and A,
=0 068 g5 determimes the mean level spacing just above
the gap The distubution function has mean (gg)=E,
+121A, and standard deviation ({e3)—(eo)?)"?= Segur
given by

Sepur=127A,=109E;/g*" (1)

The RMT predictions for P(eq), m the 1egime 7,<7p,
wete confirmed numerically m Ref 13 using the Andreev
kicked 1otator

We will use the same model, this time focusing on the gap
fluctuations Seq 1 the tegime 7= 7p The Andieev kicked
10tator provides a stioboscopic descuiption (petiod 7)) of the
dynamics m a notmal iegion of phase space (atea Mfig)
coupled to a supeiconductor 1n a much smaller 1egion (atea
Nhoi, 1])N<€M) We 1efer to this coupling as a “lead ”
The effective Planck constant is 7= /M The mean dwell
time 1n the normal 1egion (before enterng the lead) 1s 75
=M/N and the couesponding Thouless eneigy 1s E;
=N/2M We have set 75 and # equal to 1 The dimension
less conductance of the lead 1s g=N The pioduct &
=4mwE;/g=2/M 1s the mean spacing of the quasieneigzes
g, of the noimal 1egion without the coupling to the supei-
conductor The phase factois e¢'®n (m=1,2, ,M) aie the
eigenvalues of the Floquet operator F, which 1s the unitaty
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matiix that desctibes the dynamics in the normal region In
the model of the kicked rotator the matiix elements of F n
momentum tepiesentation aie given by16

— = (ml2M) (n+m?
Fp=e  ¢T20Cm0(y0UT),,,,, (2a)
Unm =M~ I/Ze(ZmlM)nm’ (2b)
Q — 5" ew(zMK/Zﬂ')cos(%m/M) (ZC)
nm m

The coupling to the superconductor doubles the dimen-
sion of the Floquet operator to accommodate both election
and hole dynamics The scattering fiom election to hole,
known as Andieev 1eflection, 1s described by the mattix

1
—15\2PTP

l—(l——é—ﬁ)PTP

1—(1—%&)}@

P2

s

—z%\/_iPTP
3)

with the projection operator

. 1 ofLsn=L+N—1

P P) = O X 4

( )I’HU nm 0 Otl’lel Wlse ( )

Since we woik 1n momentum 1epiesentation, the lead defined
by Eq (4) 1s a stup 1 phase space of width N paallel to the
cootdmate axis One could alteinatively consider a lead par-
allel to the momentum axis, 1f one would woik n coordmate
1epresentatton We do not expect any significant differences
between the two alternatives Putting all this together we
artive at the Floquet operator of the Andieev kicked 10tat01,13

P 172 (5)

]::7)1/2 F
0 F*

The mat1ix F can be diagonalized efficiently usmng the Lanc-
Z0$ techm(i]ue m combination with the fast-Fouriei-transfoim
algouthm 7 This makes 1t possible to calculate the quasi-
energies &, and ergenfunctions ,, fo1 systems of sizes up to
M=5X10° The gap value g 1s given by the eigenphase of
F closest to zeio

The Floquet opetator (5) provides a stioboscopic descrip-
tron of the election and hole dynamics, which 1s believed to
be equivalent to the tue Hamltonian dynamics on long time
scales > 79 The suppott for this comes from two sides

(1) In the absence of supeiconductivity, and for varying
parameters K and 7Z.g, the one-dimensional kicked rotator
cortectly 1eproduces propeities of localized,'® diffusive,'”
and even ballistic® quasiparticles mn disordered media

(1) In the presence of superconductivity, the kicked An-
dieev 1otatoi, and extensions thereof, adequately desciibes
quantum dots m contact with a superconductor,’ and gives a
proper  descuiption of quaswpaiticles m  duty d-wave
supetconductors >

Since we will be giving a classical inteipietation of out
tesults, we also descuibe the classical map coriesponding to
the Andieev kicked 1otator The map 1elates the dimension-
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FIG 1 Root-mean-square value deq of the gap divided by the
RMT piediction Segyr, as a function of the system size M for
dwell tme M/N=>5 and kicking strength K= 14 The data points
result from the numerical simulation of the Andreev kicked rotator
The solid line has slope 2/3, mdicating that de; depends only on
M/N and not on M or N separately 1n the laige-M regime

less cootdmate x, € (0,1) and momentum p, e (0,1) at time
(n+1)7g to the values at time n 7y

pn+1:pni(K/27T)Sln[277-(xni%)}» (63)
Pn  Pn+1
‘xn‘\"l:‘xlli? * 2 (6b)

The upper and lower sign coriespond to election and hole
dynamuics, 1espectively Pertodic boundary conditions hold
both for x and p The quasipaiticle 1eaches the supercon-
ductor 1f |p,4 1= Pread <N/2ZM, Whete pie,q 15 the center of
the lead At the next iteration the election 1s conveited 1nto a
hole and vice versa

We study a system with kicking strength K=14 (fully
chaotic, Lyapunov exponent A=195) and vaty the level
spacing 6=2a/M at fixed dwell time 7p,=M/N=5
Sample-to-sample fluctuations aie geneiated by vaiying the
position py..q of the lead over some 400 locations The 1e-
sulting M dependence of dgg 1s plotted 1n Fig 1 on a double
logarithmic scale We have divided the value Jeq 1esulting
fiom the simulation by the RMT prediction degyr flom Eq
(1) The numerical data follow this prediction for M =<10°,
but for laiger M the fluctuations are bigger than piedicted by
RMT Foi M= 10* the 1at10 8eq/ Segyr giows as M3 (solid
Ine) Since Sermr*M ~2?, this means that Seq 1s mdepen-
dent of the level spacing §=27/M at fixed dwell time 7
=M/N This suggests a quasiclassical explanation

To 1elate the fluctuations of g4 to the classical dynamucs,
we first examine the coriespondimg wave function ¢, In the
RMT iegime the wave functions aie 1andom and show no
featuies of the classical trajectories In the quasiclassical 1e-
gume 7p=7p We expect to see some classical featuies
Phase-space pottraits of the election components ¢, of the
wave functions ate given by the Husimu function

H(n,n,) =K ln, n)? (7)

The state |n, ,n /,) 1s a Gaussian wave packet centered at x
=n,/M, p=n,/M In momentum repiesentation 1t 1eads
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FIG. 2. Left panels: Husimi function (7) for the electron com-
ponent of the ground-state wave function ¢ of the Andreev kicked
rotator, for two different positions of the lead. The parameters are
M=131072, 7p=M/N=5, K=14. The calculated values are
scaled by a factor 0.019 (0.017) in the top (bottom) panel, so that
they cover the range (0,1), indicated by the gray scale at the top.
Right panels: The corresponding classical density plots of all tra-
jectories which have a time >7 between Andreev reflections. The
calculated values are rescaled by a factor 0.30 (0.32) in the top
(bottom) panel.

<ll|l’LJ\ ’]7,p>oce_7"(”_”P)Z/Mezm’lA”/M. (8)

In Fig. 2, left panels, the Husimi function of g is shown
for two lead positions. A logarithmic gray scale density plot
of the Husimi function is shown, with light (dark) areas cor-
responding to low (high) density. The lead is visible as a
light strip parallel to the x axis. It is clear that these wave
functions are not random. We expect that the structure that
one sees corresponds to long classical trajectories, since the
wave functions are for the lowest quasienergy. To test this
expectation, we show in the right panels (on a linear gray
scale) the corresponding classical density plots for ali trajec-
tories with dwell time ¢>1*. A total of 3 X 10° initial condi-
tions (xq,pq) for these trajectories are chosen uniformly in
the lead. Each new iteration of the map (6) gives a point
(x,,p,) in phase space, which is kept if the time of return to
the lead is greater than t*. We take ¢* =7, somewhat larger
than the Ehrenfest time 7=\ "'In(N¥M)=4.4. The plot is
not particularly sensitive to the value of ¢*, as long as t*
> 7. There is a clear correspondence between the quantum-
mechanical Husimi function and the classical density plot.
We conclude that the wave function of the lowest excitation
covers predominantly that part of phase space where the
longest dwell times occur.

To make this more quantitative we show in Fig. 3 the gap
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FIG. 3. The data points (left axis) are the quantum-mechanical
gap values g of the Andreev kicked rotator as a function of the
position py.,q of the lead for parameter values M=131072, +p
=M/N=35, K=14. The solid line (right axis) is the reciprocal of
the mean dwell time (1), = [ 7.t P(1)dt/ .. P(£)dt of classical tra-
jectories longer than £*=7.

value from the quantum simulations as a function of the lead
position. The solid curve results from a classical calculation
of the mean dwell time of those trajectories with #>7*, for
the same value r*=7 used in Fig. 2. More precisely, it is a
plot of

J::P(t)dt

=, )
() L}P(z)dt

with P(t) the classical dwel{—time distribution. We see that
the sample-to-sample fluctuations in the gap ey correlate
very well with the fluctuations in the sample-to-sample mean
dwell time of long trajectories. Again, the correlation is not
sensitive to the choice #*> 7. Such a correlation is in ac-
cord with the recent theoretical work,'* in which an effective
RMT description is expected to hold for the part of phase
space with dwell times greater than the Ehrenfest time. But
we should emphasize that the agreement is only qualitative.
In particular, the relation o~ 1.5/(t), —0.07 that we infer
from Fig. 3 is different from the relation £q=0.3/(t),, that
would be expected from RMT. While the theory of Ref. 11
has been found to be in good agreement with the average gap
value (gg)," it is not clear how it compares to the data of
Fig. 3.

In conclusion, we have investigated the transition from
quantum-mechanical to quasiclassical gap fluctuations in the
superconductor proximity effect. The transition is accompa-
nied by a loss of universality and a substantial enhancement
of the fluctuations. Our numerical data provide qualitative
support for an effective random-matrix theory in a reduced
part of phase space,'* as is witnessed by the precise correla-
tion which we have found between the value of the gap and
the dwell time of long classical trajectories (see Fig. 3). It
would be of interest to investigate to what extent quasiclas-
sical fluctuations of the conductance in a ballistic chaotic
system are similar or different from those of the supercon-
ducting gap studied here.
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This work was supported by the Dutch Science Foundation
NWO/FOM and the Swiss National Science Foundation.
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