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ALGORITHMS IN ALGEBRAIC NUMBER THEORY

H. W. LENSTRA, JR.

ABSTRACT. In this paper we discuss the basic problems of algorithmic algebraic
number theory. The emphasis is on aspects that are of interest from a purely
mathematical point of view, and practical 1ssues are largely disregarded. We
describe what has been done and, more importantly, what remains to be done
in the area. We hope to show that the study of algorithms not only increases our
understanding of algebraic number fields but also stimulates our curiosity about
them. The discussion is concentrated of three topics: the determination of
Galois groups, the determination of the ring of integers of an algebraic number
field, and the computation of the group of units and the class group of that ring
of integers.

1. INTRODUCTION

The main interest of algorithms in algebraic number theory is that they pro-
vide number theorists with a means of satisfying their professional curiosity.
The praise of numerical experimentation in number theoretic research is as
widely sung as purely numerological investigations are indulged in, and for
both activities good algorithms are indispensable. What makes an algorithm
good unfortunately defies definition—too many extra-mathematical factors af-
fect its practical performance, such as the skill of the person responsible for its
execution and the characteristics of the machine that may be uvsed.

The present paper addresses itself not to the researcher who is looking for a
collection of well-tested computational methods for use on his recently acquired
personal computer. Rather, the intended reader is the perhaps imaginary pure
mathematician who feels that he makes the most of his talents by staying away
from computing equipment. It will be argued that even from this perspective
the study of algorithms, when considered as objects of research rather than as
tools, offers rich rewards of a theoretical nature.

The problems in pure mathematics that arise in connection with algorithms
have all the virtues of good probiems. They are of such a distinctly fundamental
nature that one is often surprised to discover that they have not been considered
earlier, which happens cver in well-trodden areas of mathematics; and even
in areas that are believed 10 be well-understood it occurs {requently that the
existing theory offers no ready solutions, fundamental though the problems may
be. Solutions that have been found often need tools that at first sight seem
foreign to the statement of the problem.
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Algebraic number theory has in recent times been applied to the solution
of algorithmic problems that, in their formulations, do not refer to algebraic
number theory at all. That this occurs in the context of solving diophantine
equations (see, e.g., [72]) does not come as a surprise, since these lie at the very
roots of algebraic number theory. A better example is furnished by the seem-
ingly elementary problem of decomposing integers into prime factors. Among
the ingredients that make modern primality tests work one may mention reci-
procity laws in cyclotomic fields (see [3, 25, 24]), arithmetic in cyclic fields (see
[46, 10]), the construction of Hilbert class fields of imaginary quadratic fields
[5], and class number estimates of fourth degree CM-fields {1]. The best rigor-
ously proved time bound for integer factorization is achieved by an algorithm
that depends on quadratic fields (see [49]), and the currently most promising
practical approach to the same problem, the number field sieve (see [17, 43, 44]),
employs “random” number fields of which the discriminants are so huge that
many traditional computational methods become totally inapplicable. The anal-
ysis of many algorithms related to algebraic number fields seriously challenges
our theoretical understanding, and one is often forced to argue on the basis of
heuristic assumptions that are formulated for the occasion. It is considered a
relief when one runs into a standard conjecture such as the generalized Riemann
hypothesis (as in [6, 15]) or Leopoldt’s conjecture on the nonvanishing of the
p-adic regulator [60].

In this paper we will consider algorithms in algebraic number theory for their
own sake rather than with a view to any of the above applications. The discus-
sion will be concentrated on three basic algorithmic questions that one may ask
about algebraic number fields, namely, how to determine the Galois group of
the normal closure of the field, or, more generally, of any polynomial over any
algebraic number field; how to find the ring of integers of the field; and how to
determine the unit group and the ideal class group of that ring of integers. These
are precisely the subjects that are discussed in Algorithmic algebraic number the-
ory by M. Pohst and H. Zassenhaus (Cambridge, 1989), but our point of view
is completely different. Pohst and Zassenhaus present algorithms that “yield
good to excellent results for number fields of small degree and not too large
discriminant” [56, Preface], but our attitude will be decidedly and exclusively
asymptotic. For the purposes of the present paper one algorithm is considered
better than another if, for each positive real number N, it is at least N times
as fast for all but finitely many values of the input data. It is clear that with this
attitude we can make no claims concerning the practical applicability of any of
the results that are achieved. In fact, following Archimedes [4] one should be
able, on the basis of current physical knowledge, 1o find an upper estimate for
all sets of numerical input data to which any algorithm will ever be applied, and
an algorithm that is faster in all those finitely many instances may still be worse
in our sense.

To some people the above attitude may seem absurd. To the intended reader,
who is never going 1o apply any algorithm anyway, it comes as a liberation and a
relief. Once he explicitly gives up all practical claims he will realize that he can
occupy himself with algorithms without having to fear the bad dreams caused by
the messy details and dirty tricks that stand between an elegant algorithmic idea
and its practical implementation. He will find himself in the platonic paradise
of pure mathematics, where a conceptual and concise version of an algorithm
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is valued more highly than an ad hoc device that speeds it up by a factor of ten
and where words have precise meanings that do not change with the changing
world. He will never need to enter the dark factories that in his imagination are
populated by applied mathematicians, where boxes full of numbers that they
call matrices are carried around and where true electronic computers are fed
with proliferating triple indices. And in his innermost self he will know that in
the end his own work will turn out to have the widest application range, exactly
because it was not done with any specific application in mind.

There is a small price to be paid for admission to this paradise. Algorithms
and their running times can only be investigated mathematically if they are
given exact definitions, and this can apparently be done only if one employs the
terminology of theoretical computer science, which our intended reader unfor-
tunately does not feel comfortable with either. It is only out of respect for his
feelings that I have not called this paper Complexity of algorithms in algebraic
number theory, which would have described its contents more accurately.

Although it is, from a rigorous mathematical point of view, desirable that I
define what I mean by an algorithm and its running time, I will not do so. My
main excuse is that I do not know these definitions myself. Even worse, I never
saw a treatment of the appropriate theory that is precise, elegant, and convenient
to work with. It would be a laudable enterprise to fill this apparent gap in the
literature. In the meantime, I am happy to show by exampie that one can avoid
paying the admission price, just as not all algebraists are experts on set theory
or algebraic geometers on category theory. The intuitive understanding that one
has of algorithms and running times, or of sets and categories, is amply suffi-
cient. Exact definitions appear to be necessary only when one wishes to prove
that algorithms with certain properties do not exist, and theoretical computer
science is notoriously lacking in such negative results. The reader who wishes
to provide his own definitions may wish to consult [74] for an account of the
pitfalls to be avoided. He should bear in mind that all theorems in the present
paper should become formal consequences of his definitions, which makes his
task particularly academic.

My intended reader may have another allergy, namely, for constructive math-
ematics, in which purely existential proofs and the law of the excluded middle
are not accepted. This has only a superficial relationship to algorithmic math-
ematics. Of course, it often happens that one can obtain a good algorithm by
just transcribing an essentially constructive proof, but such algorithms do not
tend to be the most interesting ones; many of them are mentioned in §2. In the
design and analysis of algo:ithms one gladly invokes all the help that existing
pure mathematics has to offer and often some not-yet-existing mathematics as
well.

For an account of algorithms in algebraic number theory that emphasizes the
practical aspects rather than complexity issues we refer to the forthcoming book
by Cohen [23].

In §2 we cover the basic terminology and the basic auxiliary results to be used
in later sections. In particular, we discuss several fundamental questions that,
unlike integer factorization, admit a satisfactory algorithmic treatment. These
include questions related to finitely generated abelian groups, to finite fields,
and to the factorization of polynomials over number fields.

Section 3 is devoted to the problem of determining Galois groups. We review
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the little that has been done on the complexity of this problem, including the
pretty result of Landau and Muller [36] that solvability by radicals can be decided
efficiently. We also point out several directions for further research.

In §4 we discuss the problem of determining the rning of integers of a given
algebraic number field The main result 1s a negative one—the problem 1s 1n
many ways equivalent to the problem of finding the largest square factor of
a given positive integer, which 1s iniractable at present. Nevertheless, we will
see that one can get quite close There 15 an interesting connection with the
resolution of plane curve singularities that remains to be explorted.

Section 5 considers the problem of determining the unit group &@* and the
ideal class group Cl@ of the ring of integers @ of a given number field. Show-
g that these are effectively computable 1s not entirely trivial, and since most
textbooks are sident on this point, I treat 1t in some detaill. We shall see that the
existing complexity estumates for this problem still leave room for improvement,
and what we have to say 1s far from conclusive. In §6 we prove a few exphcit
bounds concerning units and class groups that are needed in §5. Several results
in these two sections could have been formulated in terms of the divisor class
group Pic @ that appears i Arakelov theory (see [70, §I]) and that already
appeared n the context of algorithms (see [65, 45]). Knowing the group Pic, &
15 equivalent to knowing both @* and CI¢@ , which may explain why algorithms
for computing @* and algorithms for computing Cl& are often extricably
linked. it also explains why, contrary to many authors in the field, I prefer to
think of determining @* and determuning Cl& as a single problem.

The three basic questions that are addressed in this progress report still offer
ample opportunities for additional progress. Among the many other algorith-
mic questions in algebraic number theory that merit attention we mention the
problem of tabulating number fields, problems from class field theory such as
the calculation of Artin symbols, problems concerming quadratic forms, and the
analogues of all problems discussed 1n this paper for function fields of curves
over fimite fields

2. PRELIMINARIES

2.1. Algorithms and complexity. It 1s assumed that the reader has an intutive
understanding of the notion of an algorithm as being a recipe that given one
finite sequence of nonnegative integers called the tnput data, produces another,
called the output Formally, an algorithm may be defined as a Turing machine,
but for several of our 1esults 1t 1s better to choose as our “machine model” an
idealized computer that 15 more realistic with respect to its running time, which
1s another mtuitively clear notion that we do not define We refer 1o [74] and
the literature given there for a further discussion of these points

The length of a finite sequence of nonnegative integers ny, ny, .., #; 1S
defined to be 3°)_, log(#, +2) . It must mformally be thought of as proportional
to the number of bits needed to spell out the »n, 1n binary. By analyzing the
complexity of an algorithm we mean 1n this paper finding a reasonably sharp
upper bound for the runming time of the algorithm expressed as a function
of the length of the mput data. This should, more precisely, be called fzme
complexity, to distinguish 1t from space complexity. An algorithm 1s said to be
polynomual-time or good 1f 11s running time 1s (/ +2)%1 | where [ 1s the length
of the input. Studying the complexity of a problem means finding an algorithm
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for that problem of the smallest possible complexity In the present paper we
consider the complexity analysis complete when a good algorithm for a problem
has been found, and we will not be interested 1n the value of the O-constant
Informally, a problem has a good algorithm if an instance of the problem 1s
almost as easily solved as 1t 1s formulated

Sometimes we will refer to a probabilistic algorithm, which 1s an algorithm
that may use a random number generator for drawing random bits One formal-
1zation of this 1s a nondeternunistic Turing machine (see [74]) Unless we use
the word probabilistic, we do not allow the use of random number generators,
and 1f we wish to emphasize this we talk of deterministic algorithms In the
case of a probabilistic algorithm, the running time and the output are not deter-
mined by the input alone, but both have, for each fixed value of the input data,
a distribution The expected running time of a probabilistic algorithm 1s the
expectation of the running time for a given mput Studying the complexity of a
probabilistic algorithm means finding an upper bound for the expected running
time as a function of the length of the input For a few convenient rules that
can be used for this purpose we refer to {49, §12] A probabilistic algorithm 1s
called good 1f 1ts expected running time 1s (/ + 2)%1) | where [ 1s the length of
the input

Parallel algorithms have not yet played any role 1n algorithmic number theory,
and they will not be considered here

Many results 1n this paper assert that “there exists” an algorithm with certain
properties In all cases, such an algorithm can actually be exhibited, at least in

principle
All O-constants are absolute and effectively computable unless indicated oth-

EIrwise

2 2 Encoding data. As stated above, the mnput and the output of an algorithm
consist of finiie sequences of nonnegative mtegers However, in the mathemat-
ical practice of thinking and wniting about algorithms one prefers to work with
mathematical concepts rather than with sequences of nonnegative integers that
encode them 1n some manner Thus, one likes to say that the mnput of an al-
gorithm 1s given by an algebraic number field rather than by the sequence of
coefficients of a polynomial that defines the field, and 1t 1s both shorter and
clearer to say that one computes the kernel ot a certain endomorphism of a
vector space than that one determines a matrix of which the columns express a
basis for that kernel 1 terms of a grven basis of the vector space To justify such
a concise mode of expression we have to agree on a way of encoding entities
such as number fields, vecto: spaces, and maps between them by means of finite
sequences of nonnegative 1ntegers That 1s one of the purposes of the remainder
of this section Sometimes there 1s one obvious way to do the encoding, but
often there are several, 1n which case the question arises whether there 1s a good
algorithm that passes from one encoding to another When there 15, we will
usually not distinguish between the encodings, although for practical purposes
they need not be equivalent

We shall see that the subject of encoding mathematical entities suggests sev-
eral basic questions, but we will not pursue these systematically We shall not
do much more than what will be needed in later sections

23 Elementary arithmetic. By 7, we denote the ring of integers Adding a
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sign bit we can clearly use nonnegative integers to represent all integers. The
traditional algorithms for addition and subtraction take time O(/), where [ 1s
the length of the mput. The ordinary algorithms for multiplication and daivi-
sion with remainder, as well as the Euclidean algorithm for the computation
of greatest common divisors, have running ime O(/?). With the help of more
sophisticated methods this can be improved to /1+°() for / — oo (see [33])
An operation that 1s not known to be doable by means of a good algorithm 1s
decomposing a positive 1nteger into prime numbers (see [33, 50, 41]), but there
1s a good probabilistic algorithm for the related problem of deciding whether a
given 1nteger 1s prime [1]. No good algorithms are known for the problem of
recogmizing squarefree numbers and the problem of finding the largest square
drviding a given positive integer, even when the word “good” 1s given a less
formal meaning (see [43, §2]).

For some algorithms a prime number p 1s part of the mnput. In such a case,
the prime 1s assumed to be encoded by itself rather than that, for example, n
stands for the nth prime. Since we know no good deterministic algorithm for
recognizing primes, it 1s natural to ask what the algonthm does 1f p is not
prime or at least not known to be prime Some algorithms may discover that p
1s nonprime, either because a known property of primes 1s contradicted 1n the
course of the computations, or because the algorithm spends more time than
1t should, such algorithms may be helpful as primality tests. Other algonthms
may even give a nontrivial factor of p, which may make them applicable as
integer factoring algorithms. For both types of algorithms, one can ask what can
be deduced if the algorithm does appear to terminate successfully Does this
assist us 1n proving that p 1s prime? What do we know about the output when
we do not assume that p 15 prime? An algorithm for which this question has
not been answered satisfactorily 1s Schoof’s algorithm for counting the number
of points on an elliptic curve over a finite field [62].

Rational numbers can be represented as pairs of integers in an obvious man-
ner, and all field operations can be performed on them 1n polynomial time.

Let n be a positive integer. The elements of the ring Z/nZ are assumed
to be encoded as nonnegative integers less than » The nng operations can
be performed 1n polynomial time. An ideal I C Z/nZ can be encoded either
by means of its index d = [Z/nZ : I], which completely determines 1t and
which can be any divisor of r, or by means of a finite sequence of elements
that generates I, or by means of a single generator. An element of I can
be represented either as an element of Z/nZ that 1s divisible by d, or as an
exphicit Z/nZ-linear combination of the given generators of I, or as an explicit
multiple of a single given generator. Using the extended Euchidean algorithm
one easily sees that one can pass from any of these encodings of 1deals and their
elements to any other 1n polynomial time and that one can likewise test inclusion
and equality of given 1deals In particular, one can decide in polynomial tiume
whether a given nonzero element of Z/nZ 1s a unit, 1f so find 1ts inverse, and
if not so find a nontrivial divisor of n Taking n = p to be prime we conclude
that we can perform all field operations in F, = Z/pZ 1n polynomial time.

2 4. Linear algebra. Let F be a field, and suppose that one has agreed upon
an encoding of 1ts elements, as 1s the case when & 1s the field Q@ of rational
numbers or the field ¥, for some prime number p (see 2 3). Giving a finite-
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dimensional vector space over ¥ simply means giving a nonnegative integer
n, which is the dimension of the vector space. This number »n is to be given
in unary, i.e., as a sequence 1, 1, ..., 1 of n ones, so that the length of
the encoding is at least n. This is because almosi any algorithm related to
a vector space of dimension n takes time at least n. The elements of such
a vector space are encoded as sequences of »n elements of . Homomor-
phisms between vector spaces are encoded as matrices. A subspace of a vector
space can be encoded as a sequence of elements that spans the subspace, or
as a sequence of elements that forms a basis of the subspace, or as the kernel
of a homomorphism from the vector space to another one. For all fields F
that we shall consider the traditional algorithms from linear algebra, which are
based on Gaussian elimination, are polynomial-time: algorithms that pass back
and forth between different representations of subspaces, algorithms that decide
inclusion and equality of subspaces, that form sums and intersections of sub-
spaces, algorithms that construct quotient spaces, direct sums, and tensor prod-
ucts, algorithms for computing determinants and characteristic polynomials of
endomorphisms, and algorithms that decide whether a given homomorphism is
invertible and if so construct its inverse. The proofs are straightforward, the
main problem being to find upper bounds for the sizes of the numbers that
occur in the computations, for example when F = Q.

If one applies any of these algorithms to F = Z/pZ without knowing that p
is prime, then one either finds a nontrivial divisor of p because some division
by a nonzero element fails, or the algorithm performs successfully as if F were
a field. In the latter case it is usually easy to interpret the output of the algorithm
in terms of free Z/pZ-modules (see [14]), thus avoiding the assumption that p
be prime.

2.5. Finitely generated abelian groups. Specifying a finitely generated abelian
group is done by giving a sequence of nonnegative integers d;, d,, ..., d;;
the group is then @'_, Z/d,Z, which enables us to represent the elements of
the group by means of sequences of ¢ integers. In our applications the group
is usually either finite (all d, > 0) or free abelian (all d, = 0). To make the
d, unique one may require that 4, divides d,.; for 1 < i/ < ¢; this can be
accomplished in polynomial time. One should not require the d, to be prime
powers, since that is, for all we kaow, algorithmically hard to achieve. Starting
from this description of finitely generated abelian groups, one can encode maps
and subgroups in various ways that are reminiscent of 2.4 and that are left to
the imagination of the readcr. He may also formulate the analogues of the
problems mentioned in 2.4 for the current case and construct good algorithms
for them using Hermite and Smith reduction of integer matrices (see [29]). The
main difficulty is to keep the intermediate numbers small.

2.6. Basis reduction. In many cases a finitely generated free abelian group L is
equipped with a bilinear symmetric map L x L — R that induces a Euclidean
structure on Ly = L ®z R; here R denotes the field of real numbers. For
example, this is the case if L is a subgroup of Z”, with the ordinary inner
product. It is also the case if L is a finitely generated subgroup of the additive
group of an algebraic number field K (see 2.9), the bilinear symmetric map in
this case being induced by (x, x) = ¥ _|ox|*, where o ranges over the field
homomorphisms from K to the field C of complex numbers. In such cases it



218 H W LENSTRA JR

1s often desirable to find a reduced basis of L over Z, 1e, a basis of which
the elements are “short” 1n a certain sense If the symmetric matrx that defines
the bilinear map on a given basis of L 1s known to a certain accuracy, then a
reduced basis can be found by means of a reduction algorithm The complexity
of such an algorithm depends on the precise notion of “reduced basis” that one
employs In [42] one finds a good reduction algorithm that will suffice for our
purposes. See [30] for further developments

2 7. Rings. We use the convention that rings have unit elements, that a subring
has the same unit element, and that ring homomorphisms preserve the unit
element. The characteristic char A of a nng A 1s the nonnegative integer that
gencrates the kernel of the unique ring homomorphism Z — 4 The group of
units of a nng 4 1s denoted by A*. All rings in this paper are supposed to be
commutative.

Almost any ring that we need to encode 1n this paper has an additive group
that 15 erther fimitely generated or a finite-dimensional vector space over Q, for
exceptions, see 2.11. Such a ring 4 1s encoded by grving its underlying abelian
group as 1n 2.5 or 2.4 together with the multiplication map 4 ® A4 — 4. [t1s
straightforward to decide 1n polynomial time whether the multiplication map
satisfies the ring axioms.

Ideals are encoded as subgroups or, equivalently, as kernels of ring homo-
morphisms. There are good algonithms for computing the sum, product, and
intersection of ideals, as well as the 1deal - J = {x € 4: xJ c I} for given [
and J, and the quotient ring of 4 modulo a gtven 1deal.

A polyncmial over a ring 1s always supposed to be given by means of a
complete hist of its coefficients, including the zero coeflicients; thus we do not
work with sparse polynomuals of a very high degree

Most finite rings that have been encountered 1 algorithmic number theory
“try to be fields” in the sense that one 1s actually happy to find a zero-divisor
mn the ning. This applies to the way they occur in §4 and also to the application
of finite rings 1n primality testing [46, 10]. Nevertheless, it seems of interest to
study finite rings from an algorithmic point of view for their own sake Testing
whether a grven finite ring s local can be done by a good probabilistic algorithm,
but finding the localizations locks very difficult Testing whether 1t 1s reduced or
a principal 1deal ring also looks very difficult, but there may be a good algorithm
for deciding whether 1t 15 quasi-Frobenius. I do not know whether 1somoiphism
can be tested 1n polynomial time. Many difficulties are already encountered for
finite rings that are Fp-algebras for some prime number p. Two finite etale
F,-algebras can be tested for 1somorphusm in polynomial time (cf. [14]), but
there 15 no known good deterministic algorithm for finding the 1somorphism 1f
1t exasts, if they are fields, there 1s, but the proof depends on ring theory (see

[48]).

2.8. Finite fields. Let p be a prime number, n a posifive integer, and g = p”

A finite field F, of cardinality g 1s encoded as a rning, as m 2 7. This comes
down to specifying p, n, as well as a system of n® elements g, 1 of F, with
the property that there 1s a basis e;, e, , en of F, over F,, suchthat ee, =
Yox ayier forall 1, j We refer to [48] for a description of good algorithms for
various fundamental problems: performing the field operations in a given finite
field, as well as exponentiation and the application of automorphisms, finding
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all subfields of a given finite field F,, finding the irreducible polynomial of a
given element of ¥, over a given subfield, finding a primitive element of F,,
i.e., an element « € F, with F;, = F,(a), finding a normal basis of ¥, over
a given subfield, and finding all field homomorphisms and isomorphisms from
a given finite field to another. Most of these algorithms rely heavily on linear
algebra.

Given a positive integer p and a system of n> elements g, sk of Z/pZ, how
does one decide whether they specify a field ¥, as above? This is at least as
hard as testing p for primality, for which no good deterministic algorithm is
known. However, this is the only obstiruction: there is a good algorithm that
given p and the a,,; either shows that they do not define a field, or shows that
if p is prime they do. Namely, one runs the algorithms mentioned above for
finding a primitive element o and its minimal polynomial f over Z/pZ, just
as if one is working with a field, and one verifies that the map sending X to
a induces an isomorphism from (Z/pZ)[X]/(f) to the structure that one is
working with; if this is not true, or if anything went wrong during the course of
the algorithm, one does not have a field; if it is, then as a final test one decides
whether [ is irreducible over Z/pZ , which for prime p can be done by means
of a good algorithm (see [38, 47] and the references given there).

There are also problems for which no good algorithm is known. One is
the problem of constructing ¥,» for a given prime p and a given positive
integer n, or, equivalently, constructing an irreducible polynomial f € F,{X]
of degree n; here n is supposed to be given in unary (cf. 2.4). If one accepts
the generalized Riemann hypothesis then there is a good algorithm for doing
this [2]. There is also a good probabilistic algorithm for this problem, and a
deterministic algorithm that runs in /p times polynomial time [66].

An important problem, which will come up several times in this paper, is the
problem of factoring a given polynomial f in one variable over a given finite
field F,». No good algorithm is known for this problem, even when the gen-
eralized Riemann hypothesis is assumed. There does exist a good probabilistic
algorithm and a deterministic algorithm that runs in /p times polynomial time
[67]; if p is fixed, or smaller than the degree of /', then the latter algorithm is
good. There also exists a good algorithm that, given f € F,.[X], determines the
factorization type of f, i.e., the number of irreducible factors and their degrees
and multiplicities. We refer to [47] for a further discussion.

Algorithmic pioblems relating to the multiplicative group of finite fields, such
as the discrete logarithm problem, are generally very difficult, see [53, 57, 41,
27, 60, 51].

2.9. Number fields. By a number field or an algebraic number field we mean
in this paper a field extension K of finite degree of the field @ of rational
numbers. For the basic theory of algebraic number fields, see [37, 75, 20].

An algebraic number field K is encoded as its underlying Q-vector space
together with the multiplication map K ®g K — K, as in 2.7; in other words,
giving K amounts to giving a positive integer n and a system of #3 rational
numbers 4, that describe the multiplication in K on a vector space basis of
K over Q (cf. 2.8 above). Asin [48, §2], one shows that the field operations in a
number field can be performed in polynomial time. Using standard arguments
from field theory one shows that there are good algorithms for determining
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the irreducibie polynomial of a given element of K over a given subfield and
for finding a primitive element of K, i.e., an element « € K for which K =
Q(c) . It follows that giving a number field is equivalent to giving an irreducible
polynomial f € Q[X] and letting the field be Q[X]//Q[X].

Polynomials in one variable with coefficients in an algebraic number field can
be factored into irreducible factors in polynomial time. This is done with the
help of basis reduction, see [42, 35, 39, 40]. We note two consequences.

First of all, from the argument given in 2.8 one sees that there is a good
algorithm for deciding whether a given system of n® rational numbers defines
a number field. Secondly, given two number fields K = Q(a) and XK', one can
decide whether or not they are isomorphic, and if so, find all isomorphisms, in
polynomial time. To do this, one factors the irreducible polynomial f of «
over (@ into irreducible factors in the ring K'[X], and one observes that the
linear factors are in bijective correspondence with the field homomorphisms
K — K'; such a field homomorphism is an isomorphism if and only if the two
fields have the same degree over Q.

With K = K’ we see from the above that one can also determine all auto-
morphisms of K, and composing them one can make a complete multiplication
table for the group Aut K of field automorphisms of K, all in polynomial time.

In the proof of 3.5 we shall see that all maximal proper subfields of a given
number field of degree n can be found in polynomial time. Finding all sub-
fields is asking too much, since the number of subfields is not polynomially
bounded. I do not know whether all minimal subfields different from @ can
be found in polynomial time, nor whether their number is %) | Intersections
and composites of given subfields can be found by means of linear algebra.

We stress that for our algorithms the number field K is considered to be
variable rather than fixed, and that we wish our running time estimates to be
uniform in K.

2.10. Orders. An order in a number field K of degree n is a subring 4 of K
of which the additive group is isomorphic to Z" . Among all orders in K there
is a unique maximal one, which is called the ring of integers of K and denoted
by @ . The orders in K are precisely the subrings of & of finite additive
index. The discriminant A4 of an order A with Z-basis w;, wy, ..., W, is
the determinant of the matrix (Tr(w,®,)),,,, where Tr: K — @ is the trace
map. The discriminant of every order is a nonzero integer. The discriminant
of @ is also called the discriminant of K over Q and is simply denoted by
A

There are several ways of encoding an order A4 in a number field K. One is
by specifying 4 as a ring as in 2.7, which amounts to giving n and a system of
n® integers a, ; from 4 ®zQ = K it follows that the same data also encede
K . Another is by specifying K as well as a sequence of elements of K that
generates A4 as a ring, or as an abelian group. We leave it to the reader to check
that there are good algorithms for transforming all these encodings into each
other.

Given a number field K one can construct an order in X in polynomial
time, as follows. Let n3 rational numbers a, sk be given that describe the
multiplication on a Q-basis e; =1, e;, ..., e, for K, and let d be the least
common multiple of the denominators of the a,, . Then 4 =Z + 37 , Zde,
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1s an order in X In many cases one knows the irreducible polynomial f of a
primitive element a of K over Q If f e Z[X], then one can take for 4 the
“equation order” Z[a], which as a ring 1s 1somorphic to Z[X1/fZ[X] 1If f
does not belong to Z[X], then one can erther replace o by ma for a suitable
positive integer sz, or use a little known generalization of the equation order,
namely, the ring

n—1 n—1
A= {ﬂeK B> Zo CZZO/}

1=0 1=0

To find a Z-basis for this ring, let m be the least positive integer for which
the polynomial g =mf =Y " ,a, X' has coefficients a, in Z (with a, = m),
then

n—1

i—1
A=Z+Y Z- > ay 0
J=0

1=1

These are exactly the rings 4 for which Spec A 1s 1somorphic to a “horizontal”
prime divisor of the projective line over Z Many results that are known for
equation orders have direct analogues for rings of this type, for example, the
discriminant of 4 equals the discriminant of g

Applying basis reduction to a grven order 4 as in 2 6, one can find a Z-
basis for A with the property that the integers g, that express multiplication
in this basis satisfy a,; = [A4]°™ This shows that 4 can be encoded by
means of data of length O(n*(2 +log|A4|)), and that there 1s a good algorithm
for transforming a given encoding into one satisfying this bound From the
mequality n < 2(log|A4])/log3, which 1s valid for all 4 # Z, one sees that
the bound 15 (2 + log|A4)?() 1t 1s often convenient to assume that the given
encoding of A4 satisfies this bound, and to estimate running times in terms of
Ay
| I',et A be an order 1 a number field K of degree n By a fractional ideal of
A we mean a finttely generated nonzero A-submodule of K The additive group
of a fractional ideal 1s 1somorphic to Z” One can compute with fractional
ideals as with 1deals (see 2 7)

211 Lecal fields. A local field 1s a locally compact, nondiscrete topological
field Such a field 1s topologically 1somorphic to the field R of real numbers, or
to the field C of complex nvmbers, or, for some prime number p, to a finite
extension of the field Q, of p-adic numbers, or, for some finite field E, to
the field E((¢)) of formal Laurent series over £ A local field 1s uncountable,
which implies that we have to be satisfied with specifying its elements only to
a certain precision The discussion below 1s Iimited to the case that the field 1s
non-archtmedean, 1 ¢ not isomorphic to R or C

The complexity theory of local fields has not been developed as systemati-
cally as one might expect on the basis of their importance i number theory (sce
[19]) The first thing to do 1s to develop algorithms for factoring polynomials
in one vanable to a given precision, see [21, 14] and §4 below Here the incom-
plete solution of the corresponding problem over finite fields (see 2 8) causes a
difficulty, we are forced to admit probabilistic algorithms, or to allow the run
ning time to be /p times polynomial time, where p denotes the characteristic
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of the residue class field, or to avoid the need for completely factoring polyno-
mials Once one can factor polynomials, 1t 1s likely that satisfactory algorithms
can be developed for the calculation of ramification indices and restdue class
field degrees of finite extensions of non-archimedean local fields Some further
problems are mentioned at the end of §3

3 GALOIS GROUPS
In this section we are concerned with the following problem

Problem 3.1. Given an algebraic number field K and a nonzero polynomial
f € K[X], determine the Galois group G of f over K Can this be done in
polynomual time?

In the sequel we will always assume that the polynomial f 1s squarcfree
This can be accomplished by means of a good algorithm, which replaces f by
f/ecd(f, /) We denote the degree of f by n

We should specify how we want the algorithm to describe ¢ One possibility
1s to require that the algorithm comes up with a complete multiplication table of
a fimte group that 1s 1somorphic to &, but this has an important shortcoming
Namely, the group may be very large in comparison to the length of the mnput,
and 1t may not be possible to write down such a complete multiplication table
1n polynomial time, let alone calculate 1t If we insist on a complete multiph-
cation table, then “polynomial time” in Problem 3 1 should be taken to mean
polynomual time in the combined lengths of the mnput plus output Theorem
3 2 below shows that Problem 3 1 does in this sense have a polynomial time
solution

If we are interested 1n more efficient algorithms, we should look for a more
concise way of describing G For this, we view (' as a permutation group of
the zeroes of f rather than as an abstract group Numbering the zeroes we see
that G may be regarded as a subgroup of the symmetric group S, of order n',
this subgroup 1s determined only up to conjugacy due to the arbitrary choice of
the numbering of the zeroes Instead of asking for a multiplication table of G
we shall ask for a list of elements of &, that generate G Every subgroup of .S,
has a system of at most n— 1 generators (see [52, Lemma 5 2]), and these can
be specified using O(n*logn) bits This 1s bounded by a polynomial function
of the length of the input, since the latter 1s at least n

This formulation of the problem still leaves something to be desired, namely,
we do not ask how the numbeting of the zeroes of f 1s related to other ways
1 which zeroes of f may be specified for example, as complex numbers to
a certain precision, for a suitable embedding K — C, or stmilarly as p-adic
numbers for a suitable prime number p, or as elements of an abstractly defined
sphtting field or of one of its subfields However, even without such a refined
formulation the problem appears to be hard enough

It should be remarked that a set of generators of a subgroup G of 5, can
be used to answer, 1 polynomuial time, several natural questions about G For
example, one can determune its oider, one can decide whether a given element
of S, belongs to G, one can, for a given prime p, determine generators for
a Sylow p-subgroup of G, one can find a composition series for G and name
the 1somorphism types of its composition factors, in particular, one can decide
whether G 1s solvable For more examples, proofs, and references, see [32] It
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may be that some of the ideas that underlie this theory, which depends on the
classification of finite simple groups, will play a role in a possible solution of
Problem 3.1.

The following result, due to Landau [35], expresses that the possibility that
G is very large is the only obstruction to finding a good algorithm for Problem
3.1.

Theorem 3.2. There is a deterministic algorithm that given K and f as in
Problem 3.1 and a positive integer b decides whether the Galois group G has
order at most b, and if so gives a complete list of elements of G, and that runs
in time (b + )%, where [ is the length of the data specifying K and f.

The algorithm is obtained from the standard textbook construction of a split-
ting field of f over K. One first factors f into irreducible factors in K[X]. If
all factors are linear, then the splitting field is X itself. Otherwise, one passes to
the field L = K[X]/gK[X], where g is one of the nonlinear irreducible factors
of f. Then a splitting field of f over L is also one over K, so applying the
algorithm recursively one can determine a splitting field of f over XK. If at any
stage during the recursion it happens that one obtains a field that has degree
larger than b over the initial field K, then #G > b, and one stops. If this does
not happen, then one eventually arrives at a splitting field A/ of f over X .
As in 2.9 one can determine the group Gal{M/K) of all K-automorphisms of
M, and this is G . It is then easy to make a multiplication table for G and to
find an embedding of G into the symmetric group of the set of zeroes of f.

One sees from Theorem 3.2 that G can be determined in time (#G + )0
Since #G < n!, it follows that for bounded n Problem 3.1 is solved in the
sense that there is a polynomial time solution. This is an example of a complex-
ity result that does not adequately reflect the practical situation: the practical
problem of determining Galois groups is not considered to be well solved, even
though the algorithms that are actually used nowadays always require # to be
bounded—in fact, each value of n typtcally has its own algorithm (cf. [69, 26]),
which docs not follow the crude approach outlined above.

Corollary 3.3. There is a good algorithm that given K and f decides whether
G is abelian, and determines G if G is abelian and f is irreducible.

For irreducible [ this is easily deduced from Theorem 3.2 with b = 1, since
a transitive abelian permutatior: group of degree n has order n. For reducible
f one uses that the Galois group of f is abelian if and only if the Galois group
of each irreducible factor of f is abelian.

For reducible f, this algorithm does not determine the Galois group, and it
is not clear whether this can be done in polynomial time. The following problem
illustrates the difficuity.

Problem 3.4. Given an algebraic number field X and elements a;, a, ...,
a; € K , determine the Galois group of []'_,(X? - a,) over K. Is there a good
algorithm for doing this?

For K = Q this is indeed possible. For general algebraic number fields one
can probably do it if one assumes the generalized Riemann hypothesis. Without
such an assumption already the case that all a, are units of the ring of integers
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of K 1s difficult to handle In any case, the algorithm from Theorem 3.2 1s 1n
general too slow.

The following pretty result 1s due to Landau and Mauller [36] It shows that
one can decide 1n polynomial time whether f 1s solvable by radicals over K.

Corollary 3.5. There 1s a good algorithm that grven K and f decides whether
G 15 solvable

As 1 the proof of Corollary 3.3, we may assume that f 1s irreducible. If
there were a bound of the form n%" for the order of a solvable transitive
permutation group of degree n, then we could proceed in the same way as for
abelian groups. However, no such bound exists, since for every integer £ > 0
there 1s a solvable transitive permutation group of degree #n = 2% and order
27! Instead, one uses that the order of a primutive solvable permutation
group of degree n does have an upper bound of the form n%1 (see [54]).
By Galoss theory, the Galois group G of f 1s primitive if and only if there
are no nontrivial intermediate fields between K and K(a), where f(a) =0.
To reduce the general case to this situation, 1t suffices to find a chain of fields
K=KyCc K, c CK,=K(a) that cannot be refined, since G is solvable 1f
and only if for each 1 the Galois closure of K, C K,,; has a solvable Galois
group. Such a chain can be found inductively if one can, among all intermediate
fields K ¢ L ¢ K(a) with L # K(a), find a maximal one. This 1s done as
follows. Factor the polynomial f mnto monic irreducible factors over K(a).
One of the factors 1s X — a For each other wrreducible factor g we define
a subfield L, # K(a) containing K as follows. If g 1s hinear, g = X - 88,
then K(a) bas a umque K-automorphism ¢ with oo = f, and we let L, be
the field of mvanants of o. If g 1s nonlinear, then let f be a zero of g 1n
an extension field of K(o), and L, = K(a) N K(f). I claxm that all maximal
subfields are among the L, so that we can find a maximal subfield by choosing
a field L, with the largest degree over K . The correctness of the claim follows
by Galois theory from the following purely gioup theoretic statement. Let G
be a finite gioup, H C J C G subgroups with H # J, and assume that there 15
nosubgroup 7 of G with HclIcJ, H#1#J,thenthereexists 0 € G—H
such that

(H,o0)=J 1foHo '=H,
(H,oHo "y =J foHo ' #H
In fact, 1t suffices to choose o0 € J — H

This concludes the sketch of the proof of Corollary 3 5. Note that the algo-
rithm does not determine the group G 1f 1t 1s solvable, even 1f f is irreducible
One does obtain the prime divisors of #G 1f G 1s solvable

Theorem 3 2 suggests that the largest groups are the hardest to determine.
However, the following result, which 1s taken from [34], shows that the very
largest ones can actually be dealt with in polynomial time As above let S,
denote the full symmetric group of degree n, and let A, be the alternating
group of degree n

Theorem 3.6. There is a good algorithm that given K and f decides whether
the Galois group of [ 1s S, and whether or not 1t 1s A,

For this, one may by the above assume that #» > 8 From the classification of
fimite simple groups 1t follows (see [18]) that the only sixfold transitive permu-
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tation groups of degree n are A4, and S,. Hence, if we build up the splitting
field of f over K as in the proof of Theorem 3.2, then & is 4, or S, if and
only if after adjoining six zeroes of f one has obtained an extension of degree
nn—1)(n—2)(n - 3)(n—4)(n - 5). One can distinguish between 4, and
S, by computing the discriminant A, of f—this comes down to evaluating
a determinant, which can be done in polynomial time—and checking whether
X?~—A; hasazeroin K.

In a similar way one can decide in polynomial time whether G is doubly
transitive. If G is doubly transitive, one can determine the isomorphism type
of the unique minimal normal subgroup of G in polynomial time, a result that
is due to Kantor [31]. If one attempts to determine G itself, one runs into the
following problem, which was suggested by Kantor.

Problem 3.7. Is there a polynomial time algorithm that given K and f as in
Problem 3.1 and a prime number p decides whether G has a normal subgroup
of index p?

Even for p = 2 this appears 1o be difficult.

Resolvent polynomials, such as X?— A, in the proof of Theorem 3.6, play a
much more important role in practical algorithms for determining Galois groups
than in known complexity results (see [69, 26]).

Problem 3.8. Is there a way to exploit resolvent polynomials to obtain complex-
ity results for varying n?

The results that we have treated so far are more algebraic than arithmetic in
nature, the only exception being what we said about Problem 3.4. It should be
possible to formulate and prove similar results for other sufficiently explicitly
given fields over which polynomials in one variable can be factored efficiently.
We now turn to techniques that do exploit the arithmetic of the field. The
natural way to do this is to first consider the case of finite and local base fields.

Let E be a finite field, f € E[X] a nonzero polynomial, and # its degree. As
we mentioned in 2.8, there is a good algorithm that, given £ and f, determines
the factorization type of f in E[X}. This immediately gives rise to the Galois
group G, which is cyclic of order equal to the least common multiple of the
degrees of the irreducible factors of f. One also obtains the cycle pattern of
a permutation that generates G as a permutation group. Note that already in
the case of finite fields the order of G may, for reducible f, be so large that
the elements of ¢ cannot be listed one by one in polynomial time.

We next discuss local fields.

Problem 3.9. Given a local field F and a polynomial f € F[X] with a nonzero
discriminant, determine the Galois group G of f over F. What is the com-
plexity of this problem? Is there a good algorithm for it?

I am not aware of any published work that has been done on Problem 3.9,
and I will only make a few brief remarks, restricting myself to the case that F is
non-archimedean. Once a satisfactory theory of factoring polynomials has been
developed (see 2.11), one can prove an analogue of Theorem 3.2. This does not
yet solve the problem, since even when [ is irreducible the Galois group may
have a very large order. Tamely ramified extensions are small, however, which
suggests that the following problem should be doable.
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Problem 3.10. Given F and f as in Problem 3.9, with F non-archimedean,
decide whether a splitting field of f over F is tamely ramified, and if so
determine 1ts Galois group over F . Can this be done in polynomial time?

When this problem is solved, one is left with wildly ramified extensions,
which occur only if p is small. In that case, one may first want to consider the
following problem, which looks harder than Problem 3.10.

Problem 3.11. Given F and f as in Problem 3.9, with F non-archimedean,
determine the Galois group of the maximal tamely ramified subextension M
of a splitting field of f over F . Can this be done in polynomial time?

If f isirreducible of degree n, then the field M in Problem 3.11 has degree
at most n* over F. This follows from a group-theoretic argument that was
shown to me by I. M. Isaacs.

Even when all local problems are completely solved it is not clear whether
they are very helpful in solving Problem 3.1. There is a well-known heuristic
technique that can be used to obtain information about the Galois group, which
comes down to first considering the local Galois group at primes that do not
divide the discriminant of f (see [73, §1]). Not much can be proved about
this method, however (cf. [34, §4]). G. Cornell has suggested to look instead at
the ramifying primes, the rationale being that Problem 3.1 should be reducible
to the case K = , in which case the Galois group is generated by the inertia
groups.

4. RINGS OF INTEGERS
In this section we consider the following problem and its complexity.

Problem 4.1. Given an algebraic number field X, determine its ring of integers
.

Constructing an order in K as in 2.10 we see that this problem is equivalent
to the following one.

Problem 4.2. Given an order A4 in a number field K, determine the ring of
integers @ of K.

Much of the literature on this problem assumes that the given order is an
equation order Z[o], and it is true that equation orders offer a few advantages
in the initial stages of several algorithms. It may be that in many practical
circumstances one never gets beyond these initial stages (cf. [8, Preface]), but
in the worst case—which is what we are concerned with when we estimate the
complexity of a problem-—these advantages quickly disappear as the algorithm
proceeds. For this reason we make no special assumptions about 4 except that
it is an order.

Most of what we have to say about Problem 4.2 also applies to the following
more general problem.

Problem 4.3. Given a commutative ring 4 of which the additive group is iso-
morphic to Z" for some n, and that has a nonvanishing discriminant over Z,
determine the maximal order in 4 ®z Q.

It is not difficult to show that Problems 4.2 and 4.3 are equivalent under
deterministic polynomial time reductions.
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The main result on Problem 4.1, which is due to Chistov [22, 14], is a negative
one.

Theorem 4.4. Under deterministic polynomial time reductions, Problem 4.1 is
equivalent to the problem of finding the largest square factor of a given positive
integer.

The problem of finding the largest square factor of a given positive integer m
is easily reduced to Problem 4.1 by considering the number field K = Q(v/m).
For the opposite reduction, which in computer science language is a “Turing”
reduction, we refer to the discussion following Theorem 4.6 below.

Since there is no known algorithm for finding the largest square factor of
a given integer m that is significantly faster than factoring m (see [43, §2]),
Theorem 4.4 shows that Problem 4.1 is currently intractable. More seriously,
even if someone gives us ¢ , we are not able to recognize it in polynomial time,
even if probabilistic algorithms are allowed. Deciding whether the given order
A in Problem 4.2 equals & is currently an infeasible problem, just as deciding
whether a given positive integer is squarefree is infeasible. This is not just true
in theory, it is also true in practice.

One possible conclusion is that & is not an object that one should want to
work with in algorithms. It may very well be that whenever & is needed one
can just as well work with an order A in K, and assume that 4 equals @ until
evidence to the contrary is obtained. This may happen, for example, when a
certain nonzero ideal of 4 is found not to be invertible; in that case one can,
in polynomial time, construct an order 4’ in K that strictly contains 4 and
proceed with A’ instead of A.

If it indeed turns out to be wise to avoid working with ¢ , then it is desirable
that more attention be given to general orders, both algorithmically and theo-
retically (cf. [59]). This is precisely what has happened in the case of quadratic
fields (cf. [45, 49, 28]).

The order 4 equals @ if and only if all of its nonzero prime ideals p
are nonsingular; here we call p nonsingular if the local ring 4, is a discrete
valuation ring, which is equivalent to dim/, p /p?> = 1. One may wonder, if it
is intractable to find ¢, can one at least find an order in K containing 4 of
which the singularities are bounded in some manner? One result of this sort is
given below in Theorem 4.7; it implies that given A4, one can find an order B
in K containing 4 such that all singularities p of B are plane singularities,
ie., satisfy dimg;, p/p? = 2.

The geometric terminology just used should remind us of a situation in which
there does exist a good method for finding the largest square factor, namely, if
we are dealing with polynomials in one variable over a field. Thus, Theorem 4.4
suggests that, for a finite field F, finding the integral closure of the polynomial
ring E[{] in a given finite extension of E(¢) is a tractable problem, and results
of this nature have indeed been obtained (see [22]). In geometric language, this
means that it is feasible to resolve the singularities of a given irreducible alge-
braic curve over a given finite field. The corresponding problem over fields of
characteristic zero has been considered as well (see [71]), and one may wonder
whether the geometric techniques that have been proposed can also be used in
the context of Problem 4.2. In any case, we can formulate Problem 4.2 geo-
metrically by asking for the resolution of the singularities of a given irreducible
arithmetic curve.
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For many purposes, resolving singularities 1s a local problem, but as we see
from Theorem 4 4 that 1s not quite the case in the context of algorithms It may
be that one only needs to look locally at those prime 1deals p of 4 for which
dim ), p /p* > 1, but how does one find those prime ideals? And likewise, 1f
A =2 Z[X1/fZ]X] 1s an equation order, then, as all textbooks point out, one
only needs to look locally at those prime numbers p for which p? drvides the
discriminant of f, but how does one find those prime numbers? By contrast,
once one knows at which p or p to look, the problem does admit a solution
To formulate it we introduce some notation

Let 4 be an order in a number field K of degree n Let further C be a
subring of A4, for us, the most interesting cases are C = 4 and C = Z For
any nonzero prime 1deal p of C we define

AP = {B e y™B C A for some m € Z},

this 1s the “ p-primary part” of @ when viewed modulo 4 It 1s not difficult to
show that A® 1san orderin K and that 1t 1s the smallest order in K containing
A with the property that all its prime ideals containing p are nonsingular In
addition, one has an 1somorphism &/4 = @, A® /4 of C-modules, with p

ranging over the set of nonzero prime 1deals of C, and A® = A4 for all but
finitely many p Thus, to determine ¢, 1t suffices to determune all 4% For a
single p, we have the following result

Theorem 4.5. There 1s a good algorithm that given K, A, C, p as above,
determines AW

This 1s proved by analyzing an algorithm of Zassenhaus [77, 78] We briefly
sketch the main 1dea Let us first consider the case C = Z Denote by p the
prime number for which p = pZ, and write AP) = A®)

One needs a criterion for A to be equal to A?”)  The multiplier ring R, of
a nonzero A-ideal a 1s defined by

Ra:{ﬂEK ﬂaca}’

this 1s an order in K containing 4 By g we shall denote a typical prime 1deal
of A4 that contains p, and we let v be the product of all such g By standard
commutative algebra, 4 equals A® 1f and only if all q are invertible, and g
1s invertible if and only if R, = A4 Also, each R, 1s contained in R., so that
we can decide whether or not A equals A”) by looking at R, More precisely,
if R, = A then A = AP | and if R, properly contains A then so does A®),
since clearly R, ¢ AP)

I claim that to turn the above considerations mto an algorithm 1t suffices to
have a way of determining r Namely, suppose that v is known Then one
can determine R, by doing linear algebra over ¥, , using that pR./pA4 1s the
kernel of the F,-linear map A/pA — End(t/pr) that sends each x € 4/pA
to the multiphication-by-x map If this map 1s found to be injective, then
R. = A, and the algonithm terminates with A% = 4 If 1t 1s not injective, then
R, strictly contains 4 In that case one replaces 4 by R, and starts all over
again Note that the number of iterations 1s bounded by (log|A,|)/(21logp),
where A, denotes the discrimunant of A4
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It remains to find an algorithm for determining t. Since the i1deals g are
pairwise coprime, v is their intersection, so t/pA 1s the set of nilpotents of the
finite ring 4/pA 1t can, again by linear algebra, be found as the kernel of the
F,-linear map A/pA — A/pA that sends each x € A/pA to xP' here t 1s the
least positive integer for which p! > n.

This concludes the sketch of the algorithm underlying Theorem 4.5 for C =
Z For general C, one can erther modify the above, or first determine A®) for
p = char C/p and then find A®) 1nside A®) .

The above algorithm gives, with a few modifications, also something if p 15
not supposed to be prime This 1s expressed 1n the following theorem, which 1s
taken from [14].

Theorem 4.6. There i1s a good algorithm that given K and A as above, as well
as an integer q > 1, determines an order B in K that contains A®) for each
prime number p that divides q exactly once

To prove this, one first observes that 1t suffices to exhibit a good algorithm
that given K, A and ¢ either finds B as in the statement of the theorem, or
finds a nontrivial factorization ¢ = ¢4, . Namely, 1n the latier case one can
proceed recursively with ¢g; and ¢, to find orders By, B;, and one lets B be
the ring generated by By and B;.

To find B or g,, gq,, one applies the algorithm outhined above, with a few
changes. The first change 1s that one starts by checking that ¢ 1s not divisible
by any prime number p < n;1f 1t 1s, then either one finds a nontrivial splitting
of g, or ¢ 1s a small prime number and one can apply the earlier algorithm,
So let 1t now be assumed that ¢ has no prime factors p < n, and that g > 1.
The second change 1s that one replaces, in the above algorithm, p and F,
everywhere by ¢ and Z/qZ . This affects the linear algebra routines, which are
only designed to work for vector spaces over fields. However, as we indicated in
2.4, they work just as well for modules over a ring Z/gZ, until some division
mn Z/qZ fails, in which case one obtains a nontrivial factor g; of ¢. The
third change 1s that t/gZ should now be calculated as the “radical of the trace
form,” re., as the kernel of the Z/gZ-linear map A/q4 — Hom(A/qA, Z/qZ)
that sends x to the map sending y to Tr(xy), where Tr: 4/q4 — Z/qZ 1s
the trace map. If ¢ 1s a prime number exceeding » then this 1s the same v as
above.

One can show that the modified algorithm has the desired properties, see
[14]. This concludes our sketch of the proof of Theorem 4.6.

Using Theorem 4.6 we can complete the proof of Theorem 4.4. Namely,
suppose that one has an algorithm that determuines the largest square divisor of
any given positive integer Calling this algorithm a few times, one can determine
the largest squarefree number g for which g2 divides the discriminant of 4.
Applying the algorithm of Theorem 4.6 to ¢ one obtains an order B that
contains AP for each prime p for which p? drvides the discriminant of A,
so that B = ¢ .

We now formulate a result that also gives information about the local struc-
ture of B at primes p for which p? divides ¢. Let 4 be an order in a number
field K, and let g be a positive integer. We call A4 nonsingular at ¢ if each
prime 1deal of 4 containing ¢ 1s nonsingular We call 4 tame at g 1f for each
prime 1deal p of 4 containing g there exist an unramified extension R of the
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ring Z, of p-adic integers, where p = char4/p, a positive mteger ¢ that 1s
not divisible by p, and a unit u € R*, such that there 1s an 1somorphism

lim A/p™ & RIX1/(X® ~ ug)R[X]

of Z,-algebras As a partial justification of the terminology, we remark that
for prime ¢ the order 4 1s tame at ¢ if and only if each prime 1deal p of
A contamning ¢ 1s nonsingular and tamely ramified over ¢, this follows from
a well-known structure theorem for tamely ramified extensions of Z, (see [75,
§3-4]) If A 1s tame at ¢ and p 1s a prime 1deal of 4 contaimng ¢, then p
1s nonsingular if and only if either p = char 4/p divides g exactly once or the
number ¢ above equals 1, and otherwise p 1s a planc singularity

Theorem 4.7. There 15 a good algorithm that, given an order A 1n a number
field K of degree n, finds an order B 1n K contaimung A and a sequence of
pairwise coprime divisors q,, 1 <1 <t, of the discriminant of B, such that

(1) Bustameat q=1[,_,d,
(1) all prime numbers dividing q exceed n
(1) B 15 nonsingular at all prime numbers p that do not divide g

This follows from a closer analysis of the algorithm of Theorem 4 6 Using
this theorem and the properties of tameness, one can deduce the following result,
which expresses that one can approximate ¢ as closely as can be expected on
the basis of Theorem 4 4

Theorem 4.8. There 15 a good algorithm that, given an order A 1n a number
field K, finds an order B in K containing A and a positive integer q dividing
the discrimunant of B such that B = & if and only if q 15 squarefree, and such
that the primes dividing [@ B are exactly those that appear at least twice in
q Moreover, there 1s a good algorithm that given this B and a nontrivial square
dividing q finds an order 1n K that strictly contains B

Next we discuss an algorithm that does a little more than the algorithm of
Theorem 4 5 Namely, 1n addition to finding A% | 1t also finds all prime 1deals
of A" contaiming p It depends—not surprisingly, 1f one considers the case
of an equation order Z{a]-—on an algorithm for factoring polynomuals 1 one
variable over a finite field, see 2 8 Due to this ingredient 1t 1s not a determunistic
polynomial time algorithm any more, and 1t has no extension as Theorem 4 6
that works for nonprimes

Theorem 4.9. There 1s a probabilistic algorithm that runs in expected polyno-
mual time, and there 1s a deterministic algorithm that runs 11 \/char C'/p times
polynomtal time, that given K, A, C, p as in Theorem 4 5, determine

(1) all prime 1deals of A containing p,
(11) the order AW,
(1) all prime ideals of A¥) containing p

One can do part (1) by analyzing the structure of the fimite ring A/pA, as
the reader may check, below we give a different argument Once one has (1),
one can do (11) by Theorem 4 5 and (u1) by applymng (1) to A®)  We sketch an
alternative way to proceed, i which one constructs A% and the prime 1deals
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simultaneously without appealing to Theorem 4.5 Let 1t first be assumed that
C=4.

The algorithm works with a list of pairs B, g for which B 1s an order in K
with 4 C B ¢ A% and q 1s a prime 1deal of B containing p Initially, there
1s only one pair on the hist, namely, 4, p The purpose of the algorithm i1s to
achieve that ¢ s nonsingular as a prime 1deal of B, for each pair B, g on
the list If that happens, then A® 1s the sum of all B’s, and, as it turns out,
the 1deals qA®) are pairwise distinct and are precisely all prime 1deals of 4®)
contaimning p.

The algorithm deals with a given pair B, g in the following manner. First
one determines, by means of linear algebra over the finite field B/q, an element
y € K with y ¢ B, yq C B; such an element exists, see {75, Lemma 4-4-3]
Next, one considers yq. If yq ¢ q, then g 1s nonsingular, and the pair B, q 1s
left alone. Suppose now that yq < q. Then B|y] 1s an order in K 1n which q
1s an 1deal, and using linear algebra one determines the minimal polynomal g
of (y mod q) over the field B/q. This polynomial 1s factored into irreducible
factors over B/q. For each wrreducible factor (2 mod q) of g, one now adds
the pair B[y], q+ A(y)B[y] to the list, and one removes B, q.

The above 1s repeated until all pairs are nonsingular

If C # A, then one replaces the pair C, p by A" = C +pA, pA4; note that
pA 1s a prime 1deal of 4’ with 4'/pA = C/p. Applying the above with 4’ in
the role of 4 one finds the order 4’® and all of its prime 1deals containing
p. One easily shows that 4® = 4'®)  and intersecting the prime 1deals just
mentioned with 4 one finds (1). This concludes the sketch of the proof of
Theorem 4.9

We note that the above algorithm also gives a convenient way of evaluating
the valuations corresponding to the prime ideals containing p. Namely, for
each nonsingular pair B, q the corresponding valuation v 1s given by

v(B) = max{m € Z>o: y"p € B}

for B € B, B # 0, where y 1s as constiucted in the algorithm. Since each
element of K can be written as a quotient of elements of B this allows us to
compute v(f) foreach g€ K.

It 1s well known that the p-adrc valuations of a number field K = Q(a)
correspond byectively to the wrreducible factors of f over Q,, where f 1s
the wrreducible polynomial of « cover ¢ Thus Theorem 4.9 suggests that
factoring polynomials in one variable over , to a given precision can be done
by a probabilistic algorithm that runs mn expected polynomial time and by a
determimistic algorithm that runs mm /P times polynomial time A result of
this nature 1s given 1n [14], see also [21], where a more direct approach 15 taken.

We close this section with a problem that 1s geometrically inspired.

Problem 4.10. If all singularities of A4 are plane singularities, can the algorithm
of Theorem 4 9 be arranged in such a way that the same applies to all rings B
that are encountered?

It may be of interest to see whether the methods that have been proposed
for the resolution of plane curve singularities [11, 71} shed any light on this
problem. One may also wish to ivestigate the algorithm of Theorem 4 6 from
the same perspective.
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An affirmative answer to Problem 4.10 may improve the performance of the
algorithm. This is because the hypothesis on A4 is often satisfied, for example,
if A4 is an equation order or a “generalized” equation order as in 2.10; and
finding y in the algorithm of Theorem 4.9 may become easier if g is at worst
a plane singularity, so that it can be generated by two elements.

5. CLASS GROUPS AND UNITS
In this section we discuss the following problem and its complexity.

Problem 5.1. Given an algebraic number field K, with ring of integers &,
determine the unit group @* and the class group Cl#Z of @ .

First we make a few remarks on the statement of the problem. In the previous
section we saw that, given K, the ring & may be very hard to determine and
that consequently we may have to work with subrings 4 of & that, for all we
know, may be different from ¢ . Thus, it would have been natural to formulate
the problem for any order 4 in K rather than just for & . We have not
done so, for several reasons. The first is that only very little work has been
done for general orders in fields of degree greater than 2. The second is that
most difficulties appear already in the case 4 == @ and that some additional
complications are avoided. Finally, it is to be noted that all algorithms for
calculating unit groups and class groups that have been proposed are so time-
consuming that the effort required in determining ¢ appears to be negligible
in comparison; and it may very well be that the best way of calculating the unit
group and class group of a general order 4 proceeds by first determining & ,
next calculating &* and Cl&, and finally going back to 4.

We shall denote by n and A the degree and the discriminant of K over Q.
It will be assumed that & is given by means of a multiplication table of length
(2+10g|A|)PM) , as in 2.10. We shall bound the running times of the algorithms
in terms of |A].

The next question to be discussed is how we wish #* and Cl& to be speci-
fied. As an abstract group, we have @* = (Z/wZ) ® Z'+~! , where w denotes
the number of roots of unity in K and r, s denote the number of real and
complex archimedean places of K, respectively. Determining &* means spec-
ifying the images of the standard generators of (Z/wZ) ® Z'**~! under an
isomorphism to @*; and we also like to be provided with an algorithm that
calculates the inverse isomorphism. Using the logarithms at the infinite places
(see [37, Chapter V, §1]) and basis reduction (see 2.6) one can prove that both
these things can be achieved if we have a set of generators for #*. However,
just writing down a set of generators for &* may be very time-consuming. Sup-
pose, for example, that K is real quadratic, i.e., n =2 and A > 0. Then &*
is generated by —1 and a single unit ¢ of infinite order. It is easy to see that
the total number of digits of the coeflicients of ¢ on the given basis of @ over
Z equals R(logA)?V) | where R denotes the regulator of K ; see [37, Chapter
V, §1] for the definition of the regulator. It is reasonable to conjecture that, for
an infinite sequence of real quadratic fields, R is as large as A!/2+o(1) _ Hence
we cannot expect to be able to write down ¢, let alone calculate it, in time
significantly less than A'/?. If we are interested in more efficient algorithms,
then units must be represented in a different way, for example as a product
[17%0) of elements y € K* with integer exponents k(y) that may be very large
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in absolute value. This leads to the question whether there exists a system of
generating units that one can express in this way using substantially fewer than
|A|1/2 bits. Also, the following problem is suggested.

Problem 5.2. Given a number field K, finitely many elements y € K*, and, for
each y, an integer k(y) € Z, decide whether ¢ = [T, y*®) is a unit, i.e., belongs
to @*, and whether it equals 1. If it is a unit, then determine its residue class
modulo a given ideal and calculate, for a given embedding o: K — C, the
logarithm of o¢ to a given precision.

It may be expected that the first of these—recognizing units—can be done
by means of a good algorithm, even when & is not given, by means of factor
refinement (cf. [7]). Good results on the other problems can probably be ob-
tained with diophantine approximation techniques, such as basis reduction (see
2.6). The same applies to the following more general problem.

Problem 5.3. Given a number field K and a finite set I" of elements y € K*,
find sets of generators for the subgroups

{(k(y))yer ez [[/" = 1} : {(k(y))yer e 7 [[ 70 @*}

yel yerl’

of ZI' and calculate the regulator of the group of all units of the form J], . pk()
k(y) € Z, to a given precision.

Problems of this nature arise in several contexts: in an algorithm for factoring
integers [44, 17], in the discrete logarithm problem [27, 60], as we shall see
below; in the determination of unit groups and class groups.

Returning to Problem 5.1, we still have to describe how we wish the class
group Cl& to be specified. It is a finite abelian group, so we may first of all
ask for positive integers d;, dy, ..., d, such that there is an isomorphism
@,Z/d,Z = C1& of abelian groups, and secondly for ideals a;, ay, ..., g
such that one such isomorphism sends the standard generators of @, Z/d,Z to
the ideal classes of the a,. Once the class group has been calculated in this
sense, it may remain very difficult to find the inverse isomorphism: given an #-
ideal, to which ideal of the form [], al'"(') is it equivalent? Even testing whether
a given ideal is principal may be very difficult.

The order s = #Cl¢& of the class group is bounded by |A|'/2(n + log|A])"—!
(see Theorem 6.5). The example of imaginary quadratic fields—i.e., n =2 and
A < O—shows that /4 is often as large as |A]'/2(log]A])?) . Hence, if we are
willing to spend time at least of order |A|!/? then we could conceivably list all
ideal classes, and finding the inverse isomorphism might also become doable.

The first thing 1o be discussed about Problem 5.1 is whether it can be done
at all, efficiently or not. This is a question that is strangely overlooked in most
textbooks, two notable exceptions being [9] and [19]. For the class group, one
often finds the theorem that every ideal class contains an integral ideal of norm
at most the Minkowski constant (n!/n”)(4/7)*|A]'/?, where s denotes the num-
ber of complex places of K. However, this does not show that the class group
is effectively computable if no effective procedure for deciding equivalence of
ideals is supplicd.

We shall prove a theorem from which the effective computability of &* and
Cl@ is clear. We begin by introducing some notation. Let K be a number field
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of degree n and discriminant A over Q A place p of K 1s an equivalence
class of nontrivial absolute values of X The set of archimedean places of K
1s denoted by S.. For p ¢ S, the norm 9p of p 1s the cardinality of
the residue class field at p  For each place p, let ||, K — Ry( denote the
unique absolute value belonging to p with the property that 2], = 2 1if p 1s
real, 2], = 4 if p 1s complex, and |K*|, = (Mp)? 1f p 1s non-archimedean
The height H(x) of an element x € K 1s defined by H(x) =[], max{1, |x[,},
the product extending over all places p of K For any set S of places of X
with So, € § we let Ks denote the group of S-units, 1 e, the subgroup of K*
consisting of those x € K* that satisfy |x|, = 1 for all places p of K with
p ¢ S, 1n particular, we have Ks_ = @* 1f @ denotes the ring of integers of
K

Theorem 5.4. Let K be an algebraic number field, A its discriminant over Q,
and s the number of complex places of K Let d = (2/r)*|A|V/?, and S =
SeoU{p p 15a finite place of K with Mp < d} Then the group K s generated
by the set of those x € Kg for which 11(x) < d?, and the ideal class group of
the ring of integers of K 1s generated by the 1deal classes of the finite primes in
S

The proof of this theorem 1s given 1n §6

Remark The example of real quadratic fields shows that 1t 1s not reasonable to
expect that the group Kg_ = @* 1s generated by elements x for which H(x)
1s substantially smaller than e? The group K in Theorem 5 4 1s generally
much larger than @*, but 1t 1s generated by elements that are much smaller

The relevance of Theorem 5 4 for the effective determination of #* and
Cl@ comes from the exact sequence

00 5Ky — 255 5 Cl@ — 0

The middie arrow sends an element x € Kg to the vector (ord, x)pes—s,.
where ord, x 1s the number of factors p m x, so [x|, = Np~°%* The map
Z57 5= — (1@ sends (m(p)), to the ideal class of [] p™® The exactness at
Cl@ follows from the last assertion of Theorem 5 4, the exactness at the other
places 1s clear

To calculate @* and Cl# from the sequence, onc starts by calculating the
set of generators of K¢ given by Theorem 54 It 1s well known that there are
only finitely many elements of bounded height in K (see [64, Chapter 2]), and
from the proof of this result 1t 1s clear that they can be effectively determined
Determining the prime 1deal factorizations of these generators one finds a matrix
that describes the map K — Z°~5=  Applying algorithms for finitely generated
abelian groups (see 2 5) one obtains &* and Cl@ as the kernel and cokernel
of this map

We now turn to complexity results for Problem 51 Most results that have
been obtained concern quadratic fields (see [45, 61, 28]) For general number
fields, virtually all that 1s known can be found 1n [12] (note that, in that paper,
R'2Z* 1 Theorem 2 1s a prinung error for RZ*, and 21/2+¢ 1n Theorem 4
1s a printing error for R'/22¢) The following theorem appecars to be true

Theorem 5.5. Given K and @, one can determine a set of generators of @*
and the structure of C1@ n time at most (2 + log|A|)?™M|AP/4 by means of a
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determunistic algorithm and 1n expected time at most (2 + log|A|)OM A2 by
means of a probabilistic algorithm

In [12] one finds a weaker version of this result, in which n 1s kept fixed The
more precise result should follow by combining [12] with results that appear 1n
[15].

The algorithm underlying Theorem 5 5, for which we 1efer to [12] and the
references given there, 1s not the same as the method for effectively determining
@* and Cl& that we just indicated. However, there does exist a connection
between the two methods Namely, the proof of Theorem 5 4 depends on a
lemma from combinatorial group theory that constructs a set of generators of
a subgroup H of a group G from a set of generators of G 1tself (see Lemma
6 3), whereas the algorithm of Theorem 5 5 constructs generators of the group
@* by letting 1t act on a certain graph, and 1t 1s well known that these two
subjects are closely related (see [63]) It would be of interest to understand
this connection better, and to see whether Theorem 5 5 can be deduced from a
surtable version of Theorem 5.4

The higher exponent 3/4 in Theorem 5.5 in the case of a determimstic
algorithm 1s due to the use of algorithms for factoring polynomials over finite
fields (see 2 8). It suggests the following problem.

Problem 5.6. Can the exponent 3/4 i Theorem 5.5 be replaced by 1/27

For quadratic fields the answer 1s affirmative It 1s likely that the method by
which this 1s shown, which 1s not completely obvious, carries over to general
number fields.

We close this section with an imprecise description of a probabilistic tech-
nique for the solution of Problem 5 1.

Let the notation be as introduced before Theorem 5.4, and let S consist of
the archimedean primes of X and the non-archimedean primes of norm up to
a certamn bound b . One supposes that one has a method of drawing elements of
K that are “random” 1n a certain sense For example, the method might consist
of drawing elements x of K whose ccordinates on the given vector space basis
of K over Q are uniformly distributed over a certain set of rational numbers,
such as the positive integers up to a certain bound, and keeping only those x
that are found to belong to Kj .

To determine the class group and the units, one draws elements of Kg until
one has the feeling that the subgroup H that they generate 1s equal to all of K.
One may get this feeling 1f the number of elements that have been drawn 1s well
over #S, which 1s the minimal number of generators of Ky as an abelian group,
and 1f 1t happened several times 1n succession that a newly drawn element of K
was found to belong to the subgroup generated by the elements drawn earlier, 1f
Problem 5 3 has a satisfactory solution then thrs can be tested Assuming that
H = K one can determune @* and Cl&, as above, as the kernel and cokernel
of the map ¢ H — Z5 S~ that sends x to (ord, X)pes_s .

In general, one does not know that H = K, so that ker¢ and coker¢ can
only be conjectured to be @* and Cl&@ , respectively. One does know that there
1S an exact sequence

0 — ker ¢ — @* — Ks/H — coker¢ — Cl1&@ — (C1&)/Cs — 0,
where Cs 1s the subgroup of Cl&@ generated by the 1deal classes of the finite
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primes 1n .S . The sequence shows that H has finite index in Ky 1f and only if
the conjectured class group coker ¢ 1s finite and the Z-rank of the conjectured
unit group ker¢ mod torsion 1s the same as 1t 1s for the true unit group &*,
namely #S, — 1. If H has infinite index in Ky one should of course continue
drawing elements of K.

The information that one has about the relation between the conjectured
class group coker¢ and the true class group Cl& 1s particularly meagre: one
has a group homomorphism coker¢ — Cl&, but neither its injectivity nor
1ts surjectivity 1s known. It 1s surjective if and only if the ideal classes of
the finite primes 1n S generate the class group, and results of this nature are
known only if the bound & that defines S 1s at least |A|'/? times a constant
depending on n. However, a significant improvement 1s possible if one makes
an unproved assumption. Namely, Bach [6, Theorem 4] showed that if the
generalized Riemann hypothesis holds, then Cl& 1s generated by the ideal
classes of the prime 1deals of norm at most 12(log|A})?. Hence if we assume
the generalized Riemann hypothesis then the map coker¢ — Cl@ 1s surjective

for values of & that are much smaller than |A|'/? . If the map 1s surjective, then
the above exact sequence shows that
(5.7) KR =hR-[Ks: H],

where 4 =#Cl#@ and R = reg@* are the true class number and regulator, and
' = #coker¢ and R’ = regker¢ the conjectured ones, here we assume that H
contains all roots of umity in K, which can easily be accomplished [56, §5.4].
Now suppose that we are able to estimate AR up to a factor 2, 1e., that we
can compute a number a with a/2 < AR < a; if one assumes the generalized
Riemann hypothesis this can probably be done by means of a good algorithm,
as i [16]. Then we see from (5.7) that A’R’ also satisfies a/2 < W'R' < a
if and only if H = Ky, and if and only 1f one has both ker¢ = #* and
coker¢ = Cl@ .

The above indicates that on the assumption of the generalized Riemann hy-
pothesis 1t may be possible to find a much faster probabilistic algorithm for
determining @* and Cl# than the algonthm of Theorem 5.5. This leads to
the following problem

Problem 5.8. Assuming the truth of the generalized Riemann hypothesis, find a
probabilistic algorithm for Problem 5 1 that, for fixed n, runs in expected time

exp(O((log]Al)l/z(loglog IAI)I/Z)) :
the O-constant depending on n.

Of course, one also wants to know how the running time depends on »n, and
which value can be taken for the O-constant. For imaginary quadratic fields
Problem 5 8 has been solved [28] For a partial solution in the general case, see
{13}

6 EXPLICIT BOUNDS

In the present section we prove a few explicit bounds on umits and class
numbers of algebraic number fields, including Theorem 5.4. Several proofs i
this section are most naturally formulated 1n terms of 1deles, as in [20, Chapter
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IT]. To stress the elementary character of the arguments I have chosen to use
more classical language.

We denote by K an algebraic number field of degree n and discriminant A
over Q, and by r and s the number of real and complex places of K, respec-
tively. We embed K 1mn Kr = K ®p R, which, as an R-algebra, 1s 1somorphic
to R" x C°. We choose such an 1somorphism, so that each element a € Ky
has r + s coordinates q,, of which the first » are real and the last s complex.
Weput n, =1 for 1 <1 <rand n,=2 for r+1 <1 <r+s. The norm
N: Kg — R 1s defined by Na = [[/1] |a,|™ .

Identifying each copy of C with R? by mapping x +yi to (x +y, x — y)
we obtain an identification of Kr with the n-dimensional Euclidean space R".
It 1s well known that this identification makes the ring of integers @ of K to
a lattice of determinant |A|'/2 in Ky, and more generally every fractional &-
ideal a mnto a lattice of determinant MNa - [A|!/2, where 91 denotes the 1deal
norm. We shall write

d = (2/n)|Al"2.

Let S be a set of places of X with S, C §. By Ig we denote the group of
fractional @-ideals generated by the finite primes 1n S, and by K, as in §5,
the group {a € K*: @a € Is}. Denote by 15: Ks — Ki x Is the embedding
defined by i5a = (a,Fa). We give K} x Is the product topology, where I
1s discrete. For any compact set B C Kj x Is the set BN isKg consists of
elements of bounded height and 1s therefore finite Hence 15Kg 1s discrete.
Also, 15Ky 1s clearly contained 1n the subgroup Vs of Kj x Ig consisting of
those pairs (a, a) for which Na =MNa.

Theorem 6.1. Let K be an algebraic number field, and let S be a set of places
of K containing S.., and containing all finite places p with Mp <d, with d as
above Let Vs be as above, and denote by Fs the set of all elements (b, b) € Vs
for which b C @, mb <d, and |b) <d'/" for 1 <1 <r+s Then Fs 1sa
compact subset of Vs and Vg = Fs - 15K

Proof The compactness of Fg follows easily from the definition of Fg and the
fact that Vs 1s closed in Kg x Is. To prove the last assertion, let (a, a) € Vs.
Then a-a~! 1s a lattice of determinant Na - |A|Y2-Ma~! = |A|'Y? 1n Kg. By
Mmkowsk1’s lattice point theorem there exists a nonzero element b € aa~! with
all |b,| < d'". From @b C aa~! 1t follows that @b = aa~'b for some integral
@-deal b Comparing determnants we see that Nb = 9b, so b < d. This
implies that b € I, so we have (b, b) € Fg. If we write b = ac then ¢ 1sa
nonzero element of a~!, so ¢ € K*. Since we also have @c¢ = a~'b € Iy, we
even have ¢ € Kg, so (a, a) = (b, b) - 1sc~!. This proves Theorem 6.1

It follows from Theorem 6 1 that Vs/isKs 1s compact, if S 1s as in the
theorem This allows one to deduce the Dirichlet unit theorem and the fimiteness
of the class number. Namely, take for S the set of all places of K. From the
exact sequence 0 — Vg — Vs — Is — O one obtains an exact sequence

00—V Jis G — Vs/isKg — Cl& — 0,

where @* and Cl& are as in §5 The map to Cl& 1s continuous 1f the latter
1s given the discrete topology Thus the compactness of Vs /i¢Ks mmplies that
Vs, /1s..@* 1s compact, which 1s essentially a restatement of the Dirichlet unit
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theorem, and that Cl1# s finite In the same way one proves that Vs/isKs
1s compact for every set S of primes containing S, , not just for those from
Theorem 6 1
From the exact sequence and Theorem 6.1 we see that every element of Cl&

1s the 1deal class of an integral 1deal b of norm at most 4 This implies the
last assertion of Theorem 5.4. It also follows that 4 > 1. The other assertion
of Theorem 5.4 1s a special case of the following theorem, i which the height
H 1s as defined 1 §5

rts

H(a) =& +@a)”" - [[max{1, |a[}".

1=}
Theorem 6.2. Let K, S be as in Theorem 6.1, with S finite Write mg =
max{Np" pe S-S} if S# S and mg =1 1f S=S. Then the group K
1s generated by the set of those a € Ky satisfying H(a) < dms and also by the
set of those a € @ N\ Ky sansfying H(a) < d*mg

For the proof we need a lemma from combinatorial group theory, as well as
a topological analogue

Lemma 6.3. Let G be a group, P a set of generators for G, and H a subgroup
of G Let F be asubset of G such that G =FH Then H 1s generated by its
intersection with F7'PF ={x"'yz x,ze F,yeP}

Proof. Replacing P by PUP~! we may assume that P = P~!, and replacing F
by a subset we may assume that the multiplication map F x H — G 18 byjective.
Let J ¢ H be the subgroup generated by HNF~'PF . If ye P, z € F, then
yz =xh forsome x € F, he H,andthen h=x"'yze HnF-'PF cC J.
This proves that PF C FJ,so PFJ C FJ. Hence the nonempty set FJ 1s
stable under left multiplication by P, which by our assumptions on P implies
that FJ =G From J ¢ H and the byectivity of F x H — G we now obtain
J = H . This proves Lemma 6.3.

Lemma 64. Let G be a Hausdorff topological group, and denote by G, the
connected component of the unit element 1 of G Let P C G be a subset
contaiming 1 such that G 15 generated by PU G, Let H C G be a discrete
subgroup, and let F be a compact subset of G such that G =FH Then H 1s
generated by its intersection with F~'PF

Proof The set HN F~'F les in the discrete subgroup I, so (G- H)U(HN
F~'F) 1s open, and 1t contains the compact set F~'F Hence 1t contains
F~'UF for some open neighborhood U of 1 Intersecting with H we see
that HNF~'F = HNF~'UF The subgroup of G generated by U 1s open,
so 1t contains (. Therefore G 15 generated by PUU Applying Lemma 6 3
we find that H 1s generated by

Hn(F Y PUUF)=HNF 'PFYUHNFIUF)

=(HNFI'PEYUIINF'Fy=(HnF-'PF),
wheze n the last step we use that 1 € P This proves Lemma 6 4.
To prove Theorem 6 2, we apply Lemma 6.4 to
G=Vs, H = 1K, F=Fg,
P={xeVs:x?=13u{(O)/",p) pe S-S5},
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where Fs 1s as in Theorem 6.1 and where (Mp)!/" 1s viewed as an element of
Kg via the natural inclusion R* C K. Using Theorem 6 1 one readily verifies
that the conditions of Lemma 6 4 are satisfied. Hence K 1s generated by the
set of those elements a € Ks for which there exist (b, b), (¢,«) € Fs, and
(v, 9) € P such that

(@a,@a)=(b,0)"" (v, 9)-(c, 0.

Then @a = b~ lyc, so the denominator 1deal dena of a divides 6 For all
re{l,2,.. ,r+s} we have

bl<d'/m,  yl<ml™ el <di,
S

so for each subset J < {1,2, . ,r+s} wehave

H|C1|n‘ <d™/™  where n/:zn“

eJ el
Hlbl|“n, = mb”‘l . H lbl|nl g Nb 1 'dl—nj/n ,
eJ 1¢J

ial = TLed el v < o' - d - ms.

1€J €eJ

Choosing J = {i: |a,| > |} we obtain

H(a) =9Ydena) - H[a,{”' <Mb-No* ! d-mg=d - ms.
1eJ

This proves the first assertion of Theorem 6 2. To prove the second assertion,
we use Minkowskr’s lattice point theorem to choose a nonzero element b’ € b
with |b]| < (d - 9Mb)!/" for all : Then b'b~! 1s an integral 1deal of norm at
most d,s0 '€ ZNKg Also b'ae @ NKg, and we have

H(b'") = [T max{l, |p/}" <d -9 < d?,

H'a) < Hmax{l , Joryme Hmax{l s laly

§d~mb-9?b“l-d-m3:d2mg.

Since we can write a = (b'a)/b’, this proves the second assertion of Theorem
6.2.

Remark Theorem 6.2 1s also valid if the bound d’ms 1s replaced by
max{d’mg , dmg}, where S’ = Soo U {p: Mp < d} Ths 1s proved by ap-
plying Theorem 6.2 to S’ and choosing a nonzero element of height at most
d-9p 1 each prime pe §— S,

As a further applhication of Theorem 6.1, we deduce upper bounds for the
class number 4 = #Cl& and for the product AR of the class number and the
regulator R = reg@* The upper bound for AR resembles the upper bound
that Siegel [68] proved using properties of the zeta function of K. For similar
upper bounds, sce [58]
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Theorem 6.5. Let K be an algebraic number field of degree n and discriminant
A over Q, and let s denote the number of complex places of K Let d =
(2/7)*|A|V2  Then the class number h and the regulator R of K satisfy
(n—1+logd)"!

(n—1) |
(logd)" " 1=S - (n -1 +1logd)*

(- 1)1

Proof We saw above that every 1deal class contains an integral ideal of norm at
most d, so

h<d-.

hR <d -

h<#{bC@: MNb<d}.
For each positive integer m, the number of &-1deals of norm m 1s at most the

number of vectors x = (x,)"_ | € Z7, satisfymng [, x, = m . One proves this by
considering how rational primes can split in X Thus we obtain

#{bC @ mbgd}g#{xezgo- Hx,gd}.

Replacing each x by the box [T/, (x, — 1, x,] we can estimate the right side
by a volume-

#{XEZQO: Hx, gd} gvol{xeRQO: Hmax{l,x,} gd}.

Wrniting y, = logx, we see that the volume 1s equal to J(n, logd), where
generally for n € Z,o, 6 € R>o we put

J{n,d)= d
(n, ) j{ew >, max{0 yl}séexp(:y>

Thus integral 1s found to be

n—1
J(n,8) =e- 2(”‘1)
1
' n—1\ (-1t o (n— 14 6)"!
=¢ ZO( ) =

Putting § = logd we obtain the mequality for £

For AR, we apply Theorem 6 1 with § equal to the set of all places of K Let
U=#S,~1=n-—1-s, and define the group homomorphism A- Vg — R¥ x [
by A(a, a) = ((n,log|a,|)i,, a) This s a surjective group homomorphism with
a compact kernel, so digKg 1s discrete in R¥ x Is with a compact quotient
From the definition of the regulator one derives that AR cquals the volume of
a fundamental domain for AigKg 1n R¥ x Iy Hence Theorem 6.1 implies that
hR <volAFs For each nonzero -ideal b with 9b < d we have, by an easy
computation,

: N

V()l/'{{(b, b) € Vg' |bll S dl/n fOf all l} — (lOg(du/'mb)) .

Therefore ( ‘
log(d /Mb))
hR< ), T

Mb<d
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where the sum 1s over mtegral @-1deals b. Proceeding as with A one finds that
this 1s bounded above by

u!

5 — % max{0, y,})"
/ exp<§:y1),( Zymax{0, y))"
yER",Z’maX{O,y,}SJ 7

with J = logd . Using that s = n— 1 —u > 0 one finds after some computation
the integral to be

3 aras B0 5 -

This proves Theorem 6.5.

Remark. The upper bound for 4 in Theorem 6.5 1s also valid when d, at both
occurrences, 1s replaced by the Minkowski constant d’ = (n'/n")(4/n)%|A|'/? of
K, since every 1deal class contains an integral ideal of norm at most d’.
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