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BUliard Model of a Ballistic Multiprobe Conductor
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A model for ballistic transport based on classical mechanics of electrons at the Fermi level is shown to
exhibit a variety of magnetoresistance anomalies found experimentally in narrow-channel two-
dimensional electron gases. Among the phenomena considered are quenched and negative Hall resis-
tances, the last Hall plateau, bend resistances, and geometrical resonances.

PACS numbcrs: 73.50Jt, 72.20.My, 73.40.Kp

Resistance measurements in a ballistic narrow channel
in a two-dimensional electron gas show a complex, non-
monotonic dependence on a weak perpendicular magnet-
ic field B. Phenomena which have drawn particular at-
tention are the "quenching of the Hall effect"1"4 (a
suppression of the Hall resistance around zero field), the
"negative Hall resistance,"3 the "last Hall plateau"l~*
(reminiscent of quantum Hall plateaus, but occurring at
much lower B), "bend resistances"5 (associated with
current passing around the corner at a junction), and
"magnetically reduced backscattering"6 (a decrease of
the longitudinal resistance in weak magnetic fields). The
theoretical effort in this field7"10 has focused on models
of quantum-mechanical propagation and scattering, äs in
an electron waveguide, Quantum-mechanical phase
coherence is certainly necessary for some of the fine
structure which appears experimentally only at the
lowest (mK) temperatures, but the phenomena listed
above have a relatively weak temperature dependence
—suggesting a different origin. In this Letter we
demonstrate that a model based on classical junction
scattering, äs in an electron billiard, exhibits all these
phenomena, which can thus be classified äs classical
magneto-size effects in a degenerate electron gas.

Our investigation builds on two recent papers:10'" To
explain the nonadditivity of the contact resistance of two
opposite constrictions, we first pointed out11 that a flared
(hornlike) constriction collimates the beam of injected
electrons, äs a result of the adiabatic invariance of the
product of width and transverse momentum. Baranger
and Stone have proposed10 (on the basis of a quantum-
mechanical calculation of the low-field Hall resistance)
that this collimation causes the quenching of the Hall
effect in a (realistic) cross geometry with rounded
corners, by suppressing the coupling of the current-
carrying channel to the side probes used to measure the
Hall voltage.

We summarize our main results. Our calculations of
the low-field Hall resistance RH show a quenched äs well
äs a negative RH, depending on the geometry and con-
sistent with the experiments of Ford et al.3 in which
different geometries were compared. We find that a
strong suppression of the coupling to the side probes is
not necessary for a drastic reduction of RH below its 2D

value—a relatively weak collimation of the injected
beam to a cone of 90° angular opening being sufficient.
At higher fields a strikingly broad and flat Hall plateau
appears—although the model contains no quantization.
Its origin is the guiding-center drift along the curved
channels walls at the junction. This classical effect
enhances RH to the contact resistance of the lead, which
is approximately independent of B over a wide field
ränge12—hence the plateau. Geometrical resonances
cause oscillations on the Hall plateau, resembling the os-
cillations in the experiments.3'4 Magnetic guiding
reduces backscattering, thereby suppressing the longitu-
dinal resistance RL and the bend resistance RB- As in
the experiments13"15 we find an "overshoot" in RB from
a negative to a positive value before it drops to zero, due
to destruction of collimation before guiding becomes
effective.

We consider the geometry of a long channel with two
intersecting side channels (Fig. l, right inset). An elec-

FIG. 1. Hall resistance for three hard-wall geometries. The
straight line is the 2D result. The three curves are for a
double-cross geometry (right inset), with different rounding of
the corners (left inset; the contours are Segments of the curve
xf+yp — const, with p—2, 4, and 8 for the dotted, solid, and
dashed contours, respectively).
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tron approaching a junction from one of the leads i can
leave through one of the other leads j, with transmission
probability TI—J, or it can return through the same lead,
with reflection probability /?,. If these probabilities are
known (at the Fermi energy EF), then the resistances
follow from the Büttiker formula,16

(A / 2e)Ii — (TV, — /?, )μ, — Σ Τ} — /Af/ , (l)

which relates the current 7, in lead i to the chemical po-
tential μj of the reservoir attached to lead j (far from
the junction). The transmission and reflection probabili-
ties are normalized such that

(2)

with TV, the number of propagating modes in lead i. In
our case all leads are identical, so that 7V,· Ξ 7V for all /.
Note that in the semiclassical limit (including Fermi-
Dirac statistics but no quantization), 7V is assumed large
and continuous. Four-terminal resistances with source i,
drain j, and voltage probes k and / are defined by
Rij,ki = (Vk-Vi)H, where ν^Υι^^-μιΜ is ob-
tained by solving Eq. (1) under the conditions that
/,· — —/,· = /, and Im —0 for m ?*i,j.

To obtain the probabilities Γ,·_7· and Λ, in the semi-
classical limit, we simulate the injection of a large num-
ber (typically l O4) of electrons towards the junction
through lead i, and follow their trajectories to determine
the fractions f/-.,·,/·/ of electrons which leave via lead j,
or return through the same lead i. The required proba-
bilities then follow on normalization, Γ—<7V, R™rN.
The injection distribution is determined by the flux den-
sity injected into the lead by a reservoir in thermal equi-
librium. In a hard-wall lead at 5—0 the electrons are to
be injected uniformly over the channel width W, with ve-
locity magnitude vp=(2mEf-)l/2, and angular distribu-
tion P (a) — y coser, which is the angular distribution of
flux in this case [et in the interval ( — π/2,π/2) being the
angle with the channel axisl. In this case 7V equals
kpW/π (with kp=mvF/h the Fermi wave vector). For
other confining potentials, or for B7*0, the injection dis-
tribution is different, and not easily calculated. We cir-
cumvent this difficulty by attaching to each channel of
the structure a hard-wall lead in which B—O (shaded in
Fig. l, right inset). This has no effect on the resistances
in the semiclassical limit,17 while it permits us to use the
simple injection distribution given above.

We show representative results calculated for three
hard-wall geometries with various roundings of the
corners (left inset in Fig. 1), and for a geometry defined
by a smooth parabolic potential (inset in Fig. 2). The
plots give resistances normalized by Ro=(h/2e2

versus magnetic fields normalized by Bo—
(The width W of the parabolic channel is defined äs the
Separation of the equipotentials at Ep.) Note that
p=R/Ro and ß=B/Bg are the only two independent di-

B/B0
FIG. 2. Low-field Hall resistance for two hard-wall poten-

tials (dashed and dotted curves, corresponding to Fig. 1), and
for a parabolic potential [solid curve; inset: the equipotentials
at EF (thick contour) and 0 (thin contour)—the potential van-
ishes in the diamond-shaped region at the center of the crossl.
The individual data points give an indication of the numerical
noise.

mensionless variables in our problem, so that a single
trace fully represents our results for a given geometry (in
a quantum theory, kpW appears äs a third independent
variable9·10). The results given are for Γ—0, but the
temperature dependence is weak since phase coherence
does not enter into the calculation. A finite temperature
simply induces an average over the energy interval
Δ£-3.5kBT (the width of the derivative of the Fermi
function), which is approximately the average of p over
the interval Δβ-{βΑΕ/ΕΡ. The finest details in our
magnetoresistance plots occur for β ;S l and require a
resolution Δ/J^O.l, so that at temperatures T~Q.\Epl
kß~lO K these features are still resolved. This is in
agreement with experiment. Note that the energy Sepa-
ration of the subbands does not enter in our criterion for
the temperature dependence.

We first discuss the Hall resistance Rn=R 25,31 at
higher fields, shown in Fig. l for the three hard-wall
geometries (the parabolic potential, not shown, gives
similar results). For B ^,B„\i=2Bo the data in Fig. l are
on the straight line RH/Ro"(2/n)B/B0, which is the
classical 2D result. The field ficnt is the field beyond
which a cyclotron orbit with radius lcyc\—mvF/eB can no
longer intersect both opposite channel walls. Experimen-
tal data are in general agreement with this classical
characteristic field7 for the onset of deviations in RH. At
fields below Bcm, Fig. l shows a plateau of enhanced /?//.
This is a prominent feature of experiments in narrow
channels.1"4 Note that on the plateau RH^RQ, in-
dependent of the rounding of the corners. The geometry
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does affect the width of the plateau, which persists down
to lower B for smoother corners. All these aspects agree
with the recent experiments by Ford et al.,3 in which
narrow and widened crosses are compared. Our calcula-
tions show that the "last Hall plateau" has a classical
origin, which is the guiding-center drift along the equi-
potentials of the confining potential in a sufficiently
strong magnetic field B > Bg (see central inset in Fig. 3).
We estimate Bg •

1/Mp/r/ermin, with rmin the minimal ra-
dius of curvature of the corners: When guiding is com-
plete, the probability TI to turn left at the corner of a
cross is maximal, TI fa ./V, while the probabilities to turn
right, Tr, or move straight on, Ts, are both small, äs not-
ed also in Refs. 3 and 4. Equation (l) then teils us that
RHssshl2e2N^Rmnizc\> where Äcontact is the contact
resistance of the lead. Now the crux is that Rcontact ~ RO
is approximately independent of B for B£Bcnt (see, e.g.,
Ref. 12), so that we obtain a classical Hall plateau at
RO, for Bg^B^Bcnt- The oscillations on the plateau
are due to geometrical resonances between /cyci and the
radius of curvature of the corners (see Ref. 18 for a fur-
ther identification)." Similar oscillations occur experi-
mentally.3'4

The behavior of RH around zero field is qualitatively
difFerent depending on the geometry, äs shown in Fig. 2
for the smoothest and least-smooth hard-wall geometries
of Fig. l, and for the smooth parabolic potential. In the
geometry with relatively sharp corners, RH is enhanced
over the 2D result. As discovered by Baranger and
Stone,10 smoothing the corners suppresses RH. Both the
quenched and the negative RH in Fig. 2 have been ob-
served experimentally by Ford et al.,3 in a narrow and
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FIG. 3. Histograms of the angular distribution at B —0 of
electrons injected into the junction, for the three hard-wall
geometries of Fig.l. The cosine distnbution for a rectangular
junction (no collimation) is shown for comparison. The left,
central, and right insets illustrate collimation, guiding, and
scrambling of trajectories, respectively.

widened cross, respectively. The effect of the smooth
corners, for small B <Bg, is to collimate11 the electrons
injected into the junction (see Fig. 3). We propose that
the classical suppression of RH occurs for collimation to
within an injection or acceptance cone of Δα ™90° angu-
lar opening, which is a weaker requirement than the con-
dition of weak coupling to the side probes. (Indeed, for
the quench shown in Fig. 2, T/ and Tr are each more
than 30% of T,.) The point is that for Δα < 90°, trajec-
tories cannot enter a side probe directly, since the injec-
tion or acceptance cones of two mutually perpendicular
channels do not overlap. An electron approaching the
side probe will be reflected (Fig. 3, left inset), and will
then typically undergo multiple reflections in the junc-
tion region (right inset). This scmmbles the trajectory
and tends to equalize 7} and Tr, thus reducing R». We
find that scrambling is not very effective in the smooth
hard-wall geometry considered, since an electron
reflected from one side probe has a relatively large prob-
ability of entering the opposite side probe (this is the
"rebound" mechanism for a negative RH of Ford et
al.3).

The longitudinal resistance RL-R2i,i6, shown in Fig.
4, can also be discussed in terms of guiding and collima-
tion. Guiding eliminates backscattering and hence dras-
tically reduces RL for B^,Bg. The maxima of the oscil-
lations on the Hall plateau (Fig. 1) correspond to com-
plete guiding (Rn *» RO), which is why they line up with
the minima of the oscillations in RL. Before the large
decrease of RL there is a peak, leading to a "camel
back" shape due to the destruction of collimation by a
weak magnetic field (on the order of, but smaller than,
Bg).20 To demonstrate this effect in a more direct way,
we consider the bend resistance5 Rg=R 12,53» which in-
volves the opposite current and voltage contacts l and 3.
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FIG. 4. Longitudinal resistance Ri=Ris,i6 and bend resis-

tance RB=R 12,53 for the three hard-wall geometries of Fig. l
(RL has an offset of 0.25Ä0).
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