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We calculate the fluctuating voltage V() over a conductor diven out of equilibtium by a curient
soutce This 1s the dual of the shot noise problem of cuiient fluctuations /() in a voltage-biased ciicuit
In the single-channel case the distribution of the accumulated phase & = (e//i) [ Vdt 1s the Pascal (ot
binomial waiting-time) distiibution—distinct fiom the binomial distribution of tiansferied charge
Q = [Idt The weak-coupling limit of a Poissonian P(®P) 1s 1eached m the hmit of a ballistic
conductol, while 1n the tunneling limit P(P) has the chi-square foim

DOI 10 1103/PhysRevLett 90 246805

The curient-voltage o1 chaige-phase duality plays a
cential tole 1n the theory of single-election tunneling
thiough tunnel junctions of small capacitance [1] At the
two extiemes one has a voltage-biased junction (in which
the voltage 1s kept fixed by a souice with zero internal
resistance, while the curient fluctuates) and a cuiient-
biased junction (fixed cutient fiom a souice with 1nfinite
inteinal 1esistance, fluctuating voltage) The two curient-
voltage chaiacteristics aie entiely diffeient In the cut-
rent-brased case the Coulomb blockade ntroduces a jump
in the voltage at low cuitent [2], while in the voltage-
biased case the Coulomb blockade 1s 1nopeiative

Quantum mechanically, the duality appeais because
curient / and voltage V aie noncommuting opetatots [3]
This 1s conveniently expressed by the canonical commu-
tator [®, Q] = 1e of the t1ansferted chaige Q = [T 1(r)dt
and accumulated phase ® = (e/h) [T V(t)dr (1n a given
detection time 7) Moments of chaige and phase detei-
mine the measuted cotielators of curtent and voltage,
tespectively [4]

While all moments of Q 1n a voltage-biased conductot
ate known ([5]), the dual pioblem (moments of @ under
cuitent bias) has been studied only for the first two mo-
ments [6,7] In the absence of Coulomb-blockade effects,
the fiist two moments 1n the dual pioblems aie simply
1elated by 1escaling I(f) — V(¢) X G (with G the conduc-
tance) One might suimaise that this linea1 1escaling cai-
11es ovel to higher moments, so that the dual pioblems ate
tirvially 1elated 1n the absence of the Coulomb blockade
Howevel, the iescaling (as detived, for example, in
Ref [8]) follows fiom a Langevin appioach that 1s suspect
for moments higher than the second [9,10]—so that one
might expect a moie complex duality relation

The 1esolution of this issue 1s patticulatly uigent in
view of tecent piroposals to measuie the thiid moment of
shot noise 1n a mesoscopic conductor [9-11] Does 1t
matter 1f the cuicuit 1s voltage biased o1 cutient biased,
o1 can one telate one cucuit to the other by a linear
1escaling? That 1s the question addiessed 1n this Letter

We demonstiate that, quite geneially, the rescaling
bieaks down beyond the second moment We calculate
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all moments of the phase (hence all coiielatois of
the voltage) for the simplest case of a single-channel
conductor (trtansmussion ptobability ') in the zeio-
tempeilatute limit In this case the chaige O = ge fo1
voltage bias Vi = hpy/eT 1s known to have the binomjal
distiibution [5]

P%(Q) = <¢q0 )Fq(l — F)%—q )

We find that the dual distitbution of phase @ = 27 ¢ for
cutient bias Iy = eqq/ 7 18 the Pascal distiibution [12]

— 1
PQ()(¢) = (Z » 1)1‘(10(1 - r)d’_‘lo (2)

(Both g and ¢ aie integeis fo1 integer ¢g and g )

In the mote general case we have found that the dis-
tuibutions of charge and phase ate related 1n a iematkably
simple fashion fo1r g, ¢ — oo

InP,(¢) = InPy(q) + O(1) (3)

[The iemainder O(1) equals In(g/¢) in the zeio-
tempeiatute limit] This manifestation of chaige-phase
duality, valid with loganithmic accuiacy, holds fo1 any
numbet of channels and any model of the conducto:
Befoie piesenting the derivation we give an intuitive
physical 1nte1pietation

The binomtal distiibution (1) for voltage bias has the
nteipretation [5] that elections hit the baiiier with fie-
quency eVy/h and ate nnansmitted independently with
probability I' Fot cuiient bias the tiansmission iate 18
fixed at [y/e Deviations due to the ptobabilistic natute of
the transmission process ate compensated for by an ad-
Justment of the voltage diop ovet the baitier If the tians-
mission tate 1s too low, the voltage V(r) uises so that
elections hit the baitier with higher fiequency The num-
ber of tiansmission attempts (“tr1als’) tn a time 7 1s g1ven
by (e/h) [3V({1)di = ¢ The statistics of the accumulated
phase ¢ 1s theiefoie given by the statistics of the numbet
of tuials needed for I;7/e successful tiansmission events
This stochastic process has the Pascal distiibution (2)
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The statting point of our deirvation 1s a genetalization to time-dependent bias voltage V(7)) = (fi/e)P(z) of an
expiession 1n the literature [5,13] for the generating functional Z[®(1), ¥(¢)] of curient fluctuations
e 1 ~ = 1 X
Z[®, x] = <T exp{ifdz{(b(t) + zx(t)]l(t)}T exp{é]d[[—@(t) + ix(t)jll(t)b 4)
e
[The notation T (T) denotes time ordering of the exponentials in ascending (descending) oider ] Functional derivatives
of the Keldysh action InZ with 1espect to y(£)/e produce cumulant coiielatots of the cuiient operator /(f) to any order

desiied To make the tiansition fiom voltage to cuitent bias we intioduce a second conductor B 1n senies with the
mesoscopic conductor 4 (see Fig 1) The geneirating functional Z,p of curtent fluctuations 1n the cuicuit 1s a (path

integial) convolution of Z, and Zg,

ZA+B[CI): X] = /DqDIDX] ZA[(D]’XIJZB[CD =y, x - X1l

One can understand this expiession as the aveiage ovel
fluctuating phases @, y; at the node of the ciicuit shaied
by both conductots

In genetal the functional dependence of Z,, Zp 1s
rather complicated and nonlocal 1n time, but we have
found an 1nteiesting and tiactable low-fiequency 1egime
The nonlocality may be distegaided foi sufficiently slow
1ealizations of the fluctuating phases In this tegime the
functional Z can be expiessed in tetms of a function S,

nZ[0(0), x(0] = [ SO0, ©)
The path 1ntegial (5) can be taken 1n saddle-point ap-
proximation, with the 1esult

Sarp(®, x) = Sa(@y, x,) + Sp(® - D, x — x,) (D

Here @, and y, stand fo1 the (generally complex) values
of @, and y, at the saddle point (wheie the derivatives
with 1espect to these phases vanish)

The validity of the low-fiequency and saddle-point
approximattons depends on two time scales The fiist
time scale 7 = mun{A/eV, i/kT) (with T the tempeia-
tuze) sets the width of curient pulses associated with the
tiansfer of individual elections The second time scale
Ty = ¢/I sets the spacing of the pulses Let w be the
chaiacteristic fiequency of a paiticular 1ealization of
the fluctuating phase For the low-fiequency approxima-
tion we tequite w7ty << 1 and for the saddle-point ap-
proximation w7, << 1 Both conditions aie satisfied if
fiequencies gieatet than Q, = mun{l/7,1/7,) do not
contiibute to the path integial To provide this cutoff we
assume that |Z(w)| < fi/e* at fiequencies w = Q, The
small high-fiequency impedance acts as a “‘mass tetm”
1n the Keldysh action, suppiessing high-fiequency fluctu-
atrons The low-fiequency impedance can have any value
Since the fiequency dependence of Z(w) 1s typically on
scales much below (,, 1t can be 1eadily accounted for
within the 1ange of validity of our approximations

Equations (6) and (7) aie quite geneial and now we
apply them to the specific citcutt of Fig | We assume that
the mesoscopic conductor A (conductance G) is 1n se1ies
with a macioscopic conductor B with fiequency depen-
dent impedance Z(w) We denote the zero-fiequency limit
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| by Z(0) = Zy = zph/e?* The cucuit 1s dirven by a voltage
source with voltage V, Both the voltage diop V at the
mesoscopic conductor and the cutient / thiough the con-
ductor fluctuate 1n time for fimte Z;, with averages I =
VoG(1 + ZoG)™ ', V = Vy(1 + Z,G)™! Voltage bras coi-
tesponds to Z,G < 1 and cutient bias to ZyG >> 1, with
Iy = Vo/Z, the imposed cuiient
We assume that the tempeiatuie of the entiie ciicuit 18
sufficiently low (k" < eV) to neglect thetmal noise 1ela-
tive to shot noise (See Ref [14] for the effects of a finite
temperatuie of mesoscopic conductor and/o1 series 1m-
pedance ) We also 1estiict outselves to fiequencies below
the 1nveise RC time of the cuicuit, wheie Z(w) =~ Z; The
low-tempeiatuie, low-fiequency Keldysh action of the
extetnal 1mpedance 1s simply Sz(®, x) = ix®/27z,,
while the action §, of the mesoscopic conductor 1s given

by [5]

®
S(® ) = 5 S(x),

S@) =3 Il + (ef - 17,]

n=1

(8)

The T,’s ate the ttansmission eigenvalues, with >, 7T, =
Gh/e* = g the dimensionless conductance

chXl ~~ m
B]
L. 2o
NG
v

FIG 1 Mesoscopic conductor (shaded) 1n a circuit contain-
ing a voltage soutce V; and series impedance Z(w) Both the
curtent / thiough the ciicurt and the voltage diop V over the
conductor may fluctuate in ime The dual problems contiasted
heie are voltage bias (Z — 0, fixed V = V,, fluctuating I) and
cutient bias (Z — oo, fixed I = V,/Z, fluctuating V) The
phases ®, y appeaiing in Eq (5) aie indicated

246805-2
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We seek the cumulant generating function of chatge
7O =1(3 i) >z ©
g=0 p=1

whete {g”) 1s the pth cumulant of the chaige tiansferied
during the time inteival 7 It 1s 1elated to the Keldysh
action (7) by

F (&) = 1Sasp(eVy/h, —18) (10)

We also 1equuie the cumulant geneiating function of
phase, G(£) Since V = V — ZyI (1n the absence of thei-
mal notse fiom the exteinal impedance), 1t 1s 1elated to
F(£) by a change of vaiiables (fiom g to ¢ = ¢ — gz¢)
The 1elation 1s

G (&) = Z<<¢P>>% = ot + Fl-28) (D)
p=I

In the limit Zy — O of voltage bias the saddle point of
the Keldysh action 1s at ®, = &, y, = y, and fiom
Egs (7), (9), and (11), one 1ecovets the 1esults of
Ref [5] The cumulant genetating function Fy(¢) =
TSa{eVy/h, —1€) = ¢S(¢) and the coriesponding
piobability distiibution

hm—'d—[; ]_[[1 + (x — 1)T, %0 (12)

Pd)u(Q)
The paiameter ¢y = eVy7/h 1s the number of attempted
transmissions pet channel, assumed to be an 1nteger > 1
The fiist few cumulants ate {(q)y = ¢og, {g°Vo =
¢OZHT11(1 - Tn)’ <<513>>0 = ¢OZHT”(I - Tn)(l - 2Tn>
In the single-channel case (N = 1, T} = I) the distiibu-
tion (12) has the binomial form (1)

After these piepaiations we ale now 1eady to general-
1ze all of this to finite Zy, and, 1n paiticula, to detive the
dual disttibution of phase (2) under cuiient bias The key
equation that allows us to do that follows duectly fiom
Eqgs (7) and (10)

FO=Ll o) orasSe)=¢ 3
The mmplicit function (&) (which detetmines the saddle
point of the Keldysh action) provides the cumulant gen-
erating function of chaige F for aibitiaiy seties 1esis-
tance = (e?/h)Z, One 1eadily checks that
F(&) — boS(&) 1n the Iimit zg — 0, as 1t should

By expanding Eq (13) mn poweis of ¢ we obtain a
1elation between the cumulants {g?) of chaige at Zy #
0 and the cumulants {g”)¢ at Zo = 0 The Langevin
appiroach discussed 1n the intioduction predicts that the
fluctuations aie 1escaled by a factor of 1 + zy3g as a 1esult
of the seiies tesistance Indeed, to second oider we find
€g*) = (1 + z58)73¢g*o, 1 agieement with Ref [8]
However, 1if we go to higher cumulants we find that other
tetms appeal, which cannot be incoipoiated by any te
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scaling For example, Eq (13) gives for the thud cumu-
lant

sy o Ko 3z (KMo
O = T g T 2088 @ (14

The fi1st tetm on the the 11ght-hand side has the expected
scaling foim, but the second term does not This is genetic
for p=3 (g”) = (1+ z08) "7 "¢g*) plus a nonlineai
(1ational) function of lower cumulants [15] All tetms ate
of the same oider of magnitude in z3g, so one cannot
neglect the nonlineai tetms The Langevin appioach
1ignoies the nonlineai feedback that causes the mixing
in of lower cumulants This deficiency can be coriected,
see Ref [14]

Tuining now to the Iimit zgg — oo of cuiient bias, we
see from Eq (13) that F — F. with

F (&) = qoé — qoS™(€/20) (15)

defined 1n tetms of the functional inveise S of S The
patametel gg = ¢/zg = Iy7/e (assumed to be an 1nteget
>> 1) 1s the number of chaiges tiansferied by the imposed
cuitent Iy 1n the detection time 7 Tiansforming from
chaige to phase vaiiables by means of Eq (11), we find
that G — G, with

G o(€) = —qoS™(= &) (16)
In the single-channel case Eq (16) 1educes to
Goolé) = —goIn[1 +T71(e™¢ — 1)], cortesponding to

the Pascal distitbution (2) The fiist thiee cumulants
ate (¢) = qo/T, (¢*) = (qo/THA-T), () =
(go/TH(1 -T2 —T)

For the geneial multichannel case a simple expies-
sion fo qu(gb) can be obtamned in the ballistic limit
(all T,’s close to 1) and in the tunneling limit (all 7,’s
close to 0) In the ballistic limit one has G, (&) =
go&/N + go(N — g)(eé/N —~ 1), couesponding to a
Poisson distitbution 1n the disciete vaiiable N — gg =
01,2, In the tunneling limit G (&) = —~goIn(1 —
&¢/g), cortesponding to a chi-squaie distibution P, (¢)
@9~ 1e74% 1n the continuous vaiiable ¢ > 0 In contiast,
the chaige distitbution Py (g) 1s Poissonian both 1n the
tunneling himit (in the variable g) and in the ballistic
Iimit (in the variable N¢y — ¢)

For laige gg and ¢, when the discieteness of these
vaiiables can be 1gnoled, we may calculate P, (¢) fiom
G (€) 1n saddle-point approximation If we also calculate
Py (q) from Fy(£) in the same approximation (valid for
laige ¢ and ¢), we find that the two distiibutions have a
temaikably similai form

Py, (q) = Ny (@) explr3Q2mdo/7, q/7)], (17)
Pqn((yb) = qu,(¢)exp[72(277¢/7— QO/T)] (18)

The same exponential function
E(A! )’) = SA(x: _lfs) - yf.& (19)
246805-3
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FIG 2 Compatison of the distitbutions of chaige (dashed
cuive, with 2 = ¢/{g)) and of phase (solid cuive, with 1 =
@ /{dY), calculated fiom Eqs (20) and (21) for N = gy =
¢ol' = 30 transferred chaiges m the tunneling Iimit I' <« 1
The main plot emphasizes the non-Gaussian tails on a semi-
logaiithmic scale, the mset shows on a linear scale that the
Gaussian body of the distiibutions coincides

appeais in both distiibutions (with &, the location
of the saddle point) The pieexponential functions
Ny, and N, ate different, detetmined by the Gaussian
integration aiound the saddle point Since these two
functions vaiy only algebtaically, iather than expo-
nentially, we conclude that Eq (3) holds with the
temainder  @O(1) = In(q/¢) obtained by evaluat-
ing In[27(322/0x?)2(322/9y*) /2] at x = 2w/,
y=gq/t
The distitbutions of chaige and phase aie compated
graphically in Fig 2, in the tunneling limit I' <1 We
use the 1escaled variable x = g/(g) fot the chaige and
x = ¢ /{¢) for the phase and take the same mean numbei
= qo = ¢l of transferied chaiges in both cases We
plot the asymptotic laige- N foim of the distiibutions,

Patagels) = (N/2m)! /251207122000, ()

Piase(x) = (N /2m)! 21N U=vtin) 0 (o1)

cottesponding to the Poisson and chi-squate disttibution,
1espectively Since the fiist two moments aie the same, the
difference appeais in the non-Gaussian tails The differ-
ence should be readily visible as a factor of 2 in a mea-
sutement of the thud cumulant (a3) = N2 for the
chaige and {x*) = 2 N2 for the phase

In summaiy, we have demonstiated theoietically that
electiical noise becomes 1ntiinsically different when the
conductor 1s curtent biased 1ather than voltage biased
While the second moments can be telated by a iescaling
with the conductance, the thud and higher moments
cannot From a fundamental point of view, the limit of
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full cutient bias 1s of paiticular inteiest The counterpart
of the celebiated binomial distiitbution of tiansferied
chaige [5] tuins out to be the Pascal distiibution of phase
inciements
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