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Conductance fluctuations in a disordered double-barrier junction

J. A. Meisen and C. W. J. Beenakker
Instituut-Lorentz, University of Leiden, P. O. Box 9506, 2300 RA Leiden, The Netherlands

(Received 16 January 1995)

We consider the effect of disorder on coherent tunneling through two barriers in series, in the
regime of overlapping transmission resonances. We present analytical calculations (using random-
matrix theory) and numerical simulations (on a lattice) to show that streng mode mixing in the
interbarrier region induces mesoscopic fluctuations in the conductance G of universal magnitude
e2/h for a Symmetrie junction. For an asymmetric junction, the root-mean-square fluctuations
depend on the ratio v of the two tunnel resistances according to rmsG = (4e2//i)/3~1/'2i/(l + z/)~2,
where β = l (2) in the presence (absence) of time-reversal symmetry.

I. INTRODUCTION

Resonant tunneling through two planar barriers in se-
ries is a textbook problem in quantum mechanics. Be-
cause of the Separation of longitudinal and transverse mo-
tion, the problem is essentially one-dimensional and can
be solved in an elementary way. Realistic double-barrier
junctions contain in general some amount of disorder in
the region between the barriers. At low temperatures and
small applied voltages, the inelastic electron-phonon and
electron-electron scattering processes are suppressed, but
the elastic scattering by impurities remains. Scattering
events couple the transverse and longitudinal motion of
the tunneling electron, which substantially complicates
the problem but also leads to additional physical effects.

The effects of disorder have been studied in the past1"4

with an emphasis on isolated transmission resonances
(energy spacing between the resonances much greater
than their width). Those studies are relevant for tun-
neling through a semiconductor quantum well, where the
resonances are widely separated because the barrier Sep-
aration L is comparable to the Fermi wavelength λρ·
In the present paper we consider the opposite regime
L ~5> \p of strongly overlapping resonances, relevant to
metal structures (where λρ is very short, comparable to
the interatomic Separation), or to tunneling in the plane
of a two-dimensional electron gas (where L can be quite
long, because of the large phase-coherence length). Two
types of disorder can play a role, interface roughness at
the barriers and impurities between the barriers. Inter-
face roughness leads to mesoscopic (sample-to-sample)
fluctuations in the conductance even in the absence of
any phase coherence, because the tunnel probability Γ of
a single barrier depends strongly on its thickness. Con-
ductance fluctuations for a single rough tunnel barrier
have been studied by Raikh and Ruzin.5 Here we con-
sider the case of impurity scattering in the absence of
interface roughness. Phase coherence is then essential.

A methodological difference with earlier work on res-
onant tunneling is our use of random-matrix theory to
describe the mode mixing in the interbarrier region. We
assume that the disorder is weak enough that its effect

on the average conductance is negligibly small. This re-
quires a mean free path l *5> TL. Still, the disorder should
be sufficiently strong to fully mix the transverse modes in
the interbarrier region. This requires both l <C L/T and
W <C L/T (where W is the transverse dimension of the
junction). We may then describe the disorder-induced
mode mixing by a random N χ Ν unitary matrix (N
being the total number of propagating transverse modes
at the Fermi energy). This single assumption permits a
complete analytical solution of the statistical properties
of the conductance, using basic results for the so-called
circular ensemble of random matrices.6 The circular en-
semble is fully characterized by the symmetry index ß,
which equals l in the presence of time-reversal symme-
try (circular orthogonal ensemble) and 2 if time-reversal
symmetry is broken by a magnetic field (circular unitary
ensemble). (A third possibility, β = 4, applies to zero
magnetic field in the presence of strong spin-orbit scat-
tering.)

As described in See. II, we find that the conductance G
of the double-barrier junction exhibits sample-to-sample
fluctuations around the classical series conductance

= (2e 1/Γ2)
-i (1.1)

(We denote by ΓΙ and Γ 2 the transmission probabilities
per mode through barrier l and 2, and assume that these
are mode independent and <C 1.) We find that the root-
mean-square fluctuations rms G of the conductance de-
pend only on the ratio v = Γι/Γ2 of the two transmission
probabilities, according to

(1.2)

Corrections to Eq. (1.2) are smaller by a factor
e2//iGserieS, which is < l if Λ/Τ\ > 1. For a symmet-
ric junction (v = 1) the fluctuations are of order e2/h,
independent of N or Γ; (äs long äs Λ/Τ; » 1). This
universality is reminiscent of the universal conductance
fluctuations in diffusive metals.7'8 Just äs in those sys-
tems, we expect the sample-to-sample fluctuations to be
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observable in a single sample, äs reproducible fluctua-
tions of the conductance äs a function of Fermi energy or
magnetic field.

Equation (1.2) assumes weak disorder, l ^> TiL (but
still l -C L/T i). We generalize our results in See. III
to stronger disorder, when the effects of the impurities
on the average conductance have to be taken into ac-
count. As in a previous paper,9 where we considered
a point-contact geometry, we do this by means of the
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation.10'11

We find that impurity scattering leads to the appearance
of a weak-localization efFect on the average conductance
(observable äs a negative magnetoresistance). The con-
ductance fluctuations become independent of ΓΙ and Γ2
if L > /(IT1 + FJ1). A similar conclusion was reached
previously by lida, Weidenmüller, and Zuk,12 who stud-
ied the conductance fluctuations of a chain of disordered
grains äs a function of the coupling strength to two elec-
tron reservoirs. These authors found that the universal
conductance fluctuations are recovered for a chain length
L much greater than some length LQ, which is paramet-
rically greater than the mean free path. A more detailed
comparison with Ref. 12 is not possible, because we con-
sider a homogeneously disordered conductor rather than
a chain of disordered grains.

To test our random-matrix description of mode mixing
by weak disorder, we present in See. IV results from a
numerical Simulation of a disordered double-barrier junc-
tion defined on a two-dimensional lattice. The agreement
with the theory is quite reasonable.

Two appendixes to the paper contain some technical
material, which we need in the main text: In Appendix
A, we present the analogue of the Dyson-Mehta formula13

for the circular ensemble, which expresses the variance of
the conductance äs a Fourier series. In Appendix B, we
discuss the application to our problem of the method of
moments14'15 for the DMPK equation.

II. DOUBLE-BARRIER JUNCTION
WITH STRONG MODE MIXING

The double-barrier junction considered is shown
schematically in the inset of Fig. 1. Since we assume
XF -C L, the scattering matrix 5 of the whole System
can be constructed from the scattering matrices 5; of
the individual barriers. The 27V χ 27V unitary matrix Si
contains two 7V χ 7V submatrices r i and r< (reflection from
left to left and from right to right) and two other JV x 7V
submatrices ij and t( (transmission from left to right and
from right to left). We use the polar decomposition16'17

-.1/2

(2.1)

0.5 -

0.4 -

0.3

FIG. 1. Weak-localization correction 6G to the average
conductance (in units of Go = 2e2/h) and root-mean-square
fluctuations rmsG Ξ (VarG)1/2, computed from Eqs. (3.6)
and (3.7) for β = 1. The arrows give the limit TL/l » 1.
The inset shows the geometry of the double-barrier junction
(the disordered region is dotted). The curves plotted in the
figure are for a Symmetrie junction, ΓΙ = Γ 2 = Γ <g 1.

where the i/'s and F's are 7V χ 7V unitary matrices. In
zero magnetic field, U( — U? and V? = V^T, so that
Si is Symmetrie — äs it should be in the presence of
time-reversal symmetry. The transmission matrix t of
the whole System is given by

t = (2.2)

Substitution of the polar decomposition (2.1) yields the
matrix product ttf in the form

ttf = F2 [α

Ω = U

(1-Γ1)(1-Γ2)]/ΓιΓ2,

b = 2ν

/(1-Γ1)(1-Γ2)/Γ1Γ2.

(2.3a)

(2.3b)

(2.3c)

(2.3d)

The eigenvalues Tn of ttf are related to the eigenvalues
εχρ(ίφη) of Ω by

\-ι (2.4)

The Tn's determine the conductance G of the double-
barrier junction, according to the Landauer formula

N

(2.5)
n=l

where GO = 2e2/h is the conductance quantum.
We consider an isotropic ensemble of double-barrier

junctions, analogous to the isotropic ensemble of disor-
dered wires.16 We assume that / < L/T i and W < L/T i,
so that the tunneling is accompanied by strong mode
mixing: An electron entering the junction in mode n is
randomly distributed among all modes m before leav-
ing the junction. We assume in this section that mode
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mixing is the dominant effect of the disorder, and that
the reduction of the average conductance by the impu-
rity scattering can be neglected. This requires l ^> PiL.
(The case of stronger disorder is treated in the next sec-
tion.) In the polar decomposition (2.1), the mode mixing
is accounted for by the unitary matrices U and V. The
number of different unitary matrices is 2/3, where β = l
in zero magnetic field and β = 2 if time-reversal symme-
try is broken by a magnetic field. The Isotropie ensemble
is the ensemble where the 2/3 unitary matrices are in-
dependently and uniformly distributed over the unitary
group. In other words, the U's and Vs are drawn inde-
pendently from the circular unitary ensemble (CUE) of
random-matrix theory.6

To determine the statistics of the conductance (2.5) we
need the probability distribution Ρ({φη}) of the eigen-
values of Ω. For β = 2, Ω - U'2ViV{U2 is the product
of four independent matrices from the CUE, and hence
Ω is also distributed according to the CUE. For β = l,
Ω = UfV^Uy. is of the form WWT with W a mem-
ber of the CUE. The ensemble of Ω is then the circu-
lar orthogonal ensemble (COE). The distribution of the
eigenvalues in the CUE and COE is given by6

Ρ({φη}) = C H |exp(i0„) - εχρ(ιφη)\ (2.6)
n<m

where C is a normalization constant.
We compute the average (A) and variance Var^4 =

(A2) — (A)2 of linear statistics A = $^n=1 α(φη) οη the
eigenphases φη. Since in the circular ensemble the </>„'s
are uniformly distributed in (0, 2π), the average is exactly
equal to

= — / άφα(φ). (2.7)

An exact expression for the variance can also be given,6

but is cumbersome to evaluate. For 7V 3> l, we can use
a Variation on the Dyson-Mehta formula13 (derived in
Appendix A),18

(2.8a)

r
αη= <

Jo
άφβίηφα(φ). (2.8b)

For the conductance [given by Eqs. (2.4) and (2.5)], we
substitute α(φ) = (o+fccos^)"1, with Fourier coefficients

o„ = 2π(α2-62)-1/2δ-" [(o2 - i»2)1/2 - α]". The results
are

(2.9)

(2.10)Var G/G -VarG/Go--

Equation (2.9) for the average conductance is what
one would expect from classical addition of the resis-
tances (TVTiGo)"1 of the individual barriers. [The —l
in Eq. (2.9) corrects for a double counting of the con-
tact resistance and becomes irrelevant for Fj <C 1.] Each

member of the ensemble contains a different set of over-
lapping transmission resonances, and the ensemble aver-
age removes any trace of resonant tunneling in (G). In
a previous paper,19 we have shown that the average con-
ductance differs drastically from the series conductance
if the double-barrier junction is connected to a supercon-
ductor, but here we consider only normal-metal conduc-
tors.

Equation (2.10) for the conductance fluctuations teils
us that Var G becomes completely independent of N
in the limit N —> oo. [More precisely, corrections to
Eq. (2.10) are of order (G/Go)"1, which is < l if
NTi » 1.] Since Γ; < l, we may simplify Eq. (2.10)
to

p2p2111 2 (2.11)

which depends only on the ratio ΓΊ/Γ2 and not on the
individual IYs. The variance reaches a Γ-independent
maximum for t wo equal barriers,

if Γ! = Γ2. (2.12)

The variance is almost twice the result -^ß 1 for an
isotropic ensemble of disordered wires,14'15 and precisely
twice the result l/?""1 for an isotropic ensemble of ballis-
tic quantum dots.12'20'21

III. EFFECTS OF STRONG DISORDER

In this section we relax the assumption / 3> Ι\£ of
See. II, to include the case that the impurity scattering
is sufficiently strong to aifect the average conductance.
We assume W -C L, so that we are justified in using an
isotropic distribution for the scattering matrix SL of the
interbarrier region.16 The scattering matrix S of the en-
tire System is now composed from the three scattering
matrices Si, S L, and 82 in series. The composition is
most easily carried out in terms of the transfer matrices
MI, ML, and M2 associated with Si, S L, and 82, re-
spectively. The transfer matrix M of the entire System is
the matrix product M = Μ2ΜιΜι, so the total distribu-
tion P (M) is a convolution of the individual distributions
P! (Μχ), PL(ML), and P2(M2): P = P2oPLo Pl5 where
the convolution o is defined by

Pi<>Pj(M)= dM' (3.1)

The isotropy assumption implies that each distribution

Pi(Mi) is only a function of the eigenvalues of Μ;Μ/ .
We now use the fact that the convolution of isotropic

distributions of transfer matrices commutes. (A proof is
given in Ref. 9.) This permits us to consider an equivalent
System, with transfer matrix M = Μι,Μ^Μι, where all
disorder is at one side of the double-barrier junction —
instead of in between the barriers. The L dependence
of the distribution of transmission eigenvalues for this
System is governed by the DMPK equation,10'11
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Q

ßN + 2-ß
ΛΓ

ι=1

(3.2b)

where s = L// and Xn - (l - T„)/T„. The initial
condition (s —>· 0) of Eq. (3.2) corresponds to taking
ML = l, which implies for P the isotropic ensemble given
by Eq. (2.6).

To compute the L dependence of the mean and vari-
ance of the conductance, we use the method of moments
of Mello14 and Mello and Stone,15 who have derived a
hierarchy of differential equations for the moments of

Tq = £)n=i -^n· The hierarcQV closes order by order in an
expansion in powers of l/N. Mello and Stone considered
a ballistic initial condition, corresponding to {77} —> Np

for s —> 0. We have the different initial condition of a
double-barrier junction. The differential equations and
initial conditions for the moments are given in Appendix
B. For the mean conductance and its variance we obtain

(G/Go> -
7V

s + p

(3.3)

15/3

(3.4)

where α has been defined in Eq. (2.3) and p is defined by

p = Ι/Γ! + 1/Γ2 - 1. (3.5)

Corrections to Eqs. (3.3) and (3.4) are of order (s +
p) /N. For two equal barriers (Γι = Γ2 Ξ Γ) in the limit
Γ -4 0 at fixed Fs, Eqs. (3.3) and (3.4) simplify to

o = (G/G0) ~ N(s + p)

->

-i

-+2Ts (3.6)

VarC/G«, = j +
28

(3.7)

Equations (3.6) and (3.7) are plotted in Fig. l (for β =
1). In the limit of large disorder (Ts ^> 1), we recover
the familiär results14'15 for a disordered wire: SG/Go —
l (l - 2//?), VarG/Go = -^ß"1 (indicated by arrows in
Fig. 1). In the opposite limit Γ s -C l, we find SG = 0,
VarG/Go = \ß~l — äs in See. II [cf. Eqs. (2.9) and
(2.12)].

IV. NUMERICAL SIMULATIONS

To test our results we have performed numerical sim-
ulations, using the recursive Green's function method of
Ref. 22. The disordered interbarrier region was mod-
eled by a tight-binding Hamiltonian on a two-dimensional
square lattice with lattice constant d. The Fermi en-
ergy was chosen at l.Siio from the band bottom, with
«o = h2/2md2. Disorder was introduced by randomly as-
signing a value between i^t/p to the on-site potential of
the lattice points in a rectangle with L — 142d, W = 71d
(corresponding to 7V = 30). We chose U D = 0.6 UQ,
corresponding to L/l = 0.9. The transfer matrix ML
was computed numerically, and then multiplied with the
transfer matrices MI and M% of the two barriers (which
we constructed analytically, given the mode-independent
tunnel probabilities Fj and 1^). We took Γ2 = 0.15
and varied ΓΙ between 0.05 and 0.5. These parameter
values were chosen in order to be close to the regime
TtL -C / < L /Γ,, W < L /I\ in which disorder is ex-
pected to cause strong mode mixing, without having a
large effect on the average conductance (the regime stud-
ied in See. II).

In Fig. 2 we show the comparison between theory and
Simulation. The solid curve is Var G/Go computed from
2250 realizations of the disorder potential. The dotted
curve is the theoretical prediction from Eq. (3.4) for the
parameter values of the Simulation (and for β = l, since
there was no magnetic field). There are no adjustable
Parameters. The agreement is quite reasonable. It is
likely that the remaining discrepancy is due to the fact
that the theoretical condition 7VF, 3> l was not well
met in the Simulation (where 7VF2 = 4.5). The value
7V = 30 of the Simulation is already at the limit of our
computational capabilities and we are not able to provide
a more stringent numerical test of the theory.

Note added m proof: The case ΓΙ = Γ2 <S l/s has
recently been considered by V. I. Fal'ko [Phys. Rev. B
51, 5227 (1995)]. This result differes from our Eq. (2.12)
in the numerical coefficient.
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APPENDIX A: DYSON-MEHTA FORMULA
FOR THE CIRCULAR ENSEMBLE

The variance VSLT A of a linear statistic A =
Ση=ι α(φη) on the eigenphases is given by a double in-
tegral,

VarA = - ί αφ j άφ'α(φ)α(φ')Κ(φ,φ'), (AI)
Jo Jo

over the two-point correlation function

·) denote an average over the circular

Fourier transformation of Eq. (A6) yields

The brackets {·
ensemble, and

N

(A3)
n=l

is the microscopic density of eigenphases. In this ap-
pendix we compute Κ(φ,φ') in the large-7V limit, using
the method of functional derivatives of Ref. 23. This
leads to Eq. (2.8) for VarA, which is the analogue for
the circular ensemble of the Dyson-Mehta formula for
the Gaussian ensemble.13 The analogy is straightforward,
but we have not found it in the literature.18

We consider a generalized circular ensemble, with
probability distribution

C l Jo

υ(Φ) = -ι

(A4a)

/

2ττ /·2τΓ

dfa··· άφΝΡν({φη}),
Jo

(A4b)

(A4c)

The "potential" V (φ) is arbitrary. If V = 0, Eq. (A4)
is the same äs the distribution (2.6) of the circular en-
semble. The brackets {· · ·}ν denote an average with the
F-dependent distribution (A4). Following Ref. 23, we ex-
press the two-point correlation function äs a functional
derivative of the density with respect to the potential,

(A5)

The functional derivative can be computed in the large-Λ^
limit from the relationship24

ι-2-π

αφ' U (φ - φ')(ρ(Φ'))ν = V (φ) + const. (A6)-ι:
Corrections to Eq. (A6) are smaller by a factor 1/./V.
The additive constant is obtained from the normaliza-

=Ν.

r-,
n

We have defined the Fourier coefficients

(A7)

(A8)

and we have used that Un = π/|η| for n ^ 0. From
Eqs. (A5) and (A6), we see that Κ(φ,φ') = Κ (φ - φ')
depends on the difference φ —φ' only, and is independent
of V. The Fourier coefficients of K (φ) are

Kn = -Μ/7Γ/3 (A9a)

for n φ. 0. Since KQ = 0 by definition, Eq. (A9a) holds
in fact for all n. Inversion of the Fourier transform yields
the correlation function

(A9b)

which has an integrable singularity at φ — 0. For φ ̂  0,
Κ(φ) = [4π2βδΪΏ2(φ/2)]-1. Substitution of Eq. (A9)
into Eq. (AI) gives the required analogue of the Dyson-
Mehta formula for the large-TV limit of the variance of a
linear statistic,

ίάα(φ')\
l . . . l In

. Φ-Φ'

(A10)
n=l

APPENDIX B: MOMENT EXPANSION
OF THE DMPK EQUATION

Mello and Stone15 have derived from the DMPK equa-
tion (3.2) a hierarchy of differential equations for the mo-

ments of Tq = Ση=ι -^η- ^-^e hierarchy closes order by
order in the series expansion

(Bla)

(s)

(Blb)

tl(s)

(Blc)

2i l(s)

(Bld)

where we have defined T Ξ 7ί . For a calculation of Var G
we need to determine (Tp) down to O(NP~2), (TPT2}
down to O(Np), and (TPT3) and (TP7^) only to the
highest occurring order. The resulting set of differential
equations we have to solve is15

N»+igp+1,0(s)

+Np-lgp+l,2(s

Np+lhp+1,0(S)

+ATP-1/lp+1,2(s

N»+2lp+2t0(s)
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2/p+M(s) - (l -

-4Ap)0(e) - (p ~

,ο(Ό = Ο, (B2a) (Τ3"/?} = (Τ)Ρ(Τ2)
2 + 0(ΝΡ). (B3d)

3)0ρ+ι,ο(β) = 2/ρ+1ι0(β), (B2b) The average {(<57~)2} is just Var G/G0, which is given by

Eq. (2.10),

l). (B4)

(Β5)

(B6a)

(B6b)

(B6c)

(B2c)
The other averages in Eq. (B3) follow from

P+I,O(S), (B2d) N f2"

2"" 7o

1,0(s) - 3/p+li0(s), Tfle resuitmg initial conditions read

(B2e)
fp,o(0)=p-p,fp,1(0)=0,

2«7P,0(S)

(B2f)

/p,o(0) - a2

+2ß~1p(p - - Λρ_ι,ο(β)]. (B2g)

The set of differential equations (B2) can be solved by
Substitution of the following Ansatz for the p dependence
(adapted from Ref. 25):

We need to determine the initial conditions /(O),
g(0), h(0), and 1(0) from the distribution function (2.6)
for the eigenphases in the circular ensemble. In the
large-7V limit, the linear statistic Tq on the eigenphases
has a Gaussian distribution with a width of order N°.

Therefore, if we write 7~q = (Tg) + STq, we know that
(Tq) = 0(N), (6Tq] = 0, ((ÖTg)

2n+1) = O(N-i) and
((STq)

2n) = O(N°). This implies that, for s -> 0,

xp,,(S) +PX(S)
(B7)

(T)p

(TPT2) = (T}P{T2)

= {T)P{T3)

(B3a)

(B3b)

(B3c)

where n — 0 if χ is /, n = 3 if χ is g, and n = 6 if a; is h
οι χ is /. The mean and variance of the conductance, to
order N~1, then follow from

(B8)

-2/ι,ο(«)/ι,2(*)-/ι,ι(«)2· (Β9)

The results are Eqs. (3.3) and (3.4).
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