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Abelian Extensions of Arbitrary Fields
W. Kuyk and H. W. Lenstra, Jr.

0. Introduction and Summary

Let k be an Hilbertian field, i.e. a field for which Hilbert’s irreducibility theorem
holds (cf. [1,5]). It is obvious that the degree of the algebraic closure k of k is
infinite with respect to k. It is not obvious that the same is true for the maximal
p-extension of k, p a prime number. Let 4 be a finite abelian group. The question
whether there exists a Galoisian extension I/k with Galois group A4 is, classically,
known to be solvable if there exists a finite group G, and a surjective homo-
morphism G— A4, such that the following condition is satisfied. Suppose M is a
faithful k[G]-module, and let S, (M) denote its symmetric algebra over k. The
group G acts upon S,(M) and on its field of quotients k(M) in a natural way.
Then the condition is that the subfield k(M)® of k(M) of all G-invariants is a
purely transcendental field extension of k (cf. [6, 5]). This applies in particular
to the case G=4, and M is the group ring k[ A]. In that case we denote k(M)
by k4.

Let k be an arbitrary field. Recently, the second named author [4] gave
necessary and sufficient conditions in order that, for given k and A, the extension
k,/k is purely transcendental, as follows. To check the pure transcendency of k,
one has to look at a finite set of Dedekind domains D, = Z[{, 4], where the
positive integer g(4) runs through a finite subset of Z and (,, is a primitive
g(A)-th root of unity. Then one can determine in every D, ,, an ideal I,,, with the
property: k, is purely transcendental over k if and only if the two following
conditions are satisfied:

(i) every ideal I, 4 is a principal ideal,

(ii) if 2" is the highest power of 2 dividing the exponent of 4 and if the charac-
teristic of k is not equal to 2, then the extension k{{,.)/k has cyclic Galois group.

This leads to

Theorem 1 ([4], Corollary (7.5)). Let 4 be a finite abelian group. Let k be any
field satisfying the condition (ii) above. There exists a natural number n such that
the field of invariants k4. of the group A"=A®...®A is a purely transcendental
extension of k.

A quadruple (G, ¢, A4, k), with ¢ : G— A a surjective continuous homomorphism
of (not necessarily abelian) (pro-)inite groups and k a field, is called a Galoisian
extension problem. Such an extension problem 1s said to be solvable if for every
Galoisian extension field I/k with Gal(l/k)= A, there exists a Galoisian extension
mfk, mD1, such that Gal(m/k)= G and the Galois map Gal(m/k)— Gal(l/k) coincides

with ¢.
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For G=Z/p"Z,A=Z/p"Z, p a prime number, n and m positive integers
satisfying m=zn=1, we denote the natural surjecttve homomorphism G—A4
by G, if G=Z,, the additive group of p-adic mtegers, then we write ¢, mstead
of ¢, It 1s clear that the problem P(m,n, k)=(Z/p"Z, $,,., Z/p"Z, k) 15 solvable
for all m and n, 1f and only 1f the problem P(co, n, k)=(Z ,, ¢ ., Z/p"Z, k)15 solvable
for all n2 1 With these notations we prove

Theorem 2. Let k be any field If p=char(k), then the extension problem
P(oo, n, k) 15 solvable for all positie integers n=1 If p=+char(k), let E, denote the
set {x|x*"=1€eK forsomeme Z, m=0} of all p"-th roots of unty, and put K = k(E,)
Furthermore, suppose that the degree [K k] of K/k 1s fimte If p=+2 then the
extension problem P(co, n, k) 1s solvable for all n=1 If p=2, then let I/k be Galois
with Gal(l/k}=Z/2"Z,n>1 Then k admits a Z,-extension If, on the contrary,
[K k] 1s infimte, then there exists at least one Galois extension of k with Galows
group 1somorphic to Z,

Corollary 1. Let k be a field, and let p be a prime number +2 The following
conditions (1) and (1) are equivalent
(1) there exists a Galois extension Ik with Gal(l/k)~=Z /pZ,
(11) there exists a Galois extenswon lfk with Gal(l/k)= z,
For p=2 there 1s equivalence between
(1) there exists a Galois extension lfk with Gal(l/k)y~Z/4Z,
(1v) there exists a Galois extension lfk with Gal(l/k)y~Z,

Putting Theorems 1 and 2 together we get

Corollary 2. Let k be an Hilbertian field and let A be a fimte abelian group
satisfying the condition (11) above i

There exists a Galois extension l/k with Gal(l/k)=Zx A, where Z=I1Z
1s the pro-cyclic group on one generator

Proof Corollary 1 1s immediately clear from Theorem 2 For Corollary 2
one applies Corollary 1, taking nto account that for G=Z/4Z the field k(M)®
1s purely transcendental over k, whence the existence of a k-extension with
Galois group Z, The existence of a Z -extenston of k, p = 2, follows from Theorem 1
and Corollary 1 The factor A does not give any difficulty, because k being Hal-
bertian, there exists for every m an extension [ of k with Gal{l/k)=~ A™ (Theorem 1,
applying Galois theory)

Remark 1 Note that the Hilbertian field @ admits only one Z p-€xtension for
every p, and wnfinitely many (linearly disjomnt) extensions with group 4 (well-
known), where A 1s an arbitrary finite abelian group However, the pair (Q, 4)
does not generally satisfy condition (1)

Remark 2 Corollary 2 substantiates a claim made n [2] (p 401) and [3]
(p 113) stating that for Hilbertian k, the maximal p-extension k(p) has mfinite
degree over k Mr Jarden drew attention to the mcompleteness of the proof n [?]

P

1. Proof of Theorem 2

Preserving the notations of the previous paragraph and Theorem 2, let
p=-char(k) It 1s well-known that the extension problem P(n+1,n, k) 1s solvable
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for all n=1, e.g. using Witt vectors or by induction. This means however, that the
extension problem P(m, n, k} is solvable for all mzn=1. Next, let p=char(k).

First we consider the case when [K:k] is infinite. It is clear from infinite
Galois theory, that Gal(K/k) is a closed subgroup of Z¥. The latter group is of
the form Z3=Z/(p—1)Z®Z, if p+2, while Z¥xZ/2ZDZ, if p=2. In both cases
Gal(K/k)=F@®Z ,, where F is a finite group; Galois theory finishes this case.

We are left with the case when [K : k] < 00. Again, there are two possibilities,
viz. K=k and K # k. First,if K =k, then let {/k be an extension with Gal([/k)= Z/qZ,

and g=p". We have [==k (il/g) for some ae k*, a¢ k*». The field L=|J,», k(]pﬂz)
is a Galois extension of k=K with Galois group Z,, satisfying our desire. Let,
alternatively, K=k, Gal(K/k)=n. The group = is cyclic of order dividing
p—1if pE2, and of order 2 if p=2. Let now K(p) denote the maximal abelian
Galois p-extension of K. The fact that K(p) is a Galois extension of k gives the
existence of an exact sequence of groups

0-A4,-G-n-0,

where A,=Gal(K(p)/K) and G = Gal(K(p)/k).
The fact that over K the extension problem P(co, m, K) is solvable, translates
in terms of group theory as follows:

Lemma (. For every continuous surjective group homomorphism o.: A,—Z/qZ,
q=p",m21, there exists a continuous surjective homomorphism fo:A,—Z,
such that the diagram

AP Lo P
°\, /¢

Z/qZ

is commutative; here ¢ denotes the natural homomorphism with kernel p™ - Z,,.

Now the proof goes as follows. We are given an extension l/k with Gal(//k)=
Z/p"Z, where n=1 if p£2 and n>2 if p=2. We wish to construct an extension
M/k with Gal{M/k)y~Z,. We have Gal(l- K/K)~Z/qZ, where q=2""" if p=2,
K Cl, and g=p" otherwise; so ¢ >1 in all cases. The natural surjective map

A,~Gal(l- K/K)=Z/qZ

is denoted by o, and we let f;, ¢ be as in Lemma 1. We are going to change f,
in such a way that the kernel of the new map 4,—Z, defines a Z -extension of K
which is Galois and abelian over k. Then the construction of M will be immediate.

In order to carry out this programme we need to know how the statement
“I,is Galois and abelian over k” [for an intermediate field K C L C K(p)] translates
in terms of group theory.

The group 7 acts on A, via a*=t*at* "' where ae 4, 1em, and t*€G a
preimage of T. Putting A} ={d'lae A,, i€ I}, where I is the augmentation ideal
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of Z[n], the cyclicity of 7 entails A} =[G, G], the commutator group of G Ths
follows by direct verification, taking into account that a* '=t*ar* " 1q~! The
next lemma follows immediately from this consideration

Lemma 2. Let L be an intermediate field K C LCK(p) The following conditions
are equivalent
(1) L/k 15 Galows with abelian Galois group,
(1) the subgroup Gal(K(p)/L) of A, 1s nvariant in G with abelian factor group,
(11) the natural map y A,—Gal(L/K) has the property Al CKer(yp)
It follows, in particular, that A{,CKer(oc) We define s 4,~A, by s(a)=ad°
where S =ZIE,, € Z[n]. Note that Af,C Ker(s), stnce I S 1s the zero 1deal of Z[r]

Proposition 1. Assume p=2, and let the notation be as above The diagram

A S_) AI] So Z[, [7[.'1 Z

p p

o

Z)qZ — s Zjgz I 74z

where the map |n| denotes the (continuous) automorphism “multiphcation by |n|”
on Z, and Z/qZ, s commutative Moreover, the surjectie map fy=|n| " fos
1s such that ALC Ker(fy)

Proof The commutatvity of the diagram 1s easily verified by a straight-forward
calculation, for the surjectivity of || and || ~! one has to note that (7}, p)=1 The
mclusion A} CKer(f,) follows from A, CKer(s) Fmally, the diagram tells us that
the 1mage of £, 1s a closed subgroup of Z, mapping onto Z/qZ, so the procyclic
structure of Z, imples that f; 1s surjective This proves Proposition 1

Theorem 2 15 now easily settled for p==2 Let [, o be as before, let f, be as m
Proposition 1, and let LCK(p) be the mvariant field of Ker(f;) Then Ic L,
Gal(L/K)=Z,, and L/k 1s Galois and abelian by Lemma 2 Further, Galoss theory
gives us an exact sequence of abelian groups

0-Z,-»Gal(L/k)~»n—0

The sequence splits by (jn], p)=1, so L=M K where GallM/k)=Z, Finally,
IC M agam follows from (jz}, p)=1 We conclude that M is the required extension
of k and that the problem P(c0, n, k) 1s solvable for all nz 1

Proposition 2. Assume p=2, and let the notation be as before The diagram
A, — 4, -Lo 7,
| K

Z)qZ —32X 5 7/47

18 commutatwe, but the homomorphism f; = f o s not surjective One has A5 CKer(f,),
Im(f)=2Z,, and, f f,=1}f,, then f, 15 a continuous surjective homomorphism
satisfying A5 CKer(f,)
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Proof The commutativity of the diagram and the mclusion A% CKer(f))
£o as before Further, the diagram mmplies that Im(f;) 1s a closed subgroup of Z,
mapping onto 2Z/qZ 1If g>2 thus implies Im(f;)=2Z, by the procyche structure
of Z, In the case g =2 we arrive at the same conclusion by an explicit computation
q=2 mmphes Gal(l/k)=~ Z/4Z and K Cl, let 0* € Gal(K(p)/k) be such that o =¢*| K
generates 7, then o*|l generates Gal(l/k) so the element 7=(c*)% of 4, 1s not the
wdentity when restricted to I, this means a(t)==0e Z/2Z so fy(r)e Z,\2Z,, also
=1 30 f(t)= fo(t?) € 2Z,\4Z,, therefore 2Z, CIm(f;), and since the opposite
mnclusion follows from the diagram we conclude Im(f)=2Z,, as required
The assertions about f, follow immediately This concludes the proof of Propo-
sition 2

To finish the proof of Theorem 2, let [, o« be as before and let f, be as m Propo-
sition 2 Then the mvanant field LC K(2) of Ker( f;) has Galoss group=Z, over K,
and L 1s Galois and abehan over k Theie 1s an exact sequence

0-Z,—~Gal(L/ky—>n—0

If this extension sphits then Gal(L/k)= Z , @, and if 1t does not split then Gal(L/k) =
Z, In both cases there exists an extension M of k with Galois group isomorphic
to Z,

This concludes the proof of Theorem 2

Remark A closer look at the construction reveals that 1 the case p=2 the
field M can be chosen such that the mtersection M~/ has degree 2"~ ! or 2"
over k

2. Supplementary Remarks

It 1s not true that any field k, admitting a field extension [ with Gal(l/k)="V,
(cf Theorem 2) admits a Z/4Z-extension (and, by consequence, a Z,-extension)
The field of all totally-real algebraic numbers, for mstance, admits ¥-extensions
and no Z/4Z-extenstons The followmg 1s an example of a field admitting for
an arbitraty cardinal number m an extension with Galois group (Z/2Z)", and no
Z/4Z-extension Let I be a set with [[|=m and let F=Q({t,fie I}) be a purely
transcendental extension of @ with transcendental degree m Choose for every
tel an grdermg <,of F,m such a manner that t, <, 0 and 0<, t) for j#=:1 Let R,
FCR,CF, be a real-closed field the ordermg of which 18 an extension of <, Then
k={(,c; R, has the required property one sees easily that Gal(k/k) 1s topologically
generated by elements of order 2 It 1s also possible to give a proof of Theorem 2
(p#2) more directly by using Kumme: theory However, this method does not
seem to be readily extendible to the case p=2
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