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ABSTRACT

An approximation technique for solving the equations of motion in nonintegrable potentials is
applied to the case of stellar orbits in the plane of rotation of a nonaxisymmetric galaxy. The
technique consists of (a) expanding the potential about the origin up to quartic terms and (b)
replacing the corresponding Hamiltonian by a simpler averaged Hamiltonian, for which the equa-
tions of motion admit exact solutions. An explicit expression is obtained for the nonclassical second
integral, and the major families of closed orbits are delineated.

The results of the analytical technique are compared with orbits calculated numerically in the
plane of rotation of Schwarzschild’s triaxial galaxy model. A resonance zone extends from a few core
radii to infinity (or to roughly the Lindblad resonance if the galaxy is rotating); the structure of
phase space in this zone is dominated by a set of 1:1 closed orbit families which do not exist in the
harmonic (i.e., core) potential. It is suggested that most triaxial potentials are probably describable as
1:1:1 resonances, a result which has important implications for the existence of equilibrium triaxial

galaxies.

Subject headings: galaxies: internal motions — galaxies: structure — stars: stellar dynamics

I. INTRODUCTION

It is by now generally agreed that the nonspherical
shape of elliptical galaxies is not usually a result of
flattening due to rotation about an axis of symmetry but
must be caused by some other mechanism (Binney
1978b; Illingworth 1981). At least three lines of argu-
ment support this conclusion:

1. Measurements of rotation velocities (Illingworth
1977; Peterson 1978) and velocity dispersions (Schechter
and Gunn 1979; Davies 1981) of the stars in elliptical
galaxies show that the observed rotation is generally too
small, by a large factor, to support the observed flatten-
ing. (The discrepancy tends to decrease with decreasing
luminosity, however; see Davies et al. 1982.)

2. The apparent twisting on the sky of the isophotal
brightness contours of many elliptical galaxies (King
1978; Williams and Schwarzschild 19794, b; Leach 1981)
is consistent with, and perhaps most easily explained by,
these systems having triaxial density distributions.

3. A number of numerical investigations (Aarseth
and Binney 1978; Miller 1978; Schwarzschild 1979, 1982)
suggest that equilibrium triaxial systems are easy to
construct, even in the absence of rotation, and that such
systems can retain their shapes over many dynamical
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times (Wilkinson and James 1982; Smith and Miller
1982).

Simple numerical integration of the equations of mo-
tion in axisymmetric and triaxial potentials shows that
the stellar orbits are often characterized by one or two
isolating integrals in addition to the classical integrals,
and this fact has been used in constructing self-con-
sistent numerical models (Schwarzschild 1979, 1982;
Richstone 1980; de Zeeuw et al. 1983). Indeed, it ap-
pears likely that these so-called nonclassical integrals are
all that is needed in the general case to maintain ellipti-
cal galaxies in non-spherically-symmetric shapes. This
point was first emphasized by Binney (1978a), who
noted that a velocity distribution function that depends
on more integrals than just the energy implies aniso-
tropic velocity dispersions, which are required if an
elliptical galaxy is to be supported without rotation. A
similar situation has long been known to exist in our
own galaxy, where the observed shape of the velocity
ellipsoid near the Sun can best be explained by postulat-
ing a third isolating integral in addition to the energy
and angular momentum (Jeans 1916; Contopoulos 1960;
Ollongren 1962; Martinet and Mayer 1975). Although a
few simple models for triaxial galaxies exist in which the
stellar orbits are characterized by only the classical
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integrals (e.g., Vandervoort 1980), it seems unavoidable
that nonclassical integrals play a crucial role in main-
taining the shapes of most elliptical galaxies, especially
the slowly rotating ones. This point is discussed further
in§ V.

Bulges of spiral galaxies are similar to elliptical galax-
ies in many respects. Although some of them may be
triaxial (Stark 1977), it appears likely that most bulges
are supported by rotation and not by anisotropic disper-
sions (Kormendy and Illingworth 1982).

The purpose of the present work is to investigate by
analytical means some of the properties of stellar orbits
in a nonaxisymmetric elliptical galaxy. By comparing
the results so obtained to “actual” stellar orbits in a
realistic model potential—that of Schwarzschild
(1979)—we are able to shed some light on the way in
which the nonclassical integrals affect the distribution of
orbit types, and therefore the density distribution, in
such models. It will turn out that the analytical tech-
nique, although formally valid only in the galaxy core, is
very successful at predicting the nature of stellar orbits
at larger energies. We will argue that this result is
probably a general one for galactic potentials and not
specific to Schwarzschild’s model.

Although our method is capable of treating arbitrary
orbits in a general three-dimensional potential, the pres-
ent work is limited to a discussion of orbits in the plane
of rotation. As pointed out by Vandervoort (1979),
such orbits are particularly useful in understanding
the more general case, which will be considered in
subsequent papers. A few specific properties of three-
dimensional orbits in triaxial potentials have been de-
scribed by Schwarzschild and collaborators (Heiligman
and Schwarzschild 1979; Goodman and Schwarzschild
1981; Heisler, Merritt and Schwarzschild 1982), as well
as by Magnenat (1982).

A number of studies have been made of planar orbits
in nearly axisymmetric potentials, to simulate the
bars of spiral galaxies (cf. Contopoulos 1975, 1978a;
Contopoulos and Mertzanides 1977; Contopoulos and
Papayannopoulos 1980). In contrast, our method is de-
signed to treat systems which are inherently nonaxisym-
metric (or “very strong bars” in the terminology of
Contopoulos and Papayannopoulos) and which are not
dominated by the circular or near-circular orbits char-
acteristic of spiral galaxies. For this reason our method
is well suited to studying systems with relatively little
ordered motion, such as elliptical galaxies. Nevertheless
there are numerous points of connection between our
results and those of earlier workers, and these will be
emphasized below.

In § II we give the relevant results of the analytical
technique, the details of which are described elsewhere
(de Zeeuw 1983). In § III we compare the analytical
predictions for the integrals of motion and shapes of the
periodic orbits to the orbits calculated numerically in
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Schwarzschild’s potential. In § IV we discuss the gener-
ality of the results obtained, and in § V we note the
implications for the existence of equilibrium triaxial
galaxies.

II. THEORY

a) Basic Equations

Consider an idealized elliptical galaxy that rotates
uniformly around a fixed axis with angular velocity
Q > 0. Choose, in a corotating reference frame, Cartesian
coordinates (x, y, z) so that the z-axis coincides with the
axis of rotation. The sign of @ is such that the model
rotates clockwise as seen from the positive z-axis. In
what follows we will restrict ourselves to a study of the
motion in the equatorial (i.e., x-y) plane.

Let V*(x,y) be the gravitational potential in the
corotating frame. The Hamiltonian H which determines
the motion of a single star in this potential is

H=33"+37* +V(x,p), (1)
where
V(x,y)=V*(x,y)-39%(x*+)%). (2
The equations of motion are

i=—2Qy— 9V/dx, (3a)
J=+2Qx— IV/dy. (3b)

Since V is assumed to be independent of time, the
Hamiltonian is conserved. In other words, the total
energy of a star moving in the gravitational potential, as
measured in the corotating frame, is an integral of the
motion. It is usually called “Jacobi’s integral” (Jacobi
1836). In general, it is the only exact isolating integral of
the motion known in rotating systems (Lynden-Bell
1962).

For potentials corresponding to elliptical galaxies, the
equations of motion cannot be solved analytically,
and one must resort to numerical methods in computing
the stellar orbits. Perturbation techniques, although valid
only in a restricted region of space and in most cases in
a finite time interval, can nevertheless yield considerable
insight into the properties of the orbits and of the
integrals of motion which characterize them. A number
of perturbation techniques are available (see, e.g.,
Hagihara 1974). For our purposes, the most useful is
probably the method of asymptotic expansions based on
obtaining Birkhoff normal forms by averaging proce-
dures (Bogoliubov and Mitropolsky 1961; Van der Burgh
1974, 1976; Sanders and Verhulst 1981). In the present
investigation we adopt this method, as described by Van
der Burgh (1974) but with a slight modification, to study
the behavior of orbits near the center where the poten-
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tial has a minimum and motion can be considered
perturbed harmonic motion. A more detailed compari-
son between the present method and that of previous
authors will be made in § V.

In this study we restrict ourselves to models that are
symmetric with respect to the three principal planes, i.e.,
V=V(x? y?). In view of the regular shapes of elliptical
galaxies, this should be a reasonable approximation.
Effects of asymmetries are discussed briefly in § IVc.

b) Linear Analysis

Expanding the gravitational potential V in a Taylor
series about the origin gives

V(x,y)=136x*+36,2p% + asx*
+ia.x?yr+iagyt+ ..., (4)

where it is understood that 0 < k, < k,. Retaining only
the quadratic terms in the potential we find for the
equations of motion of an individual star

X=—2Qy—K’x, (5a)
J=+2Qx—K,%y. (5b)

Equations (5) describe a two-dimensional uniformly
rotating harmonic oscillator. The solutions of these
equations have been discussed by Freeman (1966a; see
also Hunter 1974), who investigated orbits in a
uniform-density elliptical disk. We briefly summarize
Freeman’s main results and emphasize those aspects
that are relevant to our investigation of the nonlinear
equations.

The general solution of equations (5) is a linear
combination of two uncoupled harmonic oscillations:

x=A,cos(w,t+¢,)+aAzsin(w2t+¢2'), (62)

y=PBA,sin(w,t+¢,)+ A4, cos (wyt +¢,), (6b)
where 4,, A,, ¢,, and ¢, are constants determined by
the initial conditions. The frequencies w, and w, are
given by

w1‘22=%(n12+x22)+292

— 2 1/2
+%[(fc12 +K,7 +407) —4x,2n22]

, (D
and the constants a and B are defined as
a= 29(»2/( Wyt — nlz) = (w22 - nzz)/Zsz, (8a)

B=(k?-w?)/20w,=28w,/(k> — ). (8b)
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We note that @ = 0 implies w; < w, even for ;= «,.
Also,

lel<1, |BI<I. )

The fundamental oscillations (normal modes) are
given by 4, = 0 and A4, = 0, respectively. For 4, = 0 the
orbit is an ellipse with axial ratio 1:|8|, with the major
axis along the x-direction. The motion is direct (i.e., in
the same direction as the rotation). For 4, = 0 the orbit
is an ellipse with axial ratio |a|:1, and with the major
axis along the y-direction. The motion is retrograde. For
=0 these closed orbits degenerate to straight lines
along the x- and y-axes, respectively. Closed orbits occur
in the nonrotating case only when w, /w, (i.e., &, /k,) is
a rational number.

In the general case (4,+ 0, 4, * 0), equations (6)
show that the motion can be regarded as an elliptic
epicycle, for which one of the normal modes provides
the guiding center motion and the other the gyration
around it.

The subsequent analysis of the nonlinear equations of
motion is most easily carried out in terms of the action-
angle variables (I,0) (Arnold 1978). In order to obtain
these we first define normal variables (@, P) by

0,=(08)"*[ 7+ (w,/a)x]
=(B/0)"*4, cos (w1 +¢,), (10a)
P, =(o/B)[x— wyay]
=—(B/0)*4,sin (w1 +¢,),  (10b)
0,=(00)"[x+(w,/B)y]
= (a/0)"*4,cos (wyt + ,), (10¢)
P,=(0/a)"’[j— w,Bx]
=—(a/0)*4,sin (w,t +6,),  (10d)

where the quantity ¢ is defined as

29

(A)22 — W,

Q
1]

- (11)

so that

1% - bl §
o a +w B=wa+ B (12)

The second equality in each equation (10) is valid only
in a harmonic potential. In normal variables the Hamil-
tonian H® corresponding to the linearized equations of
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motion becomes
HO= %wl(Plz + Q|2)+%‘°2(P22 + sz)- (13)
Action-angle variables (I,0) are now obtained from

the normal variables (Q, P) by the canonical transfor-
mation

0= (21,‘)1/2 cos¥,, (14a)
P,=—(2I)"sing,, i=1,2. (14b)

The Hamiltonian H® becomes, in action-angle vari-
ables,

HO =1+ w,I,, (15)

so that
I,=E xA?, (16a)
0,=w;t+¢,. (16b)

Here E, and E, are constants, and w,E, and w, E, are
the energies, as measured in the rotating frame, associ-
ated with the guiding center drift and the superposed
gyration. The normal modes are given simply by I, = 0.
Evidently, for this case there are two independent isolat-
ing integrals of motion, E; and E,. The two-dimensional
rotating harmonic oscillator is therefore a simple exam-
ple of a system which is characterized by one isolating
integral in addition to the total energy.

¢) Nonlinear Analysis
Rescale the coordinates such that x =ex*, y =¢y*,
where ¢ is a small positive parameter. Omitting the
asterisks after the transformation, and dividing V by &2,
we obtain from equation (4)
V= dea + ey

+ e (dasxt +1ax?y? + %a9y4)+ o(e*). (17)

Expressing the corresponding Hamiltonian H in terms
of action-angle variables, we find

H(1,8)=HO(I1)+¢*H,(1,8)+0(e*), (18)
where H© is given by equation (15) and

H,= Y, I"?2? [}\ijk,cos (k6,—16,)
ik

+ pyjissin (k0, — 16,)]. (19)
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Here i and j take all integer values satisfying

li|+1j1= 4,
and
k=\i,li|=2,...; k=0,
[=1j1 11— 25005 =1l

The terms A, and g, ;;, are functions of the parameters
a, B, 0, as, a;, and ay which define the potential. The
corresponding equations of motion are

I.=—¢*9H, /30, + 0(e*), (20a)

0,=w,+e*dH, /3L, +0(e*), i=1,2. (20b)

It is evident that the quartic and higher order terms in
the potential result in a complicated time dependence of
the actions and angles. One expects that in general this
time variation will consist of two parts: a “local” oscil-
lation of order €%, on a time scale comparable to 1/w,
(i.e., the dynamical time scale), and a more gradual
change on a time scale of order 1/¢* times the dynami-
cal time (e.g., Arnold 1978).

Unfortunately, equations (20) cannot be solved ex-
actly, even if only the terms of O(e®) are retained.
However, we are not interested in the small oscillations,
but only in the gradual change induced by the quartic
terms in the potential. This suggests replacing equations
(20) by some sort of averaged set of equations which
describe only the gradual change. Hopefully, the re-
sulting system can be solved and will give reasonably
accurate approximations to the exact orbits over some
interval of time. Krylov and Bogoliubov (see Bogoliubov
and Mitropolsky 1961) have proven rigorously that by
averaging the right-hand side of equations (20) in a
specific way, one indeed obtains a much simpler set of
equations, the solutions of which are approximations to
the exact solutions.

First write the frequency ratio w,/w, as

w,/w,=m/n+8, (21)

where m and n are relatively prime integers and &, the
“detuning parameter,” is of O(&*). This representation
of the frequency ratio by rational numbers and ad-
mitting the irrationals by a small perturbation of the
rationals is discussed in detail by Verhulst (1979). Sub-
stitute for the action-angle variables in equations (20)

I=11), (222)
0,(1) ="t + (1), (220)
0,(1) = @, + ¢,(1): (22¢)
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The error introduced in equation (22b) by neglecting & is
of O(&*). Since m /n is a rational number, the result of
the substitution is that for fixed (I, ¢) the right-hand
side of equation (20) is a periodic function of ¢, with
period 7, say. We therefore define a time average (f)
for any function f(1, 8) by

=7 [rEya, (23)

where it is assumed that substitution (22) is carried out
and the integration is performed while keeping 7, and ¢,
fixed. To first order, the motion is then described by the
averaged equations

I,= - eX(3H,(1,8)/46,), (242)

0. = w,+ X 9H,(I,8)/0I), (24b)

where the bar is introduced to indicate that terms of
O(&*) have been omitted. By means of the Krylov-
Bogoliubov-Mitropolsky theorem, the solutions 7;(¢) and
G.(1) of these averaged equations are first-order asymp-
totic approximations to the solutions /;(¢) and 8,(¢) of
the exact equations of motion (3). Specifically:

[1,(1)—I,(1)| < Ce?, (25a)

10,(1)—0,(¢)|<Ce®, forO<e*t<LT, i=1,2,

(25b)

where C and L are constants of order unity (Bogoliubov
and Mitropolsky 1961; Van der Burgh 1974).

The averaging theorem as stated does not make use of
the fact that the equations of motion are derivable from
a Hamiltonian. However, in the case of a Hamiltonian
system we can reduce the necessary amount of computa-
tion considerably by noting that the averaged equations
(24) are just the equations of motion corresponding to
the averaged Hamiltonian { H) given by

(HY=HO(I)+ ¢} H,(I,0)). | (26)
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Consider a typical term in the expression for H, in
equation (19), after substitution of equation (22):

Aijkllllil/zlzljl/zcos (kal - 102)
=NV 2eos{[(m /n) k — w,t
+ ke~ 1) (27)

As long as mk — nl =+ 0, this expression will be a peri-
odic function of time, with average over a period T =
zero. If, however, m/n=1/k, the expression (27) is
independent of time and equal to its average. Now.it is
clear from the specific form of the Hamiltonian H, that
only four combinations (k,/) occur that do not have
zero average for all (m, n). In addition to terms with
k =1= 0, which have nonzero average for all values of
m/n, H, contains terms with |//k|=1/3, 1, or 3. It
follows that the averaged Hamiltonian (26) can take one
of only four nontrivial forms, depending on the ratio
m/n,viz,.m/n+{1/3,1,3; m/n=1/3; m/n=1; and
m/n=3. The case m/n =3 will not be discussed fur-
ther, since it is excluded by the condition that w, < w,.
It is equivalent to the 1:3 case with the coordinate axes
interchanged.

The various averaged Hamiltonians are given in Table
1, both for the nonrotating and rotating cases. The
integrals of motion—two in each case—are also given.
The coefficients py;, 1, B2s By Mg, Bs, and pg are
functions of the parameters a, B, 0, as, a,, and ay which
define the potential, and are listed in Appendix A. Note
that in the nonrotating case we have p,=p,=p;=0
and ps = 3py,.

The occurrence of “discrete” special cases for Hamil-
tonian systems is a characteristic feature and can be
represented in a natural way by the averaging technique
adopted here (cf. Verhulst 1979). If we had included
cubic as well as quartic terms in the potential, we would
have found an additional nontrivial form corresponding
tom/n=1/2.

We now consider each case in detail.

TABLE 1
FIRST-ORDER AVERAGED HAMILTONIANS FOR V = V(x2, y?)

Integrals
m/n No Rotation Rotation of Motion
=1/3,1/1,3/1 ... Hy=rxI,+x,I. Hy= oI, + w,T. Iy I
o=kl Ky ly - o= @it why 112
+e(gunl + pa i+ 3pp 1) +e(qun i + ppl L+ pph?)
/1o Hy. = Hy+ 3e’u, 11, cos (26, —26,) Hy. = Hy+ X p 020 2 sin (6, - 6,) I+ I Hy.,
+psl T, cos (26, —26,)
+ ugly 20 sin (6, - 6,))
/3., H,;=H, Hy 3= Hy+ 2, 13/2L,'%sin (36, — 6,) I+ Hy s
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i) m/n={1/3,1)(No First-Order Resonance)

In this case the equations of motion following from
the averaged Hamiltonian H, (cf. Table 1) can be solved
immediately. We have

Ii=Ei (l=1’2), (283)
0,= [‘*’1+82(#11E|+#12E2)]t+0_1(0), (28b)
6, = [‘02+82(IL12E1+I‘22E2)]t+0_2(0), (28¢)

where E,, E,, 8, (0), and 6, (0) are constants determined
by the initial conditions. The normal modes of the
linearized system (I, =0, I, =0) remain periodic solu-
tions. In this approximation the only difference from the
harmonic case is that now the frequencies depend on the
actions, i.e., on the orbital amplitudes.

Vandervoort (1979) has computed a first-order in-
tegral of the motion for this case (in addition to the total
energy). It is easy to show that the average of this
integral, as defined in equation (23), is a quadratic
expression in E, and E,.

il) m/n=1 (1:1 Resonance)

The properties of the solutions of the equations of
motion following from the averaged Hamiltonian H,.,
(cf. Table 1) will be studied in detail in a later paper (de
Zeeuw 1983). Since the case m/n=1 (henceforth re-
ferred to as “1:1 resonance™) turns out to be the most
important for describing elliptical galaxies, we give here
the main results from that analysis.

The actions I, and I,, corresponding to the energies
of the fundamental oscillations in the linear approxima-
tions, are not conserved separately in this case. How-
ever, it is easy to show that

I—|+I—2=K1, (29)
where K| is a constant determined by the initial condi-

tions. Since w, K is the approximate energy integral, we
can write

H,,=w,K, +&’K,. (30)
It follows that, for the averaged equations of motion
corresponding to H,.;, K, is an exact isolating integral
of motion independent of K,. We find
Ky=3pnlP + pp L+ 3pp 7 + 0, (8/6°) 1,
+ po 0L % sin (0, - 6,) + ps T, 1, cos (28, —20,)
+ usd, 2L sin (6, — 6,). 31)

From the averaging theorem (cf. eq. [25]) we know that
both K, and K, are approximate integrals of the exact

equations of motion (3), with an error of order ¢* on a
time scale of order 1/¢* times the dynamical time. Of
course w,K, is an O(e?) approximation of the total
energy valid for all time. From the above it is clear that
H,., differs from the total energy by an amount of
O(&*). This means that K, is, with an error of O(¢?), an
approximate integral for all times (Verhulst 1981).

For Q=0 the expression (31) reduces to the one
derived by Verhulst (1979) in his study of epicyclic
motion in the meridional plane of an axisymmetric
galaxy (the famous “third integral”; cf. Contopoulos
1960) which in turn is a generalization of the expression
derived by Contopoulos and Moutsoulas (1965). Saaf
(1968) also computed a formal integral for a quartic
potential. Here we note one of the advantages of the
averaging method as compared to the formal methods
used by earlier authors (Contopoulos 1960, 1963;
Vandervoort 1979). Whereas both methods give, at least
in first order, exactly the same expression for the addi-
tional integral, the averaging method at the same time
gives an estimate of the accuracy of the approximation
and the time scale of validity.

The orbits described by the averaged equations of
motion will not be periodic in general. However, as a
second isolating integral exists in this case, all of the
nonperiodic orbits will be strongly tied to the periodic
ones (Ford 1974; Arnold 1978). Their trajectories in
phase space lie on well-defined tori surrounding the
various stable periodic orbits (“parent” periodic orbits).
The tori are parameterized by the value of the second
integral. We can consider the orbits in configuration
space as a superposition of a guiding center drift pro-
vided by the parent periodic orbit and an epicyclic
motion around it. The second integral can be interpreted
as a measure of the energy in this generalized epicyclic
motion. For the orbits given by the exact equations of
motion the same is true, but only to first order. Most
orbits still are strongly tied to the periodic orbits, but
the fraction of these orbits that lie on well-defined tori
in phase space generally decreases with increasing en-
ergy (e.g., Ford 1974; see also § IIIf).

Clearly it is worthwhile to find the major families of
periodic orbits. We summarize the actions and angles,
the condition for existence, and the shapes of the vari-
ous families of periodic orbits that follow from the
averaged Hamiltonian H,., in Table 2A (no rotation,
2 = 0) and Table 2B (with rotation, @ = 0). The condi-
tions for stability are also given. These are obtained by
using the second integral K, as a Lyapounov-function
(Kurth 1976; Arnold 1978). For the case of no rotation
see also Verhulst (1979).

In the absence of rotation the normal modes (1; = 0)
are solutions, of course, since they are just the axial
orbits, but the periods are now amplitude-dependent.
These orbits are called “type I” by Verhulst (1979). For
certain energies K, (the respective intervals can be de-
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ORBITS IN A TRIAXIAL GALAXY 579

duced from Table 2A) one or two additional orbit
families exist: orbits with 8, — 8, = {0, 7} (type II) which
are straight lines passing through the origin but inclined
to the x- and y-axes, and orbits with 8, — 0, = + 7/2
(type III) which are identical ellipses centered on the
origin and traversed in opposite directions.

Since orbits corresponding to types II and III do not
appear either in the linear or nonresonant case, the
structure of phase space in the energy range where these
orbits exist will differ qualitatively from that of a
harmonic oscillator. We will call this energy interval the
“resonance zone.”

In the case of a rotating potential, the normal modes
are no longer solutions of the equations of motion.
However, for all energies there exist a direct (6, — 0, =
—7/2) and a retrograde (6, —60,=+ 7/2) periodic
orbit. These are analogous to the type I orbits in the
nonrotating potential; at low energies they are very thin,
and are elongated in the direction of the x- and y-axes,
respectively. For certain energies there exist two addi-
tional orbits with 8, — 0, = 4+ /2 or — 7 /2. These orbits
are typically direct, one stable and the other unstable,
and may be considered generalizations of the type III
(elliptic) orbits in the nonrotating case. A third family,
corresponding to the type II (inclined) orbits, also ap-
pears for certain energies; the phase difference 6, — 0, is
now unequal to 0 or 7 and depends on the energy. These
orbits are ellipses, the symmetry axes of which are
inclined to the coordinate axes.

A number of authors have discussed periodic orbits in
barred potentials and have obtained results similar to
ours. For instance, Contopoulos and Moutsoulas (1965)
investigated by analytical and numerical means the 1:1
resonance in a model potential containing one cubic
term of the form exy?, and no detuning. They derived a
formal integral of motion for this case and showed that
it was well conserved numerically. They also found that
three different types of orbits exist, which they called
types A, B and C and which are related to three distinct
periodic orbit families (corresponding to our types I, II,
and III). The same potential with detuning was consid-
ered by Contopoulos and Moutsoulas (1966). Andrle
(1979 and references therein) considered motion in
quartic potentials of the form V=V(x2, y2) by two
different formal methods. Verhulst (1979) used the aver-
aging method to analyse potentials of the form V=
V(x, y?) including all cubic and quartic terms and
allowing for detuning, which is required for a study of
epicyclic motion in the meridional plane of an axisym-
metric galaxy. For the 1:1 resonance he generalized
the integral of motion found by Contopoulos and
Moutsoulas and showed that it is asymptotic in the
sense described above (cf. egs. [25]). In this more general
potential the same three types of periodic orbits still
exist.

The present investigation generalizes these results to
rotating potentials. We have found that an additional

asymptotic integral still exists and have shown that it is
valid for all time. The three periodic orbit families also
exist, but their shapes are dependent both on the degree
of rotation, and on their direction of circulation about
the rotation axis.

iiiy m/n=1/3(1:3 Resonance)

The properties of the solutions of the equations of
motion corresponding to H,., are discussed by de Zeeuw
(1983). Again a rigorous asymptotic isolating integral of
motion exists in addition to the energy: K, =3I, + I,.
Note that in the absence of rotation there is no 1:3
resonance: H,.; is identical to the no-resonance Hamil-
tonian H,. This is related to the fact that the potential is
even in x and y, i.e., V=V(x2, y?).

In all the above cases there is in first order a second
asymptotic integral in addition to the total energy. This
is a general property of systems with two degrees of
freedom and does not depend on the assumption that
V =V{(x?, y?). For higher order resonances we expect
that this result is also true (e.g., Sanders and Verhulst
1979). In particular, in general rotating two-dimensional
potentials stellar orbits are characterized by an asymp-
totic integral in addition to the total energy. The frac-
tion of orbits with two integrals is 1 in the harmonic
core and decreases as the energy (i.e., the nonlinearity) is
increased.

III. APPLICATION TO A REALISTIC MODEL
POTENTIAL

a) The Potential

Schwarzschild (1979) has constructed a nonrotating
self-consistent triaxial galaxy model by performing a
linear superposition of particle orbits in a fixed poten-
tial, so that the density distribution assumed in deriving
the potential is reproduced. Recently Schwarzschild
(1982) has succeeded in constructing a slowly rotating
version of the same model. His model galaxies are
considerably more realistic than earlier numerical or
analytical models, in that their density profile is similar
to that observed in real galaxies, and because he made
no a priori assumptions about the distribution of stellar
velocities (e.g., he did not require the velocity disper-
sions to be isotropic). Some dynamical properties of the
nonrotating model are discussed by Merritt (1980).
Wilkinson and James (1982) have shown that these
models are likely to be stable for at least a Hubble time
(see also Smith and Miller 1982).

The potential used by Schwarzschild is described
briefly in Appendix B. We define it to be zero at the
origin. As r = (x? + y?)'/? tends to infinity, the poten-
tial approaches 1. Using Schwarzschild’s (1979) for-
mulae, we find for the five parameters defining the
Taylor expansion (eq. [4]) of the potential in the x-y
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plane

K, = 0.4241, K, =0.6039,

as=—0.0415, a;=—0.1742, ay=—0.3068.
The quartic potential (4) is a good approximation to the
exact potential for |x| <1.8, |y| < 0.9, corresponding to
energies less than about 0.1. The first-order theory is
expected to be valid for the same energy range, since for
higher energies the quartic potential allows particles to
escape. The unit of length is the core radius (cf. Appen-
dix B). The rescaled version of the potential (eq. [17])
can be obtained by setting e* = 0.2 or 0.3 and changing
as, a;, and a4 accordingly.

The equidensity surfaces of Schwarzschild’s model
galaxy have constant axis ratios in the x-y plane of
1:0.625. The equipotential surfaces are rounder, with
axis ratios that vary from 1:0.7 near the center to 1:0.8
at an energy of 0.3.

We shall consider two cases: 2=0, and Q%=2X
10~4. The latter rotation frequency corresponds to a
figure rotation period of about 10® yr, if Schwarzschild’s
model is scaled to a typical galaxy. Real elliptical galax-
ies generally rotate less quickly than this, so that our
two rotation frequencies may be considered extreme
cases. The corotation radius of the rotating model lies at
r = 25. Schwarzschild’s (1982) model has Q2 =1x 107,
the model constructed by Wilkinson and James (1982)
has 2=1x10"°.

b) Axial Orbits and Choice of an Energy Scale

In the absence of rotation, each of the three Hamilto-
nians derived in § II¢ predicts the same dependence of
the frequencies of the axial orbits on their energies. We
have (cf. Tables 1 and 2B)

o=+, K, (32a)
E, = w,K,+3e%u, K2 (32v)

where w/? is the frequency of oscillation of the ith axial
orbit, E; is the orbital energy, and w,=«; for & =0.
Substituting equation (32b) into equation (32a) gives

W=+ (p,/w;)E +O0(e), (33)

so that the frequencies of the axial orbits depend lin-
early on their energies, for low energies. Figure 1 shows
the dependence of w,,” on E for orbits computed
numerically from the model potential. Surprisingly, the
dependence is almost linear for energies up to 0.4, which
is far outside the region of validity of the first order
approximation.

This numerical property of Schwarzschild’s potential
suggests the following scheme for extending the analytic

Vol. 267
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F1G. 1.—Frequency of axial orbits as a function of energy in
Schwarzschild’s potential. Each of the averaged Hamiltonians of
Table 1 predicts a linear dependence of w, ,* on E.

results, without the necessity of computing higher order
approximations to the Hamiltonian. Suppose that we
consistently neglect terms of O(&?) in defining the en-
ergy of an (analytical) orbit. By “stretching” the energy
scale in this way, the frequencies of the normal
modes—and hopefully, of the other periodic orbits—can
be predicted out to energies of 0.3 or so, where the
quartic terms no longer provide a good approximation
to the potential. Orbits of these energies typically extend
to three or four core radii from the center, so the
extension, if it works, is a very valuable one.

¢) Choice of a Hamiltonian

Before making any further comparisons between ana-
lytical and numerical results, we must decide which of
the three Hamiltonians derived in § IIc¢ is the ap-
propriate one for describing Schwarzschild’s potential.
Following the prescription of equation (21), we consider
the ratio

w /w,=0.702, Q*=0;

=0.699, Q*=2x10"*
Expressed as a ratio of integers, w, /w, is approximately
equal to 2/3 or 3 /4. Of the two resonant Hamiltonians,
H,., is clearly a better choice than H,,, although it is
not clear whether the no-resonance Hamiltonian H,
might not be best.

However, analysis of the axial orbits has shown that
by a suitable definition of the energy, we might hope to
extend the analytic results somewhat beyond the region
of validity of the asymptotic theory. In this regime, the
potential “seen” by a typical orbit is best described in
terms of the frequencies of oscillation of the finite-
amplitude axial orbits w/, and not by the central fre-
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quencies w;, since a high-energy orbit is relatively unaf-
fected by the shape of the potential in the core. Further-
more, Figure 1 shows that the ratio w,*/w,* approaches
1 as E increases, since the potential becomes nearly
spherical at high energies. We conclude that the poten-
tial should be described by the 1:1 Hamiltonian.

There is an additional reason for making this choice.
At very low energies, where the analytic results should
be most accurate, the choice of a Hamiltonian is rela-
tively unimportant, since the potential is indistinguish-
able from that of a (rotating) anharmonic oscillator.
Consequently, both H, and H,.; give the same results.
At higher energies, however, the resonance Hamiltonian
predicts a wealth of detail in the structure of phase
space that is not predicted by the nonresonant Hamilto-
nian. Much of this detail is in fact seen, as will be
discussed below.

If the frequency ratio w,/w, were nearly equal to
1/3, the choice of an averaged Hamiltonian would be
more difficult. Presumably, in this case the potential
would be best described as a 1:3 resonance at low
energies and a 1:1 resonance at high energies.

d) Periodic Orbits

The simplest periodic orbits are those for which the
actions are constant, and the complete set of these was
discussed in § Il¢ for the 1:1 Hamiltonian. We will call
such orbits “short” periodic orbits, since they typically
cross a given coordinate axis a small number of times
before closing, and their period is of the order of a
dynamical time. In the present case of a 1:1 resonance,
these orbits are, to first approximation, linear combina-
tions of two normal modes with identical frequencies.

The numerical procedure for finding the short peri-
odic orbits in a given potential is straightforward. For
orbits that are symmetric with respect to the coordinate
axes (all except the type II), specifying the energy leaves
only a single free parameter, e.g., the point at which the
orbit passes (perpendicularly) through one of the coordi-
nate axes. In the case of the type II orbits in the
nonrotating potential, which are straight lines through
the origin, this single parameter is the angle which the
orbit makes with respect to the axes. Type II orbits in
the rotating potential are tilted ellipses and require a
two-parameter search, since both their amplitude, and
the angle at which they are inclined to the coordinate
axes, are unknown.

In the nonrotating potential, the equations of motion
are unaffected by the transformation ¢ — —¢, so that
every closed orbit has a counterpart with the same figure
but opposite angular momentum. Orbits in the rotating
potential do not have this property, and retrograde and
direct orbits belonging to the same family can have quite
different shapes.

ORBITS IN A TRIAXIAL GALAXY 581

TABLE 3
VALUES OF THE PARAMETERS DEFINING H|.;

Parameter Q=0 Q=10.0141
W) e 0.4241 0.4232
Wy et 0.6039 0.6052
[ -0.2977 —0.3008
B eeeennnnnns —0.0854 —0.0853
Bigeeeennnnnn. —0.2388 —0.2424
Bgeeenennnnn, —0.6310 ~0.6251
B voneneann 0 0.00003
[ S —0.1194 —-0.1174
B s 0 —0.0587

iy 22=0

The parameters defining the 1:1 Hamiltonian in this
case are given in Table 3. The energy, after neglecting
terms of order &2, is

E=#x,K, =0.6039K,. (34)

As discussed in § IIc, the 1:1 Hamiltonian predicts
three short periodic orbits in this case: type I (axial
orbits); type II (inclined linear orbits), and type III
(elliptical orbits).

Axial orbits exist at all energies. For type II orbits the
relation between the action I, and the energy w, K| is

(p11=3pn+r) [ +(Gpn—pn) K =— K8/,
(35)

subject to the constraint that 0 < I, < K (cf. Table 2A;
€q. [29)). It turns out that for the potential chosen here,
the coefficient of I, on the left-hand side of equation
(35) is identically zero, as may be verified from Table 3.
It follows that type II orbits do not exist, in first order,
in Schwarzschild’s potential, except for one energy E
given by

E=x,K, =~ "228/52(%#12 - Mzz)'

At this energy the first-order theory predicts an infinite
number of type II orbits since I, is undetermined. In
other words, at this particular energy every straight line
through the center is a periodic orbit. This “degeneracy”
may be traced to Schwarzschild’s use of a single Legendre
polynomial to define the angle dependence of his poten-
tial in the x-y plane; as a result, a simple relation exists
between the three coefficients of the quartic terms in the
potential (4), namely (Appendix B, eq. [B7)).

as—2a;+ay=0.
From higher order theory one expects that in the

numerical potential only a few of these orbits will occur,
if at all (Verhulst 1981). Although the presence of a
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FIG. 2a

__

FIG. 2¢

F1G. 2.—Closed orbits computed with the numerical potential.
All orbits are centered on the origin, with the x-axis horizontal.
The bar at the bottom of each plot has a length of one core radius.
(a) Type III orbits in the nonrotating potential, at energies of (0.3,
0.4, 0.5, 0.6, 0.7). () Type I orbits in the rotating potential, at
energies of (0.1, 0.2, 0.3, 0.4, 0.5): retrograde (near-y) and direct
(near-x). The vertical scale for the near-x orbits has been expanded
by a factor of 3. (¢) Type III orbits in the rotating potential, at
energies of (0.4, 0.6, 0.72, 0.75): direct “thick” and direct “thin.”

finite rotation lifts the degeneracy (cf. Table 2), the
value chosen here for ©2 is small enough [ie., Q%=
O(e®)] that type II orbits are not expected to be im-
portant in the rotating potential either. In fact a numeri-
cal search shows that the type II orbits almost certainly
do not exist in Schwarzschild’s potential, nonrotating as
well as (slowly) rotating. This point is discussed further
in § IV.

Vol. 267

——cc S

FiG. 2b

Type III orbits should exist in the energy range
0.21<E.

A numerical search shows that they “bifurcate” from
the y-axial orbit at E = 0.27, in reasonable agreement
with the analytical result. At higher energies they quickly
become almost circular (cf. Fig. 2a). The energy of
bifurcation is equal to the energy at which the y-axial
orbit becomes unstable to perturbations in the x-direc-
tion, also in agreement with the analytical prediction (cf.
Table 2A).

The relationship between the various periodic orbit
families can be displayed by means of a “bifurcation
diagram.” In Figure 34 we have plotted one of the
normalized actions (i.e., amplitudes) predicted by the
analytical theory for each of the short periodic orbits, as
a function of energy. The straight line I, /K, =1 corre-
sponds to the x-normal mode. The y-normal mode is
represented by the line I, /K,=0. The bifurcation at
low energies of the type III orbit from the y-axial orbit
is evident. The instability of the y-axial orbit at energies
above 0.21 is indicated by a dashed line. The type II
orbits exist only at E = 0.39. They are represented by a
vertical line. At this energy the analytical theory predicts
a change in stability type of the normal modes: the
x-axial orbit becomes unstable to perturbations in the
y-direction and the y-axial orbit becomes stable again
(cf. Table 2A).

The bifurcation diagram obtained from the numeri-
cally calculated orbits is shown in Figure 4a, where
normalized amplitudes have been plotted in place of
actions. The diagram is quite similar to the analytical
one for energies up to about 0.3. The change in stability
type of the x- and y-axial orbits shown in Figure 3a
does not occur here, which is of course related to the
absence of the type II orbits.
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We conclude that the bulk of Schwarzschild’s model
potential in the equatorial plane lies in the 1:1 resonance
zone. With the stretching of the energy scale the analyti-
cal technique adequately describes the model to E = 0.3,
which is considerably higher than expected.

i) Q2=2x10"*

The parameters defining H,., are listed in Table 3.
For the energy we find

E=w,K,=0.6050K,. (36)

The 1:1 Hamiltonian again predicts three orbit fami-
lies, but now each family contains two distinct members,
one retrograde and the other direct. None of these is
strictly linear, of course, because of the Coriolis force.
The generalized type I and type III orbits appear as
solutions to the quartic equation given in the note below
Table 2B with parameters

e, = —0.9226,
e, =1.0022—0.2203/E.

Type I orbits exist at all energies and correspond to the
normal modes of the linearized equations of motion.
According to equation (8), the direct, near-x orbit should
have an axis ratio of about 1:0.092 at small energies,
while the axis ratio of the retrograde, near-y orbit should
be about 0.064:1. These orbits are almost linear because
Q is so small. Type II and type III orbits should exist in
the energy ranges

ORBITS IN A TRIAXIAL GALAXY 583

As expected, the finite value of Q lifts the degeneracy of
Schwarzschild’s potential referred to earlier and type II
orbits exist. Since £ is small the energy range of ex-
istence is very narrow, however.

A numerical search in the rotating potential shows
that Type II (inclined elliptical) orbits do not exist. This
is not surprising since they are predicted to occur at an
energy at which the analytical technique is not strictly
applicable (cf. § IIla). The type I orbits are shown in
Figure 2b. At small energies they are nearly elliptical,
but outside the harmonic region of the potential they
quickly change shape: the near-x orbit remains close to
the x-axis but becomes three-lobed, and the near-y orbit
becomes nearly circular.

The type III orbits are found to exist for 0.37< E <
0.75. At E=0.37 the two orbits are identical, but at
higher energies they differ, one becoming thicker than
the other (Fig. 2¢). The thick orbit is stable, and the
thin orbit is unstable. Qualitatively this is in excellent
agreement with the analytical theory. However, the en-
ergy of first appearance of these orbits is underestimated
analytically. At E=0.75 the thick and the thin orbit
join and disappear. This is probably associated with the
Lindblad resonance, which occurs at a similar energy.

As in the nonrotating case, connections between the
orbit families are most easily seen in a bifurcation
diagram. Figure 3b shows the analytical version. The
type I orbits clearly reduce to the normal modes at low
energies. With increasing energy the near-y orbit be-
comes nearly round; the near-x orbit remains very close
to the axis. The type II orbits branch off from the near-x
orbit at E =0.401 and join the thin orbit at E = 0.403.
The appearance of the unstable thin and stable thick

0401< E<0.403  (typeII), type III orbits at E =027 is also evident. Note how
changes in stability type are connected with the (dis)ap-
027<E (type III). pearance of the various orbit families.
of — T T T M) [T T T T )
I x-Qaxis 1
} o il
I m
o5} 4 = -
X
00k 1y y-axis N L@ _
| 1 1 | | | 1 | | ] 1 1
00 02 04 06 08 £ 10 00 02 04 06 08 E 10

FiG. 3.—First-order analytical bifurcation diagrams for Schwarzschild’s model potential. Orbital x-amplitude /,, as a fraction of
K,=1,+ I, is plotted against energy for the three families of short periodic orbits. Dotted lines indicate unstable orbits. (a) Q2=0. The
ty%)e 111 orbit branches off from the y-axial (type I) orbit when it becomes unstable at E = 0.21. The type II orbit exists only at E = 0.39. (b)
Q2 =2x10"% The direct (near-x) type I orbit stays close to the x-axis at all energies, while the retrograde (near-y) becomes more circular.
The type II orbits branch off of the near-x orbit at E = 0.401 and join the y-axis at E = 0.403. The direct type III orbits, one stable and one

unstable, appear at E = 0.27 and exist at all higher energies.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1983ApJ...267..571D&amp;db_key=AST

3A

rt

J. 22267, J57IDD

]

584

10

00

DE ZEEUW AND MERRITT

X-axis

y-axis

la)]

—

@
\ thin (1)

00 02 04 06 08 10 00 02 04 06 08

E

F1G. 4.—Numerical bifurcation diagrams. Orbital x-amplitude x ,,,, as a fraction of X, + Vmax» is plotted against energy. (a) 2 =0.

The type III orbit branches off from the y-axial (type I) orbit when it becomes unstable at E = 0.27. The type II orbit does not exist. (b)
2 =2x10"%. The direct and retrograde type I orbits behave almost as in the analytic theory. Type II orbits do not exist. Type III orbits
appear at E = 0.37 and disappear at E = 0.75, forming a closed loop in the bifurcation diagram. The dashed line indicates the energy of

corotation.

The numerical bifurcation picture (Fig. 4b) compares
well to the analytical one for E < 0.3. At higher energies
there are differences: the type II orbit does not exist, as
explained above, and as a result a change in stability
type of the near axial orbits does not occur either. The
type III orbits form a closed curve in the diagram and
do not join with any of the other families.

Figure 45 is very similar to Figure 6 of Contopoulos
and Papayannopoulos (1980), who studied motion in
nearly axisymmetric rotating potentials. Their orbits x,
and x; may be compared to our thick and thin type III
orbits, since they are also direct and disappear at large
radii. Contopoulos and Papayannopoulos interpreted
the disappearance of these orbits in terms of the
Lindblad resonance, which occurs at a similar radius in
their models. Although the Lindblad resonance is not
strictly defined in a strongly nonaxisymmetric potential
(cf. Van Albada and Sanders 1982), we suspect that the
disappearance of the type III orbits has a similar ex-
planation in our case. Note that the resonance leading to
these orbits can either be described as a 1:1 resonance,
as we do, or as a 2:1 resonance between the frequencies
of the “unperturbed” circular orbit and the perturbing
epicycle, if the epicycle is described in the usual rotating
frame defined by Lindblad and Oort.

e) Surfaces of Section

It is possible to integrate the averaged equations of
motion in the general case, giving the explicit depen-
dence of (I,08) on time for an arbitrary orbit. The
resulting expressions are very unwieldy, however. A
much more useful way of investigating families of orbits
is through surfaces of section (Poincaré 1899; see also
Henon and Heiles 1964; Contopoulos 1973). In the
present case we consider surfaces defined by y =0 and
fixed values of the energy, and take as our coordinates

(x, x). Consequents (points of intersection between the
orbit and the surface of section) are constrained to lie
within the region bounded by

13 +V(x,0)=E.

If a second isolating integral exists, the consequents of a
single orbit will lie along a curve, called the “invariant
curve.” In the first order theory, invariant curves are
defined by

K[ x, x,0, y( E)] = constant, (37)

where K, is the nonclassical integral of equation (31).
Orbits computed numerically can be plotted on a surface
of section by recording the values (x, X) whenever y = 0.
The degree of correspondence between the numerically
calculated surfaces of section and those calculated from
equation (37) provides a “global” test of the accuracy of
the analytical technique.

The behavior of the surfaces of section as a function
of energy is shown in Figures 5 (no rotation) and 6
(rotation), computed both analytically and numerically.
The most important feature is the onset of the resonance
zone and its associated orbits at E = 0.2-0.3; at lower
energies the invariant curves are similar to those of an
anharmonic oscillator. The general shape of the in-
variant curves is very well described by the analytical
second integral at low energies; however, the predicted
energy of appearance of the resonance zone is somewhat
off, as noted above in connection with the periodic
orbits.

The correspondence is less good at higher energies.
While the theory predicts a return to stability of the
y-axial orbit, and a corresponding change in the char-
acter of the surrounding orbits, no such change is ap-

FiG. 5.—Surfaces of section in the (x, x) plane for Q2=0,y=0, and E = (0.2,0.3,0.4,0.5). (a)—(d), top to bottom analytical; (e)-(4),

top to bottom numerical.
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F1G6. 7.—Typical nonperiodic box and tube orbits in Schwarzschild’s potential, for E = 0.3. (@) Box orbit, 22 = 0. (b) Tube orbit, 2> = 0.
This orbit lies around the type III closed orbit. (¢) Box orbit, 22 = 2X 10~ 4. (d) Tube orbit, 2> = 2 X 10~ 4. This orbit lies around the type I
closed orbit. All orbits are on the same scale. The bar has a length of one core radius.

parent in the numerical surfaces of section. Instead, the
description of phase space given by the first-order the-
ory for energies just inside the resonance zone is found
to be qualitatively correct at higher energies. In other
words, the potential can be described as a 1:1 resonance
everywhere outside of the core, and, in the case of
rotation, inside the Lindblad resonance (cf. the preced-
ing section). This important result is discussed further in
§V.

Vandervoort (1979) has constructed analytical surfaces
of section for a rotating quartic potential in the absence
of resonances. Not surprisingly, his figures are very

similar to ours at low energies (i.e., outside of the
resonance zone). Because he took a somewhat larger
value for Q, the effect of rotation on the invariant curves
can be seen more clearly in his diagrams.

Four typical (i.e., nonperiodic) orbits in the numerical
potential are illustrated in Figure 7. Box orbits
(Ollongren 1962) have as their parent the x-axial orbit
and exist at all energies. The four corners of the box are
points of zero velocity in the x-y plane at which the
orbital angular momentum changes sign. A star in a box
orbit therefore reverses its sense of progression around
the rotation axis every time it reaches one of the four

FiG. 6.—Surfaces of section in the (x,x) plane for Q2=2x10"% y=0, and E=(0.2,0.3,0..4,0.5). (a)-(d), analytical; (e)-(h),

numerical.
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corners of the box. In the nonrotating case the star thus
simply retraces its path, but in the rotating case direct
and retrograde motion are distinct so that the direct part
of the box is different from the retrograde part. This
effect can clearly be seen in Figure 7c. The time-aver-
aged density of a box orbit is strongly peaked in the
four corners. Tube orbits are tied to the type III orbits;
they have a well-defined angular momentum and avoid
the origin. Their appearance is not appreciably in-
fluenced by rotation. The importance of these two orbit
families in constructing selfconsistent galaxy models has
been elucidated by Schwarzschild (1979, 1981a) (cf. also

§V).

f) Stochastic Orbits

Some of the consequents in both the rotating and
nonrotating numerical potentials do not form simple
curves in the surfaces of section but fill up finite areas.
In both cases, comparison of the numerical and analyti-
cal surfaces of section show that the “parent” orbit
of the badly behaved consequent is an unstable one,
either the y-axial orbit or the “thin” type III orbit.
Evidently, the onset of instability for these orbits corre-
sponds to a change in character of the second isolating
integral over a finite volume in phase space. However,
these orbits are not free to wander ergodically over the
entire energy surface since much of phase space is filled
by orbits which do have a second isolating integral.
Following Goodman and Schwarzschild (1981), we will
call these orbits “stochastic.”

The existence of stochastic regions around unstable
orbits is well documented in the literature (e.g., Henon
and Heiles 1964; Ford 1974), and can be traced to what
is sometimes called an “interaction of resonances”
(Jaeger and Lichtenberg 1972; Contopoulos 1973, 1978b;
Arnold 1978). An orbit starting anywhere in a stochastic
region will eventually fill it up completely, although this
may take a very long time (Goodman and Schwarzschild
1981). First-order perturbation theory can predict the
possible existence of a stochastic region by giving the
energy at which a simple periodic orbit becomes unsta-
ble. Furthermore, it can give an upper limit to the extent
of such a stochastic region. Since we find that in first
order all orbits possess a second approximate integral,
which is a constant of the motion within an error of
O(€?) for all times, a stochastic region cannot occupy a
fraction of the whole energy surface larger than O(&?).
Of course, this estimate holds only in the region where
first order perturbation theory is valid.

In some cases studied (cf. Henon and Heiles 1964),
the size of the stochastic region increases rapidly with
energy until it fills up the entire energy surface, and
motion is ergodic. To assess the importance of stochas-
ticity in the Schwarzschild model potential, the fraction
of the two-dimensional phase space contained in the
stochastic region was determined as a function of energy
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the unstable y-axial orbit. (b) @ = 2x 10~%. The stochastic region
is tied to the unstable “thin” type III orbit and disappears at
E=0.75.

for rotating and nonrotating surfaces of section. Sto-
chastic orbits were run for a very long time ( ~10'° yr in
typical model units), and the area which they filled in
the surfaces of section measured with a planimeter. The
results are shown in Figure 8.

In the nonrotating potential the stochastic region first
appears at the onset of instability of the y-axial orbit, at
an energy of 0.27, and thereafter increases in size as
function of energy, but rather slowly. There is no indica-
tion of a rapid transition to almost complete ergodicity,
as was found by Henon and Heiles. In the rotating
potential the stochastic region is tied to the thin type III
orbit, which only exists in the energy range 0.37 < E <
0.75. It therefore reaches a maximum size, 17% of the
total area in this case, before disappearing. The rela-
tively small importance of the stochastic orbits at high
energies is due to the fact that Schwarzschild’s potential
approaches an integrable (i.e., spherical) one for large E,
whereas the Henon-Heiles potential becomes progres-
sively less integrable at high energies.

IV. GENERALIZATION

In the preceding section we have seen that the orbits
in the equatorial plane of Schwarzschild’s model
galaxy—nonrotating as well as rotating—are character-
istic of a 1:1 resonance. Here we discuss the generality
of this result. Using the analytical formulae given in § II

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1983ApJ...267..571D&amp;db_key=AST

J. 22267, J57IDD

A0

I'I_

No. 2, 1983

and Table 2, we consider the effect of variations in the
shape of the density distribution and the rotation
frequency. We also discuss the importance of type 11
orbits in a general triaxial potential. Although the re-
sults are formally valid only in the core, they give a
qualitative indication of the orbital behavior at larger
radii.
a) Variations of the Axis Ratios

Let p be the ratio of major to minor axis (x:z) of the
equidensity surfaces, and ¢ the ratio of median to minor
axis (y:z); by definition, p > ¢ > 1. For an investigation
of the effect of variations of p and ¢ on the results
obtained above, we need the gravitational potential, or
at least its Taylor expansion about the origin, as a
function of p and ¢q. The potential used by Schwarzschild
in the construction of his model galaxy is available only
in the form of a numerical table. One could in principle
repeat Schwarzschild’s potential derivation for different
values of p and ¢, but that is a rather cumbersome
approach. Fortunately, Schwarzschild (19815) has de-
vised an extremely simple analytical approximation to
the potential, which we give in Appendix B. Although
the approximation was intended only as a representa-
tion of the specific potential used in constructing the
model galaxy (having p = 2, g = 5/4), it is applicable for
different values of p and g, as long as care is taken that
the corresponding density distribution does not become
negative.

Figure 9 shows the extent of the resonance zone—
which was defined in § ITc(ii) as the energy interval in
which the resonant periodic orbits (types II and /or III)
exist—as a function of p /g (elongation in the x-y plane)
for various values of g (elongation in the y-z plane), for
= 0. We consider values of p/q up to about 2. Few
ellipticals are more elongated than this (e.g., Binggeli
1980), although some galactic bars have more extreme
axis ratios (Kormendy 1981). The case g=1 corre-
sponds to prolate galaxies; the effect of varying ¢ on the
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resonance zone is generally much smaller than of vary-
ingp/q.

For p/q=1 the potential is axisymmetric and the
type III orbits exist at every energy; they are circular
and stable. As p/q increases the potential becomes
increasingly nonaxisymmetric, and the type III orbits
first appear at progressively higher energies. This is of
course a result of the “detuning” of the potential, which
forces the orbit to make use of the quartic terms to
match frequencies in the x- and y-directions. The .upper
energy limits to the resonance zone shown in Figure 9,
as found from the expressions in Table 2A, should be
considered as formal only since our first-order ap-
proximation is certainly not valid at such high energies;
in practice the potential will become rounder at large
radii, and the resonance zone will extend to infinity, as
it does in Schwarzschild’s model potential.

As discussed above, the type II orbits do not exist in
first order in Schwarzschild’s nonrotating potential, and
this result holds also for the analytical approximation of

Appendix B, regardless of axis ratio. The following

argument suggests that orbits similar to the type II are
never important in slowly rotating potentials. Precisely
linear orbits can only exist in regions where the poten-
tial gradient points along a straight line. In axisymmet-
ric potentials this condition is satisfied everywhere; in
ellipsoidal potentials it is only satisfied along the axes.
If, however, the elongation axis of the potential were
different at large and small radii, it is reasonable to
suppose that a nearly linear closed orbit might exist,
since a test particle released from a large enough radius
would be deflected from a radial path first in one sense,
and then in the other, as it fell inward.

Schwarzschild’s potential does not have this property.
However, the Taylor expansion up to quartic terms
does, at least in certain regions, as can easily be seen by
plotting the equipotential curves corresponding to equa-
tion (17). This is because the quartic terms tend to
deform the harmonic potential radically at energies just

1.0 I N
q=10 q=15 \ q=20 N
05 | 4 4 F =
0.0
10 15 20 10 15 20 10 15 20
P/q pPlq plq

F1G. 9.—Formal extent of the resonance zone as a function of model elongation p /g, for various values of ¢, the degree of elongation in
the y-z plane. The regions outside the resonance zone are shaded. The resonance zone becomes less important as the detuning increases.
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below where the expansion breaks down. Numerical
integration of orbits in the quartic potential shows that
nearly linear closed orbits, inclined to the symmetry
axes, do in fact exist for =0, and their behavior
as a function of energy is similar to that described in
§ I1Id (i). We have also verified that inclined orbits exist
in a potential which is similar to the analytical potential
of Appendix B but contains an extra term which causes
the elongation axis to be different at large and small
radii. Elliptical galaxies have been observed which show
a shift in their isophotal major axes (e.g., NGC 596; cf.
Williams 1981), and it is possible that their density
distributions might be capable of supporting inclined
closed orbits analogous to type II. However, we suspect
that type II orbits do not play any very important role
in the dynamics of elliptical galaxies.

b) Variations of Rotation Speed

We have seen in § III that a small figure rotation has
no very important effect on the properties of orbits. In
Figure 10 we show the calculated extent of the reso-
nance zone as a function of Q for Schwarzschild’s model
galaxy, ie, p=2, ¢g=5/4. The energy of first ap-
pearance of both type II and type III orbits increases
with €, rather more rapidly for type III than type II
(recall that a finite Q allows type II orbits to exist in first
order in Schwarzschild’s potential). The different behav-
ior of the two families can be understood by noting that
the type II orbits, which always come near the center,
are less affected by changes in the potential shape than
the nearly circular type III orbits. As explained in the
above, for energies larger than ~ 0.3 the results are
formal only, but Figure 10 is probably correct in pre-
dicting the disappearance of type III orbits for large .

¢) Effect of Asymmetric Perturbations

Implicit in the discussion up to now has been the
assumption that the potential is symmetric with respect
to the three principal planes, i.e., V' =V(x?, y?). Real
elliptical galaxies often show small to moderate asym-
metries, due presumably to the effect of companions,
incomplete relaxation, etc. The time-dependent simula-
tion of Wilkinson and James (1982) suggests that even
isolated triaxial galaxies can maintain S-shaped oscilla-
tions over a Hubble time. It is therefore important to
investigate what changes result from the addition of the
asymmetric terms a¢x’y and agxy to the Taylor expan-
sion of the potential (4). This will be discussed in detail
by de Zeeuw (1983). One consequence is that for ag = 0
the 1:3 resonance occurs in first order, even for £ = 0.
In other words, the properties of the orbits in a galaxy
with w,“/w,? =1/3 will be very different if Q=0 and
a¢ = 0. Fortunately, such an elongated potential is prob-
ably not relevant to elliptical galaxies, as discussed
above.
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F1G. 10.—Formal extent of the resonance zone as a function of
rotation frequency @, for (p, q)=(2,5/4). Solid lines mark the
boundary of the range of existence of the type III orbits. The
dashed lines bound the existence region of the type II orbits. The
regions outside the resonance zone are shaded. The resonance zone
becomes less important at higher rotation speeds.

The 1:2 resonance is associated with cubic (e.g., x2y)
terms in the potential and does not occur unless these
are present, regardless of the presence of the x3y or xy?
terms. This case is discussed in detail by de Zeeuw
(1983).

For the purposes of the present paper the most im-
portant question is of course whether the properties of
the orbits found for the 1:1 resonance are influenced
appreciably by the assumption of symmetry. De Zeeuw
(1983) finds that this is not the case; the number of
short periodic orbit types that may exist is always three,
although the orbital shapes change somewhat. We con-
clude that the major orbit families found here are likely
to be the only ones present in a real elliptical galaxy.

V. DISCUSSION

The method of averaging described here has a number
of advantages over the standard perturbation tech-
niques, used for example by Contopoulos (1960), Saaf
(1968), and Vandervoort (1979) for constructing ap-
proximate integrals of the motion in galactic potentials.
These are (cf. Verhulst 1979) as follows: 1. Averaging is
conceptually and computationally much simpler than
solving the Liouville equation for the integrals of
motion, even though computer algorithms now exist for
generating formal integrals to any desired order
(Contopoulos 1966; Gustavson 1966; Giorgilli and
Galgani 1978). ‘
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2. Resonances are handled in a natural way by the
method of averaging. Expression of a Hamiltonian in
terms of action-angle variables as in equations (18) and
(19) immediately shows which resonances may occur to
the order one is considering,

3. Averaging for the frequency ratio of interest yields
an approximate Hamiltonian which can be used to find
explicit expressions for the simplest closed orbits. The
results are not formal but rigorous: the accuracy and the
time interval of the approximations are known explicitly
(cf. eq. [25]).

The existence of low-order resonances is crucial in
constructing self-consistent galaxy models from a given
potential. This may be seen as follows. Hunter (1974)
has shown that homogeneous triaxial ellipsoids cannot
exist in dynamical equilibrium, since no combination of
orbits, calculated in the corresponding (harmonic)
potential, is capable of reproducing the assumed density
distribution. This is because a harmonic potential, even
though it has three independent integrals, can only
support box orbits (cf. Fig. 7), which spend a large
fraction of their time near the core; any superposition of
them gives a density profile that is strongly peaked
toward the center, and this is inconsistent with the
constant density profile assumed in calculating the orbits.
One way around this problem is to allow two of the axes
of the ellipsoid to be equal, so that one component of
the angular momentum is conserved. Analytic solutions
do exist in this case (e.g.,, Bisnovatyi-Kogan and
Zeldovich 1970), but there is no obvious way to gener-
alize them to nonaxisymmetric potentials where the
angular momentum is not conserved.

Schwarzschild (1979) was the first to show how the
characteristic forms of orbits in systems with three effec-
tive integrals of motion can be used to construct self-
consistent triaxial models. Just as in the case of the
homogeneous ellipsoid, he found that three effective
integrals, sufficient to define box orbits, existed at every
energy in his model galaxy. However, the box orbits
always gave too large a density near the long (x-) axis.
His solution was to invoke a second family of orbits, the
three-dimensional x-tubes, which are cylindrically sym-
metric about the x-axis and contribute no density there.
The parent family of x-tubes is obviously a 1:1 closed
orbit lying in the y-z plane, analogous to the type III
orbits found here in the equatorial plane. It follows that
Schwarzschild’s numerical solution could probably not
have been constructed without the existence of a 1:1
resonance in the y-z plane. This resonance obviously
plays a role similar to the angular momentum integral in
axisymmetric potentials, in that it allows orbits to re-
main always at large distances from the center, in tubes
around the stable closed orbit. In fact, the extra integral
found here may be shown to reduce to the angular
momentum when the potential is axisymmetric, as it
must (see also de Zeeuw 1982).
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The situation is a little more complicated if figure
rotation is permitted; triaxial solutions have been found
in this case without invoking a resonance (e.g., Freeman
1966 b; Vandervoort 1980). However, in all these models
it is primarily the rotation which supports the figure in
its nonspherical shape, and not the integrals; in fact,
these models always require a unique relation between
the figure rotation speed and the degree of elongation.
For general rotation speeds—and, in particular, for the
low rotation speeds of elliptical galaxies—resonances
must always play a role.

We conclude, therefore, that the existence of a reso-
nance zone, in addition to three effective integrals, is
probably a necessary condition for the dynamical equi-
librium of a triaxial galaxy.

That Schwarzschild’s potential exhibits a 1:1 reso-
nance in the equatorial plane is not surprising. Even
for very elongated density distributions the potential
surfaces tend to be nearly spherical, and as long as the
density is a decreasing function of radius, the ratio
w“/w,* will always tend toward unity as the orbital
energy is increased. The results obtained here are pri-
marily useful in showing how the extent of the reso-
nance zone varies with variations in the potential. Fig-
ures 9 and 10 suggest that systems which are either very
noncircular, or have a high rotation speed, cannot sup-
port a large resonance zone, for the reasons given in
§ IV. This is, of course, also true for systems which are
nearly homogeneous, as shown by Hunter (1974). It
follows that self-consistent triaxial galaxy models are
probably difficult or impossible to construct in these
cases.

The above argument for the prevalence of the 1:1
resonance in the equatorial plane of course holds in any
of the three principal planes of a triaxial galaxy. There-
fore it is very likely that the general orbits in most
elliptical galaxies are characteristic of a 1:1:1 resonance
between the three fundamental orbital frequencies, i.e.,
that their phase space structure is best described by a
1:1:1 Hamiltonian. Clearly, it is very important to per-
form a detailed analysis of the major orbit families in
the general, slowly rotating three-dimensional case. The
“spectral” method of Binney and Spergel (1982) should
be a useful tool for this purpose. The method of averag-
ing described here is just as easily applied to the three-
dimensional case, and some results have been given by
de Zeeuw (1982). A comparison with numerical calcula-
tions, like those of Heisler, Merritt, and Schwarzschild
(1982) and Magnenat (1982), will be made in a future
paper. It seems likely that averaging applied to a three-
dimensional Hamiltonian will give a good understand-
ing of the orbital behavior throughout most of a triaxial
elliptical galaxy.
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APPENDIX A

AVERAGED HAMILTONIANS
The averaged Hamiltonians are given in Table 1. Here we list the expressions for the coefficients in the three

separate cases.

L. m/n+{1/31}

We have

py = %(U/B)z(?’as +2B%; + 3B4‘19),

1373 =%(0/B)(0/a)[3a2a5 +(1+a’8?)a, +3,82a9],

B = %(o/a)2[3a4a5 +2a%a;+3a,],

and the constants a, 8, and ¢ were defined in equations (8) and (11). For £ = 0 this reduces to

_3 2
pi=3zas/x,",

=1
Bz =2a7/K K5,

=3 2
P =3a9/Ky"

n.m/n=1/3

w; =10, +0(&?)

and

pa=3(0/B)"*(0/a) [ - aas+ B(1+ aB)a, — Ba,).

For © = 0 this reduces to

pr=0;

thus, the first order 1:3 resonance exists only for Q = 0.

. m/n=1

w;=w, + 0(32)

and

pa=3(0/B)"*(o/a)’[~3aas+B(1- aB)a,; +3B%s],

ws=4(0/B)(o/a)[ ~3a’as + (1 +4aB + a’B*)a; ~3B%s),

pg= %(0/.3)1/2(0/“)3/2[_ 3a’as—a(l—aB)a, + 33‘19]‘
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For € = 0 we have
ps=a;/4K,7, pg=pg=0,

so that when € =0 and V' =V(x?, y?), only ps = 0. Note that in this case s =1p,,.

APPENDIX B

SCHWARZSCHILD’S MODEL POTENTIAL
The density may be written

p(x,9,2)=f(r)=P(0,9)g(r)+ P, (0,6)h(r), (Bla)
where

Pl(8,0)=(3cos’d—1)/2=(222—x2—y?)/2r?, (B1b)

P (8,4)=3sin’d cos 2¢ =3(x*— y2)/r% (Blc)

The function f(r), which gives the dominant »-dependence at small radii, has the form of a modified Hubble profile:
f(r)=Q+r3)""2 (B2)

The spherical harmonics in the second and third terms are chosen so as to create equidensity surfaces which are
symmetric about the three principal planes, but with unequal axis ratios; in this case, the major and minor axes are in
the x- and z-directions, respectively. The functions g(r) and h(r) are calculated numerically in such a way as to make
the axis ratios of the equidensity surfaces nearly independent of radius. Schwarzschild assumed axis ratios of 1:1.25:2.
The resulting distribution is not ellipsoidal, being somewhat “dimpled” as seen from the short and intermediate axes.
The central density is equal to 1. The core radius (the radius at which the surface density equals 1,/2) is also normalized
to 1. The gravitational potential corresponding to equation (B1) can be written

¢(x,,2) =u(r)=P(0,6)v(r)+ P (6,4)w(r), (B3)

where u, v, and w are easily derived from Poisson’s equation and the expressions for the density. Setting z =0 and
adding the centrifugal force term gives the potential which was used above in numerically calculating orbits.

Because the potential of equation (B3) is not easily modified to describe galaxies of different axis ratios,
Schwarzschild (19815) has derived a simple analytical expression with arbitrary axis ratios that reproduces his model
potential to reasonable accuracy. The potential corresponding to the first term in equation (B1) may be written exactly:

u(r)=—(1/r)log [r+(1+2)"*]+1. (B4a)
For v and w, assume the functional forms
o(r)=- clrz/(l + c2r2)3/2, (B4b)

w(r)=—cr2/(1+ c4r2)3/2. (B4c)

Require that the axis ratios of the density distribution corresponding to equation (B4) be the same in the limits of small
and large r. A straightforward calculation using the expressions in Schwarzschild (1979) yields

C|=d13/5d22/5’ = (dl/dz)z/s’ c3=d33/5d42/5, C4= (d3/d4)2/5’
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where

di=(2p’¢" - P>~ ¢*)/14(p*¢* + p* + %),

dy=(1/6)[1-3/(p*+¢* +1)],

d;=(p"~q%)/28(P°¢* + P’ + ¢*),

dy=(p’ - ¢*)/12(1+ p’ + ¢*),

and p and q are the axis ratios, referred to the short axis, at small and large r. The potential is zero in the center and
approaches 1 as r goes to infinity. The density functions corresponding to equation (B4) are given by

g(r)=3c1c2(7+202r2)r2/(1+czr2)7/2, (B5a)

h(r)=3cseq(T+2¢4r?)r¥/(1+ c4r2)7/2.

(B5b)
For the case (p =2, ¢ =1.25), we have
¢, = 0.06408, ¢, = 0.65456, ¢;=0.01533, cq = 0.98067.

A comparison with the density calculated numerically from equation (B1) and Poisson’s equation used by Schwarzschild
(1979) shows that the axis ratios deviate by no more than 15% from their central values in this case.
The Taylor expansion of the potential up to quartic terms is

o(x,y,2)=3K2x% +31,2y2 + Ixy%2% + Jasx* + da,x%y? + dagy® + b, x%2% + b3y + 1b szt (B6)

where
kK2=31—1c¢,—6c;, K =%1—c¢, +6¢;, K2 =%4+2¢,
3 3 3
a5=—ﬁ+3clc2+1803c4, a7=—-ﬁ+3c1c2, a9=—1—0+3c1c2—18c3c4,
3 3 3 3
b”=—m——2—clcz+9c3c4, b13=——1—6—§c,62—9c3c4, b,6=—1—0—6clcz.
Note that
as—2a;+ay=0, (B7)

regardless of axis ratios.
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