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We nvestigate the statistics of single-mode delay times of waves reflected from a disordered waveguide 1n
the presence of wave localization The distribution of delay times 1s qualitatively different from the distribution
n the diffusive regime, and sensitive to coherent backscattering The probability of finding small delay times
1s enhanced by a factor close to V2 for reflection angles near the angle of incidence This dynamic effect of
coherent backscattering disappears m the diffusive regime

DOI 10 1103/PhysRevE 63 026605

I. INTRODUCTION

The two most prominent interference effects arising from
multiple scattering are coherent backscattering and wave lo-
calization [1-6] Both effects are related to the szaric mten-
sity of a wave reflected ot transmitted by a medium with
randomly located scatterers Coherent backscattering s the
enhancement of the reflected mtensity m a nartow cone
around the angle of incidence, and 1s a result of the system-
atic constructive interference i the presence of time-1eversal
symmetiy [4,5] Localization arises from systematic destruc-
trve nterference, and suppresses the transmutted intensity [6]

Thus paper presents a detailed theory of a recently discov-
ered [7] mterplay between coherent backscattering and local-
1zation n a dynamic scattering property, the single-mode de-
lay tume of a wave reflected by a disordered waveguide The
single-mode delay time 1s the detivative ¢’ =d ¢/dw of the
phase ¢ of the wave amplitude with respect to the frequency
w It 1s lmearly 1elated to the Wigner-Smith delay times of
scattering theory [8—10], and 1s the key observable of recent
experiments on multiple scattering of microwaves [11] and
light waves [12] Van Tiggelen, ef al [13] developed a sta-
tistical theory for the distitbution of ¢’ 1n a waveguide ge-
ometty (where angles of mcidence ate discretized as modes)
Although the theory was wotked out mamly for the case of
transmussion, the implications for reflection are that the dis-
tribution P(¢') does not depend on whether the detected
mode n 1s the same as the mcident mode m o1 not Hence 1t
appears that no coherent backscattering effect exists for
P(g")

What we will demonstrate heie 18 that this 1s ttue only if
wave localization may be disiegarded Pievious studies
[11,13] deait with the diffusive 1egime of waveguide lengths
L below the localization length ¢ (The localization length 1n
a waveguide geometty 1s £=N{, with N the number of
propagating modes and / the mean free path ) Heie we con-
sider the localized 1egime L> ¢ (assumung that also the ab-
sotption length £,>¢) The distuibution of 1eflected intensity
1s 1nsensitive to the presence o1 absence of localization, be-
g given in both 1egimes by Rayleigh’s law In contiast, we
find that the delay-tune distribution changes maikedly as one
enters the localized 1egime, decaymg moie slowly for laige
|¢'| Moieovel, a cohelent backscattering effect appears
For L> ¢ the peak of P(¢') 1s higher for n=m than for n

1063-651X/2001/63(2)/026605(13)/$15 00

63 026605-1

PACS number(s) 42 25Dd, 42 25 Hz, 72 15Rn

#m by a factor which 1s close to \/5 , the precise factor being
V2 X (4096/13717)=1 35

We also consider what happens 1f time-reversal symmetry
1s broken, by some magneto-optical effect The coherent
backscatteting effect disappears However, even for n#m,
the delay-time distribution for preseived time-reversal sym-
metry 1s different than for broken time-reversal symmetry
This difference 1s again only present for L> ¢, and vanishes
1 the diffusive regime

The plan of this papet 1s as follows In Sec II we specify
the notion [11] of the single-mode delay time ¢’, relate 1t to
the Wigner-Smith delay times, and review the results [13]
for the diffusive regime, extending them to include ballistic
corrections This section also contains the random-matiix
formulation for the localized regime, that provides the basis
for our calculations, and includes a brief discussion of the
conventional coherent backscattering effect in the static m
tensity / Section IIT presents the calculation of the joint dis-
tribution of ¢’ and I We compare our analytical theory with
numeiical simulations, and give a qualitative argument for
the dynamic coheient backscattering effect The role of ab-
sorption 1s discussed, as well as the effect of broken time-
teversal symmetty Details of the calculation are delegated to
the Appendixes

II. DELAY TIMES
A. Single-mode delay times

We consider a disordered medium (mean free path 7) m a
waveguide geometry (length L), as depicted in Fig 1 There
ale N> piopagating modes at fiequency w, given by N
= A/N? for a waveguide with an opening of area A The
wave velocity s ¢, and we consider a scalar wave (disregard-
mg polatization) for simplicity In the numerical simulations
we will wotk with a two-dimensional waveguide of width W,
wheie N=2W/X

We study the dependence of the reflected wave amplitude

Fam=Ie'? (1)

on the fiequency w The indices n and m specify the detected
and mcident mode, respectively (We assume single-mode
excitation and detection ) Heie /=1 ,,,|> 1s the intensity of
the 1eflected wave 1n the detected mode for unit incident
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FIG. 1. Sketch of a waveguide containing a randomly scattering
medium and illuminated by a monochromatic plane wave. We study
the frequency dependence of the phase ¢ of the reflected wave
amplitude in a single speckle, corresponding to a single waveguide
mode. The derivative ¢’ =d¢/dw is the single-mode delay time.

intensity, and characterizes the static properties of the re-
flected wave. Dynamic information is contained in the phase
derivative

,_ a9

which has the dimension of a time and is called the single-
mode delay time [11,13]. The intensity  and the delay time
¢’ can be recovered from the product of reflection matrix
elements

p=run(@+180)r}),(0—10w), ()

evaluated at two nearby frequencies w=* 3 Sw. To leading
order in the frequency difference dw one has

=[(1tidwe¢')=I= lim R = 1i Imp
P idud)=I= imRep. #'= lim G

)

We seek the joint distribution function P(I,¢’) in an en-
semble of different realizations of disorder. We distinguish
between the diffusive regime where L is small compared to
the localization length £=NI, and the localized regime
where L=¢£. Localization also requires that the absorption
length £,=£&. We will contrast the case of excitation and
detection in two distinct modes n#m with the equal-mode
case n=m. Although we mainly focus on the optically more
relevant case of preserved time-reversal symmetry, we will
also discuss the case of broken time-reversal symmetry for
comparison. These two cases are indicated by the indexes
B=1 and 2, respectively.

B. Relation to Wigner-Smith delay times

In the localized regime (£<€L,£,) we can relate the
single-mode delay time ¢’ to the Wigner-Smith [8~10] de-
lay times 7,, with i=1,...,N. The 7,’s are defined for a
unitary reflection matrix r (composed of the elements r,,,);
hence they require the absence of transmission and of ab-
sorption. One then has
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.Ta’r .

—ir EZ;ZU diag( 7y, ..., U, (52)
) *drT .

—ir E(.L)__—_—.V diag(ry, ..., 7V, (5b)

with U and V unitary matrices of eigenvectors. In the pres-
ence of time-reversal symmetry r is a symmetric matrix;
hence V=U in this case.
For small éw we can expand
rlo*i8w)=VIU+LiswVT diag(ry, ..., 75)U. (6)
Inserting this into Eq. (3) and comparing with Eq. (4) yields
the relations

Ay
(ﬁ'—_—RCA—;, I1=14,|% Ak:Z Hup,. (7

We have abbreviated u,=U,,, and v,=V,,. In the special
case n=m, the coefficients u#, and v, are identical in the
presence of time-reversal symmetry.

The distribution of the Wigner-Smith delay times in the
localized regime was determined recently [14]. In terms of
the rates w,=1/7, it has the form of the Laguerre ensemble
of random-matrix theory,

P({u,})“g |M;“#,|B1;[ O (e YBN+2=Pu  (g)

where the step function ®(x)=1 for x>0 and 0 for x<0.
The parameter y is defined by

y=allc, 9)

with the coefficient a=m%/4 or 8/3 for two- or three-
dimensional scattering, respectively. Equation (8) extends
the N=1 result of Refs. [15-17] to any N.

The matrices U and V in Eq. (6) are uniformly distributed
in the unitary group. They are independent for S8=2, while
U=V for B=1. In the large-N limit the matrix elements
become independent Gaussian random numbers with vanish-
ing mean and variance 1/N. Hence

(w)y=(y=0, (u|=(v|?)=N"", (10)

with u,=v, for n=m and B= 1. Corrections to this Gaussian
approximation are of order I/N.

C. Diffusion theory

The joint probability distribution P({,¢") in the diffusive
regime [<€[,<§¢ was derived in Refs. [11,13],

Pard1,6") = O (D) (117T) ™0 ') 71"

(11)
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with constants I, ¢’, and Q It has the same form for trans-
mussion and reflection, the only difference being the depen-
dence of the constants on the system parameters Here we
focus on the case of reflection, because we are concerned
with coherent backscattermg

From the jomnt distribution function [Eq (11)], for the
mtensity one obtans the Rayleigh distribution

i -
Pdlff(l)=§exp(_1/1) (12)

Hence 7 1s the mean detected mtensity per mode It 1s given
by [18]

_ 1
Iz.ﬁ(ln*_éﬁlanm)’ (13)

assuming unit mncident mtensity The factor of 2 enhance-
ment 1n the case n=m 1s the static coheient backscattering
effect mentioned 1n Sec I, which exists only 1 the presence
of tume-reversal symmetry (8=1) Equations (12) and (13)
remam valid 1n the localized regime, since they are deter-
mined by scattering on the scale of the mean free path
Hence L>1 1s sufficient for static coherent backscattering,
and 1t does not matter whether L 1s small or latge compared
to &

By mtegrating over I m Eq (11) one arrives at the distri-
bution of single-mode delay times [11,13],

Pdlff<¢'>=%[Q+(¢'/<7)'—1)2]‘3’2 (14)

Hence ¢' 1s the mean delay time, while VO sets the 1elative
width of the distribution These constants aie determined by
the correlator [11,13]

(ram(@+ 8w)i 1, (w))

(Fam(@)1 (@)
=]1+1d' Sw—12d"* Q0+ 1)(Sw)? (15)

Cpp=

Diffusion theory gives

&' =2ysl3, Q=2s/5 (16)

Heie v 1s given by Eq (9) We have defined
s=a'Lll, (7

wheie the numerical coefficient o’ =2/, 3/4 for two- and
three-dimensional scattering {The cotresponding 1esult for O
given 1n Ref [13] 1s incortect )

Diffusion theoty predicts that the distitbution of delay
times [Eq (14)], as well as the values of the constants ¢’
and @, do not depend on the choice n=m or n# m (and also
not on whether tume 1eversal symmetty 1s piesetved o1 not)
Hence thete 15 no dynamic effect of coherent backscattering
in the diffusive 1egime
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FIG 2 Distribution of the single-mode delay time ¢’ in the
diffusive regime The 1esult of numerical simulation (data points)
with N =150 propagating modes 1s compared to the prediction [Eq
(14)] of diffusion theory (solid curve) There 1s no difference be-
tween the case n=m of equal-mode excitation and detection (open
circles) and the case n#m of excitation and detection n distinct
modes (full circles)

D. Ballistic corrections

The expressions for the constants 7, &', and Q given
above are valid up to corrections of order I[/L Heie we give
more accurate formulas that account for these ballistic cor-
rections (We need these to compare with numerical simula-

tions ) We determine the ballistic corrections for Q and ¢’
by relating the dynamic problem to a static problem with
absorption (This relationship only works for the mean It
cannot be used to obtain the distribution [19]) The mean
total 1eflectivity

a=1+x—2x+x’coth[ s yV2x+ x>+ arcosh(1 +x)]
(18

for absorption «¢'x per mean free path was evaluated in Ref
[20] [Heie @’ 1s the same constant as 1n the definition of s,

see Eq (17) ] We 1dentify C,=a(x)/a(0) by analytical
continuation to an imaginaly absorption rate x=—i1dw-y
Expanding 1n x to second ordet, we find

_ s(3+25)
IRENTED R

3 853 +28s2+30s+ 15

19
5(25+3)° (19)

E Numerical sicmulation

The vahdity of diffusion theory was tested m Refs [11-
13] by compatison with expetiments 1n transmussion In Fig
2 we show an alternative test in 1eflection, by comparison
with a numerical simulation of scattering of a scalar wave by
a two-dimensional iandom medum (We assume time
1eveisal symmetiy ) The 1eflection matrices 1 (w= 3 Sw) are
computed by applying the method of 1ecursive Gieen func-
tions [21] to the Helmholtz equation on a square lattice (lat-
tice constant a) The width W=100a and the fiequency w
=1 4c/a ae chosen such that theie are N=50 propagating
modes The mean fiee path /=14 0« 1s found ftom the foi-
mula [22] 177 '=Ns(1+5)"! for the 1eflection probability
The comiesponding localization length é=NL/s=1100a
The patameter y=46 3 a/c 1s found fiom Eq (19) by equat-
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mg (¢'Y=¢' (This value of y 1s somewhat larger than the
value y=72l/dc=345alc expected for two dimensional
scattering, as a consequence of the anisotiopic dispersion
relatton on a square lattice ) We will use the same set of
parameters later 1n this paper m the mtetpretation of the re-
sults 1 the localized regime Our numerical results confirm
that i the diffusive regime the distribution of delay times ¢’
does not distinguish between excitation and detection 1 dis-
tinct modes (rn+# m, full circles) and 1dentical modes (n=m,
open circles)

III. DYNAMIC COHERENT BACKSCATTERING EFFECT
A. Distinct-mode excitation and detection

We now calculate the jomnt probability distribution func-
tion P(/,¢") of intensity / and single-mode delay time ¢’ n
the localized 1egime, for the typical case n# m of excitation
and detection 1 two distinct modes We assume a preserved
time-reversal symmetry (8=1), leaving the case of broken
time-1eveisal symmetry for the end of this section

It 1s convenient to work momentarily with the weighted
delay time W= ¢'I and to 1ecover P(I,¢") from P(I,W) at
the end The characteristic function

x(p.q)=(e ?71%) (20)

1s the Fourter transform of P(I,W) The average { ) 18
over the vectors u and v and over the set of eigenvalues {7,}
The average over one of the vectors, say v, 1s easily carried
out, because 1t 1s a Gaussian mtegiation The 1esult 1s a de-
terminant

x(p,q)={det(1+1H/N)1), (21a)

H=pu*u'+ tg(u*u’+uru’) (21b)
The Hermitian matiix H 1s a sum of dyadic products of the
vectors u and u, with u,=u,7,, and hence has only two
non-vanishing ergenvalues Ay and A_  Some stiaightfor-
watd linear algebra gives

N+=3(qB,+p*\2pqB,+q*B,+p?), (22)

wheie we have defined the spectial moments
By=2 |uf’rf (23)
l
The resulting determimant 1s

det(1+H/N) '=(1+N/N) W (1+A_/N)"!, (24)

hence

2 -1
‘%(32—3%)J >

p1q
X(P,Q)—< L+ +yBi
(25)

An nverse Founer trtansform, followed by a change of vaii-
ables from LW to I,¢’, gives
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FIG 3 Dustribution of the single-mode delay time ¢’ i the
localized regime The results of numerical simulations with N
=50 propagating modes (open circles for n=m, full circles for n
#m) are compared to the analytical predictions The curve for dif
ferent mcident and detected modes n# m 1s obtained from Eqs (27)
and (28) The curve for n=m 1s calculated from Egs (29) and (30)
The same value for 7y 1s used as i the diffusive regime (Fig 2)

P(I,¢")=O(I)(N>I/a) 2N

r__ 2
EWCRLD )>

X { (B,—B?) ™ 12ex
<( 2 1) p BZ_B%

(26)

The average 1s over the spectral moments B and B, which
depend on the «,’s and 7.’s via Eq (23)

The calculation of the jomt distribution P(B,B,) 1s pre-
sented m Appendix A The result 1s

NB?
P(By,By)= ®(Bl>®(Bz)e><p(

By
BiyN3 2N
2 o
X Bg (By+yN*B)exp B,
3n75
N 2yN
7 (235—43%32N+B‘}N2)E1(—L ,
4B§ B,

27)

where Ei1(x) 1s the exponential-integial function The distri-
button P(I,¢") follows fiom Eq (26) by integrating over B,
and B, with weight given by Eq (27)

Inespective of the distutbution of B; and B,, fiom Eq
(26) we recover the Rayleigh law [Eq (12)] fot the itensity
I The distitbution P(¢') = fgd IP(I,¢") of the smgle-mode
delay time takes the foim

P(B\,B,)(B,—BY})
2(By+¢'* 2B p")>?

P(¢')= j:dBlf:de (28)

In Fig 3 this distiibution 1s compated with the result of a
numetical simulation of a 1andom medium as in Sec IIE,
but now m the localized 1egime The same value for y was
used as m Fig 2, making this comparison a paiameter-fiee
test of the theo1y (Note that y alone determines the complete
distribution function n the localized 1egime, 1 contiast to
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the diffusive case where two parameters are requred ) The
numerical data agree very well with the analytical prediction

B. Equal-mode excitation and detection

We now turn to the case n=m of equal-mode excitation
and detection, still assumung that time-1eversal symmetiy 1s
preserved Since u,=v,, we now have

C
¢'=R Cl’ I=|Col?, C=2 (29)
0 l
The jomt distribution function P(Cy,C,) of these complex

numbers can be calculated in the same way as P(B,B;) In
Appendix C we obtain

P(CO,CI)OCexp(—N|C0|2/2)f dss?e”s
0

(e

The corresponding distribution function P(¢') 1s also plot-
ted m Fig 3, and compared with the results of the numerical
simulation Good agreement 1s obtained, without any free
parameter

|C1'252
’)/2N2

—5/2
2s "
"‘WRC COCI ) (30)

C. Comparison of both situations

Comparing the two cuives m Fig 3, we find a stitking
difference between distinct-mode and equal-mode excitation
and detection The distribution for n=m displays an en-
hanced probability of small delay times In the vicinity of the
peak, both distitbutions become very similar when the delay
times for n#m are divided by a scale factor of about V2 In
the lmmt N—oe (see Sec IID), the maximal value
P(¢peg) = V2/7N3y* for n=m 1s larger than the maximum
of P(¢") for n#m by a factot

Pl Ppear) 4096
——gb‘,’;“'“= 2X———=135 31)
Pn%m( ¢pedl\)

1371w
Cortespondingly, the probability to find very laige delay
times 1s 1educed for n=m This 15 reflected by the
asymptotic behaviol

yN3?2 2m)~ 2 for n=m
P(¢')~— 32
(¢7) @' Jml4 for n#Em (32

The enhanced probability of small delay times for n=m
1s the dynamic coherent backscatteiing effect mentioned 1
Sec I The effect 1equues localization, and 1s not observed m
the diffusive regime

D. Limit N—

The 1esults piesented so far assume N> 1, but retain
fimte-N cotections of order N~ 2 (Only teimns ot order /N
and higher aie neglected ) It tutns out that the asymmetty of
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FIG 4 Distribution of the single-mode delay time ¢’ 1n the
localized regime for preserved time-reversal symmetry, i the limut
N—oo In this limit P(¢’) becomes symmetric for positive and
negative values of ¢ Compared are the result for n#m [Eqs (33)
and (A16)] and n=m [Eqgs (29), (34), and (35)] The distribution
for n=m falls on top of the distmbution for n#m when @' 1s
rescaled by a factor 135 (dashed curve, almost indistinguishable
from the solid curve for n#m)

P(¢") for positive and negative values of ¢’ 1s an effect of
order N The asymmetry 1s hence captured faithfully by
our calculation We now consider how the asymmetry even-
tually disappears 1 the himit N—

For distinct modes n# m, the spectral moments scale as
B,;~yN and B,~y*N> With ¢'~ yN*?, one finds that B,
can be omitted to order N~'2 n Eq (28) One obtains the
symmetiic distribution

P(B3)B,

P(¢ ):fo d322(32+¢,2)2/2

(33)

plotted m Fig 4

For 1dentical modes n=m, observe that the quantities Cy
and C; become mutually mdependent in the large-N limit
The cross-term (yN) ™! Re CoC§ m Eq (30) 1s of relative
order N~ 2 because Co~N~""? and C,;~yN Hence, to or-
das N2, the distribution factorizes, P(Cy,C,)
=P(Cy)P(C,) The distribution of Cq 1s a Gaussian,

N
P(Co)= 5—exp(=NI|Co|*/2), (349)

as a consequence of the central-limit theoiem, and

. Ic |232 51
P(cl)ocfo dss?e ™| 1+ — ) (35)

The 1esulting distitbution of ¢’ =Re(C/Cy) 15 also plotted
m Fig 4

The dynamic coherent backscattering effect persists in the
limit N—ce, 1t 1s theiefoie not due to finmte-N corrections
The peak heights differ by the factor given m Eq (31)
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E. Interpretation in terms of large fluctuations

In order to explamn the coheient backscattering enhance-
ment of the peak of P(¢’) m more qualitative terms, we
compare Eq (29) for n=m with the corresponding relation
[Eq (7)] for n#m

The factonization of the jomt distribution function
P(Cy,Cy) discussed in Sec IIID can be seen as a conse-
quence of the high density of anomalously large Wigner-
Smith delay times 7, in the Laguerre ensemble [Eq (8)] The
distribution of the laigest time 7,,,, =max,7, follows from the
distrtbution of the smallest eigenvalue 1n the Laguerre en-
semble, calculated by Edelman [23] It 1s given by

yN? 2
P( 7-max) = > exp( - ')/N /Tmax) (36)

max

As a consequence, the spectral moment C; 1s dominated by a
small number of contributions u,zrl (often enough by a smgle
one, say with mdex 1=1), while Cy can be safely approxi-
mated by the sum over all remaiming mdices ¢ (say, 1#1)
The same argument applies also to the spectral moments A4,
which determine the delay-time statistics for n#m, hence
the distribution function P(Ay,A ;) factorizes as well

The quantities Ay and Cq have a Gaussian dstribution for
large N, because of the central-lumut theotem, with P(Cg)
given by Eq (34) and

N
P(Aq)= —exp(=N|4o|*) (37)

It then becomes clear that the main contribution to the en-
hancement [Eq (31)] of the peak height, namely, the factor
of \/2, has the same origin as the factor of 2 enhancement of
the mean mtensity I Moie precisely, the 1elation P(Ay=x)
=2 P(Cy= ﬁx) leads to a rescaling of P(I) for n=m by a
factor of 1/2 and to a 1escaling of P(¢’) by a factor of NG
The remaimg factor of 4096/13717=095 comes fiom the
difference 1n the distributions P(A ;) and P(C,) It tuins out
that the distubution

82

P(A =f ds
( 1) 0 47T’yN (4+!A1/’)/N|252)3
X[e™5(64+325+ 1252 +5%) =352 E1(—5)]
(38)

(dettved m Appendix D) 1s very simular to P(Cy) given in
Eq (35), hence the iemaining factor 1s close to unity

The laige 7,’s ate 1elated to the penetiation of the wave
deep nto the localized 1egions and are eliminated m the dif-
fusive tegime L<¢ In Sec IIIF we compaie the localized
and diffusive 1egimes m mote detail
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FIG 5 Dustrbutions of B;=B,/yN and B,=B,/y*N* The
analytic prediction from Eq (27) [for explicit formulas see Eqs
(A15) and (A16)] 1s compared to the result of a numerical simula-
tion of a Laguerre ensemble with N=350

F. Localized vs diffusive regime

Comparison of Eqs (11) and (26) shows that the two joint
distributions of 7 and ¢’ would be 1dentical 1f statistical fluc-
tuations 1n the spectral moments B and B, could be 1gnored
The correspondences are

Bi~¢', B;—Bi-0§" (39)
However, the distribution P(By,B,) 1s very broad (see Fig
5), so that fluctuations cannot be 1ignoted The most probable
values aie

Btlypxcalz ’)/N, Btzyp‘c‘]l"—‘ ’)/2N3, (40)
but the mean values (B;),{B,) diverge—demonstiating the
presence of large fluctuations In the diffusive 1egime L<¢
the spectial moments B; and B, can be replaced by their
ensemble averages, and the diffusion theoy [11,13] 15 1ecov-
eted (The same applies 1f the absorption length £,<¢)

The large fluctuations in By and B, directly affect the
statistical propeities of the delay time ¢’ We compate the
distitbution [Eq (28)] m the localized regime (Fig 3) with
the 1esult [Eq (14)] of diffusion theory (Fig 2) In the local-
1zed 1egime the value ¢I’)elk:B‘1yp‘°“l at the center of the peak
of P(¢’) 1s much smaller than the width of the peak A g’
= (ByPely 2~ Bae i (€/1)1* This also holds m the diffusive

1egime, whete ¢/, =@’ and A¢p’= /. (L/1)"> However,
the mean (¢')=(B;) diveiges for P, but 1s fimite (equal to
@') for Pag For large B, one has, asymptotically, P(B,)
~iNy2J7B;¥?  As a consequence, n the tails P(¢')
falls off only quadiatically [see Eq (32)], while 1n the diffu-

sive tegime Pyl )~10¢ %@’ 73 falls off with an m-
verse thud powet

G. Role of absorption

Although absoiption causes the same exponential decay
of the tiansmutted intensity as localization, this decay 1s of a
quite different, namely, an incoherent, natwe The stiong
fluctnations m the localized 1egume disappeal as soon as the
absoiption length &, diops below the localization length ¢,
because long paths which penetiate mto the localized 1egions
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FIG 6 Single-mode delay-time distribution P(¢’) in the pres-
ence of absorption The data points are the result of a numerical
simulation of a waveguide with length L=4 5§ Open circles are for
equal-mode excitation and detection n=m, and full circles for the
case of distinct modes n#m In the upper panel (with £,<¢), the
data are compared to the prediction [Eq (14)] of diffusion theory
In the lower panel we compare with the predictions [Eqs (27)—
(30)] of random-matrix theory

100 200 300

are supptessed by absorption In this situation one should
expect that the 1esults of diffusion theoy aie agamn vald
even fo1 L=¢ This expectation 1s confirmed by our numert-
cal stmulations (We do not know how to mcorpotate absorp-
tion effects into our analytical theory )

In Fig 6 we plot the delay-time distribution for two val-
ues of the absorption length &,<¢ and one value £,> £, both
for equal-mode and distinct-mode excitation and detection
The length of the wavegmde 15 L=41{ The 1esult for
strong absoiption with £,=0 11£ 15 very similar to Fig 2
Trrespective of the choice of the detection mode, the data can
be fitted to prediction (14) of diffusion theory The plot for
£,=047¢ shows that the dynamic coherent backscattering
effect slowly sets m when the absoiption length becomes
compaiable to the localization length The data also deviate
fiom the prediction of diffusion theory The full factor [Eq
(31)] between the peak heights quickly develops as soon as
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o'/

FIG 7 Comparison of the single-mode delay-time distributions
for preserved and broken time-reversal symmetry The number of
propagating modes 1s N=50 The curves are calculated from Bq
(28), with P(B,B,) given by Eq (27) (8=1) or Eq (41) (B
=2)

&, exceeds £, as can be seen fiom the data for £,=2 1£
Moreover, these data can already be fitted to the predictions
of random-matrix theory, with y=532a/c (The value y
=46 3 a/c of Sec IIE 1s 1eached when absorption 1s further
reduced )

H. Broken time-reversal symmetry

The case S=2 of broken time-reversal symmetry 1s less
mmportant for optical applications, but has been realized 1n
microwave experiments [24—26] There 1s now no difference
between n=m and n¥m The matrices U and V have the
same statistrcal distribution as for the case of preserved time-
reveisal symmetry Hence, by followmg the steps of Sec
IIT A, we arttve agam at Eq (26), with spectral moments B,
as defined in Eq (23) Theu jomt distribution has now to be
calculated fiom Eq (8) with 8=2 This calculation 1s carried
out in Appendix B The result 1s

2yN3B} )
_33— exp(—NBi/B,—2yN/B,) (41)

2

P(B;,B,)=

The distubution of single-mode delay times P(¢') 1s given
by Eq (28), with the function P(B;,B,) We plot P(¢’) n
Fig 7, and compazte 1t to the case of preserved time-reversal
symmetty The distiibution 1s 1escaled by about a factor of 2
toward laiger delay times when time-reversal symmetry 1s
bioken This can be undeistood from the fact that the 1el-
evant length scale, the localization length, 1s twice as large
for bioken time-ieveisal symmetty (£=2NL/s, while &
=NL/s fo1 preserved time-reversal symmetiy)

IV. CONCLUSION

We have presented a detailed theory, supported by nu-
merical sunulations, of a recently discoveied [7] coherent
backscattering effect m the single-mode delay times of a
wave 1eflected by a disordered waveguide This dynamic ef-
fect 1s special because 1t 1equues localization for its exis-
tence, 1n contiast to the static coherent backscatteiing effect
i the 1eflected intensity The dynamic effect can be undes
stood fiom the combination of the static effect and the laige

026605-7



SCHOMERUS, van BEMMEL, AND BEENAKKER

fluctuations in the localized regime.

In the diffusive regime there is no dynamic coherent
backscattering effect: The distribution of delay times is un-
affected by the choice of the detection mode and the pres-
ence or absence of time-reversal symmetry. The effect also
disappears when the absorption length is smaller than the
localization length. In both situations the large fluctuations
characteristic of the localized regime are suppressed.

Existing experiments on the delay-time distribution
[11,12] verified the diffusion theory [13]. The theory for the
localized regime presented here awaits experimental verifi-
cation.
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APPENDIX A: JOINT DISTRIBUTION
OF B; AND B, FOR =1

We calculate the joint probability distribution function
P(B/,B,) of the spectral moments B, and B,, defined in Eq.
(23), which determine P(I,¢’) from Eq. (26). We assume
preserved time-reversal symmetry (B8=1). Since B,
=3 |u,|*u*, we have to average over the wave function
amplitudes u,, which are Gaussian complex numbers with
zero mean and variance 1/N, and the rates u, which are
distributed according to the Laguerre ensemble [Eq. (8)] with
B=1. This Laguerre ensemble is represented as the eigen-
values of an NXN Hermitian matrix W'W, where W is a
complex symmetric matrix with the Gaussian distribution:

P(W)xexp[ — y(N+ 1)tr WIw]. (AD)
The calculation is performed neglecting corrections of order
1/N, so that we are allowed to replace N+ 1 by N. The mea-
sure is

dW=]] dReW, dImw, [[ dRe W, dImW,,.
1<j 1
(A2)

1. Characteristic function

In the first step we express P(B,B;) by its characteristic
function,

1 ) )
PBs 5= (277)2}_%"1’ fwdqe"’B‘”’Bzx(p,q),
(A3)
ol P q
x(p.q)= HCXP[—iquV(—Jr—Z} ;o (Ad)
=1 Moy

and average over the u,’s:
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|

det(W'w)?
det[(WIW)2+ip(WW)/N+iq/N]|

N

14 q
q)= [ i
x(p.q 1=[[1 N 2N

(AS)

We have expressed the product over eigenvalues as a ratio of
determinants. We write the determinant in the denominator
as an integral over a complex vector z:

X(p,q)ocfdwf dzexp[ — yN tr W W]det( Wi w)?

Xexp{—z [(WW)*+ip(WIW)/IN+iq/N]z}.
(A6)

This integral converges because W'W is positive definite.

2. Parametrization of the matrix W

Now we choose a parametrization of W which facilitates a
stepwise integration over its degrees of freedom. The distri-
bution of W is invariant under transformations W— UTWU,
with any unitary matrix U. Hence we can choose a basis in
which z points in direction 1, and write W in block form:

_(a x!
N w

Here a is a complex number. For any (N — 1)-dimensional
vector X we can use another unitary transformation on the X
block after which x points in direction 2. Then W is of the
form
OT

T
y 2
Y

a x
w=|x b (A8)
0 vy

with the real number x=|[x|. In this parametrization

(WiW)y=|al*+x2,
[(WIW) 2= (la|*+x3) 2+ x%y 2+ x2a+b*|%
det W=[a(b—y'Y 'y)—x*]detY,
tr WiW=|a|>+|b|?+2x2+2y*+urY,
dW=d*ad*bdx dy dY,

with y=|y|. A suitable transformation on Y allows one to
replace the term y'Y "y by y2(Y ™ Y,,.

For this parametrization of W, the integrand m Eq. (A6)
depends on the vectors X, y, and z only by their magnitudes
x, y, and z=|z|. Hence we can replace dx—x*""3dx, dy
—y2¥ 754y, and dz— 72V 1dz.
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3. Integration

The integrand in Eq. (A6) involves z, p, and ¢ in the form

expl— 22 ([(WIW) 2], +ip(W W) IN+ig/N)].
(A9)

It is convenient to pass back to P(B1,B;) by Eq. (A3), be-
cause integration over p and g gives delta functions:

8[B,—z%(|a|*+x*)/N]8(B,—z%IN)

1
=—58(B;/By—|a|*~x*)8(B,—z*IN).

B, (Al0)

Subsequent integration over z results in
P(B,,B;)x J d*ad’bdxdyx*N "3yl 2s

X(B1/By~|al*~x*)[co
Xlab—x**+4c,a|*yHab—x*2+ ¢ lal*y®)
B2
—-%-I—)c2yz+x2|a"‘-i-b|2
B

2

Xexp| —NB,

—2yNy?|. (A1l)

Here we omitted a term yN(|a|?+|b|*+2x?) in the expo-
nent, because it is of order 1/N, as we shall see later. Fur-
thermore, we denoted

_{ldet Y[l
(ldety|®y

(A12)

m

These coefficients will be calculated later, with the results
co=1, ¢c;=27v, and c,=4y*. Integration over y yields for
the terms proportional to ¢, the factors (B,x?
+29) "™ N*2 which can be combined with the factor
(Box")N7?2, giving, to order 1/N [we anticipate 7y/B,x*
=0(UN)],

(BZXZ)N—Z

(Bzx2+2,y)N—2+m

2yN
—(Byx?)~m exp( - By 2). (A13)

2X

We introduce a new integration variable by b'=b+a®.
So far P(B,,B,) is reduced to the form

P(Bl,Bz)ocfdzadzb'dxxa(sl/32—1a|2—x2)

314 402|d|2
X\ lab'——
( B, B%x4
Bi|* cylal?
Xlab'— —
ab B, + ngs
X 2N NB% NBx*|b'|? (A14)
exp| — —N—o— - x“|b"7 ).
p x232 BZ 2
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Let us now convince ourselves with this expression that we
were justified in omitting the term yN(|a|*+|b|?+2x%) in
Eq. (All) and in using Eq. (A13). Indeed, the various quan-
tities scale as B,=vyN, B,=¥’N> and |a|?=|b|?=x?
=1/yN?, because any vy and N dependence disappears if one
passes to appropriately rescaled quantities B, /YN, etc. The
terms omitted are therefore of order 1/N.

The remaining integrations in Eq. (Al4) are readily per-
formed, with the final result Eq. (27). The distribution of B,
to order 1/N, is

P8y = (B, +29N) ( 27N)
=— exp| — ——].
1 B? 1 Y P B,

(Al5)
The spectral moment B; appeared before in a different
physical context in Ref. [20], but only a heuristic approxi-
mation was given in that paper. Equation (A15) solves this
random-matrix problem precisely.

For completeness we also give the distribution of the
other spectral moment B, (rescaled as B,=B,y *N™3) in
terms of Meijer G functions:

1

P(By)= 6453 a2

1478, ~ 16 GJ3(B,—1.0.3)

+20 GI3(B,y| - 4, 5.1)+22 G33(B,|4.4.1)

+8 G3(B,|%,1,3)+4 G33(B,)5,3.2)

1 3 1 3
= 70’_9 — 0, ,_,2
-8GW B, V| —16G13 By P )
‘ 1 : 1
1133
_ v23292
+3 G2 By|” 202 ) : (A16)

4. Coefficients

Now we calculate the coefficients ¢, and ¢, defined in Eq.
(A12). It is convenient to resize the matrix Y to dimension N
(instead of N—2), and to set yN= 1 momentarily. We again
use a block decomposition,

a wl
Y= ( w Z ) , (A17)
and employ the identities
detY=(a—w/Z 'w)detZ, (A182)
(Y H=(a—wz"'w)~L (A18b)
Hence
_(|detzl*) 4 (AL9)

ety (NFD(NF3)”

where we used Selberg’s integral [27] for

026605-9



SCHOMERUS, van BEMMEL, AND BEENAKKER

I T(N+4)T(N+2)

(|det Y]*y= 3 o (A20)
In order to evaluate
det Z|*(|a)*+|wTZ "~ 'w]?
ezt iwz Py

(Idet Y1*)

it is again profitable to use unitary invariance and turn w in
direction 1:
[IWwiz7 w2 =w*{(Z7 )| (A22)

From (w*)=3$N(N+1) and (Ja|?)=1 we then obtain the
recursion relation

4
M=) TN WD, (a23)
which is solved by
N)= 2 A24
€ )—m- (A24)

In order to reintroduce y we have to multiply c¢,, by (yN)"™"?,
and obtain, to order 1/N,

=27, cs=4v (A25)

as advertised above.

APPENDIX B: JOINT DISTRIBUTION
OF B; AND B, FOR =2

For broken time-reversal symmetry, the distributions of
B and B, have to be calculated from the Laguerre ensemble
[Eq. (8)] with B=2. Similarly as for preserved time-reversal
symmetry, this ensemble can be obtained from the eigenval-
ues of a matrix W' W. The matrix W is once more complex,
but no longer symmetric (it is also not Hermitian). It has a

Gaussian distribution
P(W)oexp(—2yN tr WW), BI)

with measure

dW=]] dReW;dImWw,;.

iJ

(B2)

It is instructive to calculate P(B) first, because it will be
instrumental in the calculation of P(B,B,). After averaging
over the u,’s, the characteristic function takes the form

det WTw
" . (B3)
det(W'W+ip/N)

X(p)=<e><p(—ipBl)>=<

We express the determinant in the denominator as an integral
over a complex vector z. Due to the invariance W— UWYV of
P(W) for arbitrary unitary matrices U and V, we can turn z
in direction I, and write

PHYSICAL REVIEW E 63 026605

a x' 0T
X

W= v |- (B4)
0

Then

P(Bz)“f dpdzz*" \dadxx® " 3dx' x' N3

X (|a|®+ dox*x" ) exp[ — (22 +2yN)(|a|*+x%)]

xexplip(B,—z2/N)—2yNx'?]. (B5)
Selberg’s integral [27] gives
det Y2 [(Y™ ), 29N
dy= (| I”|( )1l >__ 24 (B6)

(|dety|?)  N-L

The integration over p gives 8(z>—NB), and allows one to
eliminate z. The integration over x’ amounts to replacing
x'?=(N—1)/2yN=d,". The final integrations are most
easily carried out by concatenating a to X, giving an
N-dimensional vector y. Then

P(Bl)“j dyy*N*igy~!
Xexp[ —N(B;+27)y*]
«BYTN(B+2y) N7, (B7)

which to order 1/N becomes

N
exp(—2yN/By). (B8)

2
1

2
P(B,)=

The first steps in the calculation of the joint distribution
function of B; and B, are identical to what was done in
Appendix A, and result in the characteristic function y(p,q)
in the form of Eq. (A6), but with 7y replaced by 2. Due to
the unitary invariance of the W ensemble we can write

a x' 0 07
x b y of
w=| 0 vy (B9)
Y
0 0

One now integrates over p and ¢ and obtains delta functions
as in Eq. (A10). This is followed by integration over z. The
calculation is then much simplified by recognizing that one
can rescale the remaining integration variables in such a way
(namely, by introducing a’*=a°B /B, x*=x*B|/B,, y'?
=y'2x72B7 ") that

P(By.B,)=B3 exp(~NBi/B,)f(B)).  (BLO)
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It is not necessary here to give f(B)) as a lengthy multidi-
mensional integral, since its functional form is easily recov-
ered from the relation

P(B))= [ 4B.P(B,B)=N2B (8. (BLY

We compare this with Eq. (B8), and arrive at Eq. (41). The
distribution of B, has the closed-form expression

P(B))=y N3G}y °N73B,|—3,- 1,-2).
(B12)

APPENDIX C: JOINT DISTRIBUTION OF Cy AND C,

We seek the joint distributions of the spectral moments
Cy and C;, which determine ¢’ and I for =1 and n=m
via Eq. (29). We start with the characteristic function

X(po.p1)=(exp[iRe(poCo+piC1)]). (cn

where p, and p; are complex numbers, as are the quantities
Co and C; themselves. Since C,=3,u’7*, we have to aver-

[

age over the 7,’s and the u,’s. Averaging over the u,’s first,

we obtain
-172
> . (Cc2)

lp17+pol®
(Po-p1)= I+ ——
X\Po-P1 H N2
We again regard the rates u, =7, ! as the eigenvalues of a
matrix product Y'Y T where Y will be specified below. Then
the product of square roots can be written as a ratio of de-
terminants:

—1/2

+ 2
H (1_’_'[717'1 pOI
1 N2

N2+ |pol?

=detYY7 det| (YYT)?
NZ

—-172
Repopt 1|2

+2~—~——02-1—YYT+|1—12|— RN (6%)
N N

We will express the determinant in the denominator as a
Gaussian integral over a real N-dimensional vector z. Hence
it is convenient to choose Y real as well, so that one can use
orthogonal invariance in order to turn z in direction 1. More-
over, there is a representation of Y which allows one to in-
corporate the determinant in the numerator into the probabil-
ity measure: We take Y as a rectangular N X(N+3) matrix
with random Gaussian variables, distributed according to

P(Y)xexp(—yNtr YYT). (C4)

The corresponding distribution of the eigenvalues u, of YY7
is given in Ref. [23], and differs from the Laguerre ensemble
[Eq. (8)] by the additional factor I1,u,=det Y Y. In this rep-
resentation,

PHYSICAL REVIEW E 63 026605

x@f dzz””‘<e><p{—z2(1+lpolz/Nz)[(YYT)z]n}

2 Re ¥
X exp ___1720171

2
[Yy™y+ 2 D, (C5)

where the average is now over Y. Inverse Fourier transfor-
mation with respect to pg and p; results in

) s exp[—2(YYD)?1,]
P(Cy,C)) <szz (YYD ;- (Yy?

IC1|2N2 N2
47* 4z*

|Co=[YYT],;Cy? }>

Xexp

Co6
(YYD —((YYT])? (0

The orthogonal invariance of YY7 allows us to param-
etrize Y as

OT

(C7)

o O = o8
QO = o<
N

with real numbers v>0, w>0, y>0, a, and b, and an
[(N—=1)X(N+1)]-dimensional matrix Z. It is good to see
that Z drops out of the calculation, because it does not appear
in

[YYT],=a’+v?, (C8a)

[(YYD)?]1=(a®+vH) %+ (aw+vb)?+0v2y%. (C8D)

We replace b=»b'—awl/v, and introduce z' =zyv. The inte-
gral over z' can be written in the saddle-point form

12 .
fdz'z'Ne <! f(z")< f({JN/2) for large N. The resulting ex-
pression varies with respect to the remaining variables on the
scales

N3a2&N2bIZZNZUZ:NyZ:M/z::0(“)/_1). (Cg)

We use the given orders of magnitude to eliminate terms of
order N~ !, but keep the residual correlations Re CoC}/yN
=0(N™ ). The joint distribution function of Cy and C; is
then
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P(CO,CI)OCJ dadb’' dvv3dww" ™ dyy exp[ — yNy?]

2

2 a N o a2
Xexp| —yNw™| 1+ — |- — (v +y +b'?)
v/ 2y
Nv*?|Ci|?  N|Col?
X exp| Nv2Re CoC¥ — y2| 1S |2°|

(Cl10)
Now we can 1ntegrate over a, b', w, and v, and arrive at

exp[ — yNy? = N|Col|*/2]

(y72+y?Ci[*+2Re CoCF)?
(ClD)

P(Co,Cl)“fdy

The final result [Eq (30)] 1s obtamed by substituting s
2
=yNy~

APPENDIX D: DISTRIBUTION OF A, FOR B=1

In the large-N hmit the jomt distribution function
P(Aq,A|)=P(Ay)P(A|) factorizes, as explamned in Sec
IIIE The distribution of Ay 1s given m Eq (37) It remains
to calculate the distribution of A;=2,7,u,v, The u,’s and
v,’s are independent Gaussian random numbers Averaging
over them, we obtain the characteristic function

2y —1
X(p)=<e><p[lRe(pA1)]>=<H (H IZ;L) >

_< det(W' W)’
\ det[ (W W)+ |p|2an] ]

(DL

where p 1s a complex number The Laguerre ensemble 1s
again represented as the eigenvalues of the matrix product
WiW, whete W 1s the complex symmetric matrix with dis-
tnibution (A1) Following the route of Appendix A we 1ep-
resent the determinant m the denominator by a Gaussian 1n
tegral over a complex vector z, and choose a basts m which
W 1s of the form of Eq (A8) The characteistic function 1s
then obtamed as the following multidimensional ntegral
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x(p)= f dxdydzd*ad*bd¥ X |det Y|*|la[b—y*(¥ ") 1]

|2

|zp
214
—x7 exp(— an

)exp[—z2<<|a12+x2>2+x2|a

+b% >+ x*y?)Jexp[ — yN(|a]?+|b|?

+2x24+2y*+ur Y'Y)] (D2)

Let us briefly desciibe 1n which order the itegrations are
performed most convemently Fourier transformation with
respect to p converts the charactenistic function back nto the
dstribution function P(A;) This step gives rise to a factor
272 exp(—]A;[’N*%~3) We can also tegrate over y, which

results mn a factor exp[ —2yN/(xz)’] We mtroduce new vari-
ables by the substitutions b=5b—a*, x=v/z, and a=a'lz
After these transformations one succeeds n ntegrating over
b', z, and a’ The remamning tegral over v =|v| 1s of the
form

P(AI)OCIAII_Sf dvv 3¢~

x| 7[8]A[2(2+4v +v?) +3v*(16+ L6v+307)]
21A4|v
—~————‘,ll —[]A;|*v*(288+304v —250?)
(A P+v?

+]A %2192+ 176v — 17v?)
+8]A;[3(6+4v—0v?) +3v¥(16+ 160 +3v?)
+]A,|?v(192+208v + 41v2)]
—[16]4;]*(2+4v +v3) +6v>(16+ 16V +30%)]

v
Xarctan| +—

I .

The more compact form [Eq (38)] 1s the result of the re-
placement v =2/s, followed by a number of paitial mntegra-
tions
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