
PHYSICAL REVIEW E, VOLUME 63, 026605

Localization-induced coherent backscattering effect in wave dynamics
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We investigate the statistics of smgle-mode delay times of waves reflected from a disordered waveguide m
the presence of wave locahzation The distribution of delay times is quahtatively different from the distribution
in the diffusive regime, and sensitive to coherent backscattering The probability of finding small delay times
is enhanced by a factor close to v2 for reflection angles near the angle of incidence This dynamic effect of
coherent backscattering disappears m the diffusive regime

DOI 10 1103/PhysRevE 63 026605 PACS number(s) 42 25 Dd, 42 25 Hz, 72 15 Rn

I. INTRODUCTION

The two most prominent mterference effects ansmg from
multiple scattermg are coherent backscattering and wave lo-
calization [1-6] Both effects are related to the statte mten-
sity of a wave reflected 01 transmitted by a medmm with
randomly located scatterers Coherent backscattering is the
enhancement of the reflected mtensity m a nanow cone
around the angle of incidence, and is a result of the system-
atic construcüve mterference in the presence of time-ieversal
symmeüy [4,5] Locahzation anses from systemaüc destruc-
tive mterference, and suppresses the transmitted mtensity [6]

This paper presents a detailed theory of a recently discov-
ered [7] mterplay between coherent backscattering and local-
ization m a dynamic scatteimg property, the smgle-mode de-
lay time of a wave reflected by a disordered waveguide The
smgle-mode delay time is the denvative φ'= αφ/άω of the
phase φ of the wave amphtude with respect to the frequency
ω It is hnearly lelated to the Wigner-Smith delay times of
scattermg theory [8-10], and is the key observable of recent
expenments on multiple scattermg of microwaves [11] and
light waves [12] Van Tiggelen, et al [13] developed a sta-
tistical theoiy for the distubution of φ' m a waveguide ge-
ometiy (where angles of incidence aie discretized äs modes)
Although the theoiy was woiked out mamly for the case of
transrmssion, the imphcations for leflection are that the dis-
tribution P ( φ 1 ) does not depend on whether the detected
mode n is the same äs the incident mode m 01 not Hence it
appears that no coherent backscattenng effect exists for
Ρ(Φ')

What we will demonstrate heie is that this is tiue only if
wave locahzation may be disiegarded Pievious studies
[11,13] dealt with the diffusive legime of waveguide lengths
L below the locahzation length ξ (The locahzation length m
a waveguide geometiy is ξ—ΝΙ, with N the numbei of
piopagatmg modes and / the mean free path) Heie we con-
sider the locahzed legime ί,>ξ (assuming that also the ab-
soiption length ξα>ξ) The distubution of icflected mtensity
is msensitive to the piesence 01 absence of locahzation, be-
ing given m both legimes by Rayleigh's law In conüast, we
find that the delay-time distubution changes maikedly äs one
enteis the locahzed icgime, decaymg moie slowly foi laige
\φ'\ Moieovei, a coheient backscatteimg effect appeais
For L>£ the peak of Ρ ( φ ' ) is highei foi n = m than for n

Φηι by a factor which is close to Λ/2, the precise factor being
Λ/2Χ (4096/1371-π·) = l 35

We also consider what happens if time-reversal symmetry
is broken, by some magneto-optical effect The coherent
backscattenng effect disappears However, even for n Φ m,
the delay-time distribution for preseived time-reversal sym-
metry is different than for broken time-reversal symmetry
This difference is agam only present for Z.>£, and vamshes
m the diffusive regime

The plan of this papei is äs follows In See II we specify
the notion [II] of the smgle-mode delay time </>' , relate it to
the Wigner-Smith delay times, and review the results [13]
for the diffusive regime, extending them to mclude balhstic
corrections This section also contams the random-matiix
formulation for the locahzed regime, that provides the basis
foi our calculations, and includes a bnef discussion of the
conventional coherent backscattering effect in the static in
tensity 7 Section III presents the calculation of the jomt dis-
tribution of φ1 and 7 We compaie our analytical theory with
numencal simulations, and give a qualitative argument for
the dynamic coheient backscattering effect The role of ab-
sorpüon is discussed, äs well äs the effect of broken time-
icversal symmetiy Details of the calculation are delegated to
the Appendixes

II. DELAY TIMES

A. Single-mode delay times

We consider a disoidered medium (mean free path /) in a
waveguide geometry (length L), äs depicted m Fig l There
aie N9>1 piopagatmg modes at fiequency ω, given by W
= ττΛ/λ2 for a waveguide with an opening of area Λ The
wave velocity is c, and we consider a scalar wave (disregard-
ing polaiization) foi simplicity In the numeiical simulations
we will woik with a two-dimensional waveguide of width W,
wheie N=2W/\

We study the dependence of the reflected wave amphtude

Je'* (1)

on the fiequency ω The indices n and m specify the detected
and incident mode, respectively (We assume smgle-mode
excitation and detecüon) Heie I=\i „m

 2 is the mtensity of
the leflected wave in the detected mode foi unit incident
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FIG. 1. Sketch of a waveguide containing a randomly scattering
medium and illuminated by a monochromatic plane wave. We study
the frequency dependence of the phase φ of the reflected wave
amplitude in a single speckle, corresponding to a single waveguide
mode. The derivative φ' -άφ/άω is the single-mode delay time.

intensity, and characterizes the static properties of the re-
flected wave. Dynamic Information is contained in the phase
derivative

αφ
(2)

which has the dimension of a time and is called the single-
mode delay time [11,13]. The intensity / and the delay time
φ' can be recovered from the product of reflection matrix
elements

(3)

evaluated at two nearby frequencies ω±%δω. To leading
order in the frequency difference δω one has

= 1(\+ίδωφ')=*Ι= l imRep, 0 ' = lim
Im p

We seek the joint distribution function Ρ(Ι,φ') in an en-
semble of different realizations of disorder. We distinguish
between the diffusive regime where L is small compared to
the localization length ξ—ΝΙ, and the localized regime
where Lä£. Localization also requires that the absorption
length ξα^ξ. We will contrast the case of excitation and
detection in two distinct modes ηφιη with the equal-mode
case n = m. Although we mainly focus on the optically more
relevant case of preserved time-reversal symmetry, we will
also discuss the case of broken time-reversal symmetry for
comparison. These two cases are indicated by the Indexes
ß=l and 2, respectively.

B. Relation to Wigner-Smith delay times

In the localized regime (ξ<1^,ξα) we can relate the
single-mode delay time φ' to the Wigner-Smith [8-10] de-
lay times rt, with i = l , . . . ,N. The r,'s are defined for a
unitary reflection matrix r (composed of the elements /",„„);
hence they require the absence of transmission and of ab-
sorption. One then has

dr
—
αω

du>

(5a)

(5b)

with U and V unitary matrices of eigenvectors. In the pres-
ence of time-reversal symmetry r is a Symmetrie matrix;
hence V= U in this case.

For small δω we can expand

(6)

Inserting this into Eq. (3) and comparing with Eq. (4) yields
the relations

'=Re/, 7=|A0 |2, (7)

We have abbreviated u,= U,m and ü, = Vm . In the special
case n = m, the coefficients ut and υ, are identical in the
presence of time-reversal symmetry.

The distribution of the Wigner-Smith delay times in the
localized regime was determined recently [14]. In terms of
the rates μ,= l/r, it has the form of the Laguerre ensemble
of random-matrix theory,

ρ({μ,})<*1[ Ι^,-^/Π
t<j k

(8)

where the step function &(x) = l for x>0 and 0 for x<0.
The parameter γ is defmed by

y= alle, (9)

(4) with the coefficient α = π / 4 or 8/3 for two- or three-
dimensional scattering, respectively. Equation (8) extends
the N= l result of Refs. [15-17] to any N.

The matrices U and V in Eq. (6) are uniformly distributed
in the unitary group. They are independent for ß = 2, while
U=V for ß=l. In the large-W limit the matrix elements
become independent Gaussian random numbers with vanish-
ing mean and variance l/N. Hence

(10)

with ut = v, for n = m and ß= l. Corrections to this Gaussian
approximation are of order l/N.

C. Diffusion theory

The joint probability distribution Ρ ( Ι , φ ' ) in the diffusive
regime KL-^ξ was derived in Refs. [11,13],

(H)
Ι(φ'-φ')2

Xexp r-;—
1 / <2Φ'2
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with constants /, φ', and Q It has the same form for trans-
mission and reflection, the only difference bemg the depen-
dence of the constants on the System parameters Here we
focus on the case of reflection, because we are concerned
with coherent backscattenng

From the jomt distnbution function [Eq (11)], for the
mtensity one obtams the Rayleigh distnbution

(12)

Hence / is the mean detected mtensity per mode It is given
by [18]

l

N( (13)

assuming unit mcident mtensity The factor of 2 enhance-
ment in the case n = m is the static coheient backscattermg
effect mentioned m See I, which exists only in the presence
of time-reversal symmetry ( ß — l ) Equations (12) and (13)
remain vahd m the localized regime, smce they are deter-
mmed by scattenng on the scale of the mean free path
Hence LS>/ is sufficient for static coherent backscattermg,
and it does not matter whether L is small or laige compared

t o £
By integratmg ovei 7 m Eq (11) one amves at the distn-

bution of smgle-mode delay times [11,13],

~
2φ

(14)

Hence φ' is the mean delay time, while \[Q sets the lelative
width of the distnbution These constants aie deteimmed by
the correlator [11,13]

_ (Γη,η(ω+δω),*η(ω))
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FIG 2 Distribution of the smgle-mode delay time φ' in the
diffusive regime The lesult of numencal Simulation (data pomts)
with N = 50 propagating modes is compared to the prediction [Eq
(14)] of diffusion theory (solid curve) There is no difference be-
tween the case n = m of equal-mode excitation and detection (open
circles) and the case ηΦιη of excitation and detection in distinct
modes (füll circles)

D. Ballistic corrections

The expressions foi the constants 7, φ', and Q given
above are vahd up to corrections of order U L Heie we give
more accurate formulas that account for these balhstic cor-
rections (We need these to compare with numencal simula-

tions) We determme the balhstic corrections for Q and φ'
by relating the dynamic problem to a static problem with
absorption (This relationship only works for the mean It
cannot be used to obtam the distnbution [19]) The mean
total leflectivity

(18)

for absorption a' χ per mean free path was evaluated m Ref
[20] [Heie a' is the same constant äs m the defimtion of s,

see Eq (17)] We identify C12=ä{»/ä(0) by analytical
continuation to an imagmaiy absorption rate x=— ι δω γ
Expandmg in χ to second ordei, we find

Diffusion theory gives

Heie γ is given by Eq (9) We have defmed

(15)

(16)

(17)

wheie the numeiical coefficient a'=2/π, 3/4 foi two- and
three-dimensional scattenng (The coiiespondmgiesultfoi Q
given m Ref [13] is inconect)

Diffusion theoiy predicts that the distnbution of delay

times [Eq (14)], äs well äs the values of the constants φ'
and ß, do not depend on the choice n = m or n φ m (and also
not on whethei time leversal symmeüy is pieseived 01 not)
Hence theie is no dynamic effect of coheient backscattenng
m the diffusive legime

E Numencal Simulation

The validity of diffusion theory was tested in Ref s [l Ι-
Ο] by companson with expeiiments in transmission In Fig
2 we show an alternative test m leflection, by companson
with a numeiical Simulation of scattenng of a scalar wave by
a two-dimensional landom medmm (We assume time
leveisal symmeüy) The leflection matrices ι(ω±^8ω) are
computed by applymg the method of lecursive Gieen func-
tions [21] to the Helmholtz equation on a square lattice (lat-
üce constant a) The width W= 100α and the fiequency ω
= l 4c/a aie chosen such that theie are N=50 piopagatmg
modes The mean fiee path /= 14 θα is found fiom the foi-
mula [22] ti / ; ' = N s (l + s) ~' foi the leflection probability
The conesponding locahzation length ξ = ΝΙ^/5=ΙίΟΟα
The paiametei y=46 3 a/c is found fiom Eq (19) by equat-
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mg (φ') = φ' (This value of γ is somewhat larger than the
value y=7r2//4c = 34 5a/c expected for two dimensional
scattermg, äs a consequence of the amsotiopic dispersion
relation on a square lattice) We will use the same set of
Parameters later m this paper m the mteipretation of the re-
sults m the localized regime Our numencal results confirm
that in the diffusive regime the distnbution of delay times φ'
does not distmguish between excitation and detection in dis-
tmct modes (n Φ m, füll circles) and identical modes (n = m,
open circles)

III. DYNAMIC COHERENT BACKSCATTERING EFFECT

A. Distinct-mode excitation and detection

We now calculate the jomt probabihty distnbution func-
tion Ρ(Ι,φ') of mtensity /and smgle-mode delay time φ' in
the localized legime, for the typical case n + m of excitation
and detection m two distmct modes We assume a preserved
time-reversal symmetry (/?= 1), leaving the case of broken
time-ieveisal symmetry for the end of this section

It is convement to work momentanly with the weighted
delay time W= φ'Ι and to iccover Ρ ( Ι , φ ' ) from P(I,W) at
the end The charactenstic function

(20)

is the Founer transform of P(I, W) The average { ) is
over the vectois u and v and over the set of eigenvalues {τ,}
The average over one of the vectors, say v, is easily camed
out, because it is a Gaussian integiation The lesult is a de-
termmant

(21 a)

(21b)

The Hermitian matnx H is a sum of dyadic products of the

vectors u and u, with «, = «,?-,, and hence has only two
non-vamshing eigenvalues λ+ and λ_ Some stiaightfoi-
waid hneai algebra gives

wheie we have defined the spectial moments

The resultmg detemunant is

(22)

(23)

1, (24)

hence

ip - i \

(25)

An inveise Founei tiansfoim, followed by a change of van-
ables from I,W to Ι,φ', gives

0002

0001

oooo

£-/ξ=45 n=m

-400 -200 0 200

Φ'/γ
400

FIG 3 Distribution of the smgle-mode delay time φ' in the
localized regime The results of numencal simulations with N
= 50 propagatmg modes (open circles for n = m, füll circles for n
Φ m) are compared to the analytical predictions The curve for dif
ferent mcident and detected modes ηφιη is obtamed from Eqs (27)
and (28) The curve for n = m is calculated from Eqs (29) and (30)
The same value for γ is used äs m the diffusive regime (Fig 2)

X ( -NI

(26)

The average is over the spectral moments Bl and B2, which
depend on the u,'s and r,'s via Eq (23)

The calculation of the jomt distnbution P(Bl ,B2) is pre-
sented in Appendix A The result is

NB

χ -(Β2+γΝ2
2yN

ΊΪ7

-(2B2- -4B\B2N + B\N2}E\
2γΝ\

~~

(27)

where Ει(χ) is the exponential-mtegial function The distri-
bution Ρ(Ι,φ') follows fiom Eq (26) by integrating ovei B{

and B 2 with weight given by Eq (27)
Inespective of the distubution of Bl and B2, fiom Eq

(26) we recovei the Rayleigh law [Eq (12)] foi the mtensity
7 The distnbution Ρ(φ') = ̂ άΙΡ(Ι,φ') of the smgle-mode
delay time takes the foim

Γ» Γ- P(Bi,B2)(B2-B2,)
Ρ(φ'} = dB, dB2 i—!—= — (28)

Jo ' J o 22(Β2+φ'2-2Βίφ')3/2 '

In Fig 3 this distnbution is compaied with the tesult of a
numeucal Simulation of a landom medium äs m See II E,
but now m the localized legime The same value foi γ was
used äs m Fig 2, makmg this compauson a paiametei-tiee
test of the theoiy (Note that γ alone deteimmes the complete
distnbution function in the localized legime, in contiast to
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the diffusive case where two parameters are required) The
numencal data agree very well with the analytical prediction

B. Equal-mode excitation and detection

We now turn to the case n = m of equal-mode excitation
and detection, still assuming that time-ieversal symmetiy is
preserved Since u, = vt, we now have

, /=|C0|
2, (29)

The jomt distnbution function P(C0,Ci) of these complex
numbers can be calculated in the same way äs P(Bl,B2) In
Appendix C we obtam

dss2e s

X

o

2s
-5/2

(30)

The correspondmg distnbution function Ρ(φ') is also plot-
ted m Fig 3, and compared with the results of the numencal
Simulation Good agreement is obtamed, without any free
parameter

C. Comparison of both situations

Comparing the two cuives in Fig 3, we find a stiikmg
diffeience between disünct-mode and equal-mode excitation
and detection The distnbution for n — m displays an en-
hanced probability of small delay times In the vicmity of the
peak, both distubutions become veiy similai when the delay
times for n Φ m are divided by a scale factoi of about \f2 In
the limit W— >c° (see See III D), the maximal value

y γ2 for n = m is larger than the maximum
of Ρ(φ') foi ηφηι by a factoi

4096

'137 ITT
= 135 (31)

08

06

04

02

0
-l -05 0 0.5

,3/2

FIG 4 Distribution of the single-mode delay time φ' in the
locahzed regime for preserved time-reversal symmetry, m the lirmt
N— >c° In this limit P (φ') becomes Symmetrie for positive and
negative values of φ' Compared are the result for n Φ m [Eqs (33)
and (A 1 6)] and n = m [Eqs (29), (34), and (35)] The distnbution
for n = m falls on top of the distnbution for ηΦιη when φ' is
rescaled by a factor l 35 (dashed curve, almost indistinguishable
from the solid curve for

P ( φ ' ) foi positive and negative values of φ' is an effect of
order N~ 1/2 The asymmetry is hence captured faithfully by
our calculation We now consider how the asymmetry even-
tually disappears m the hmit W— > <*>

For distmct modes ηφιη, the spectral moments scale äs
Bi-γΝ and Β2~γ2Ν3 With φ'~γΝ3'2, one finds that B\
can be omitted to order N~ 1/2 in Eq (28) One obtains the
symmetiic distnbution

P (B·,) B-,
Ρ ( φ ' ) = dB-, " " ..

'ο -2(Β,+ φ'2)ν2
(33)

plotted in Fig 4
For identical modes n = m, obseive that the quantities C0

and Cj become mutually independent m the large-Λ^ limit
The cross-term (γΝ)~ι ReC0Cf in Eq (30) is of relative
oidei N~m because C0~N~112 and Hence, to or-
dei N~m, the distnbution factorizes,
= P(C0)P(Cl) The distnbution of C0 is a Gaussian,

Conespondingly, the piobability to find very laige delay
times is leduced for n — m This is reflected by the
asymptotic behavioi

(34)

m

foi
as a consequence of the central-hmit theoiem, and

The enhanced piobability of small delay times for n = m
is the dynamic coheient backscattenng effect mentioned in
See I The effect icquiies locahzation, and is not obseived in
the diffusive regime

D. Limit N—> oo

The lesults piesented so fai assume N^*i, but retain
fimte-N conections of order Λ'" 1/2 (Only teims of oidei i/N
and highei aie neglected ) It tuins out that the asymmetiy of

, t — :

dss e ·

, 7 \ -5/2

(35)

The lesulting distnbution of φ' = Re(Ci /CQ) is also plotted
m Fig 4

The dynamic coherent backscattenng effect peisists in the
limit /V^ro, it is theiefoie not due to fimte-N coiTections
The peak heights diffei by the factoi given in Eq (31)
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E. Interpretation in terms of large fluctuations

In order to explain the coheient backscattermg enhance-
ment of the peak of P (φ1) m more qualitative terms, we
compare Eq (29) for n—m with the correspondmg relation
[Eq (7)]forn^m

The factonzaüon of the jomt distnbution function
P(CQ,Ci) discussed m See IIID can be seen äs a conse-
quence of the high density of anomalously large Wigner-
Smith delay times r, m the Laguerre ensemble [Eq (8)] The
distnbution of the laigest time rmax=max1TI follows from the
distnbution of the smallest eigenvalue m the Laguerre en-
semble, calculated by Edelman [23] It is given by

P(
yN2

(36)

As a consequence, the spectral moment C\ is dommated by a
small number of contnbutions u2τ, (often enough by a smgle
one, say with index i= 1), while C0 can be safely approxi-
mated by the sum over all remainmg mdices ι (say, ι ΦΙ)
The same argument apphes also to the spectral moments Ak

which determme the delay-time statistics for ηφιη, hence
the distnbution function P(A0,Al) factonzes äs well

The quantities A0 and CQ have a Gaussian distnbution for
large N, because of the central-hmit theoiem, with P(C0)
given by Eq (34) and

(37)

It then becomes clear that the mam contnbution to the en-
hancement [Eq (31)] of the peak height, namely, the factoi
of Λ/2, has the same origm äs the factor of 2 enhancement of

the mean intensity 7 Moie piecisely, the lelation P(A0 = x)
= 2 P(C0=^2x) leads to a rescahng of P ( I ) for n = m by a
factoi of 1/2 and to a lescaling of Ρ(φ') by a factor of \/2
The remainmg factor of 4096/1371π=0 95 comes fiom the
difference m the distributions Ρ(Α^ and P(Ci) It tums out
that the distnbution

Jo 4πγΝ

(38)

(denved m Appendix D) is veiy similar to P(C\) given in
Eq (35), hence the lemaimng factor is close to umty

The laige r,'s aie lelated to the penetiation of the wave
deep into the locahzed legions and are elimmated in the dif-
fusive legime Ls£ In See IIIF we compaie the locahzed
and diffusive leeimes in moie detail

FIG 5 Distributions of B^B^lyN and B2 = B2ly
2N^ The

analytic prediction from Eq (27) [for exphcit formulas see Eqs
(A 15) and (A 16)] is compared to the result of a numencal Simula-
tion of a Laguerre ensemble with N=50

F. Localized vs diffusive regime

Companson of Eqs (11) and (26) shows that the two jomt
distributions of/and φ' would be identical if statistical fluc-
tuations in the spectral moments B ι and B2 could be ignored
The correspondences are

(39)

However, the distnbution P(Bl,B2) is very broad (see Fig
5), so that fluctuations cannoi be ignoied The most probable
values aie

(40)

but the mean values (B\),(B2) diverge — demonstiating the
presence of large fluctuations In the diffusive legime Ls£
the spectial moments B ι and B2 can be replaced by their
ensemble averages, and the diffusion theoiy [11,13] is iccov-
eied (The same apphes if the absoiption length ξ^ξ )

The large fluctuations in B\ and B2 directly affect the
statistical propeities of the delay time φ' We compaie the
distnbution [Eq (28)] in the locahzed regime (Fig 3) with
the lesult [Eq (14)] of diffusion theory (Fig 2) In the local-
ized legime the value φ^,±~ B1^10^ at the center of the peak
of Ρ(φ') is much smallei than the width of the peak Δ φ'
= (ß^ypical)1/2=<^eik(£//)1/2 This also holds m the diffusive

legime, wheie φ^.^=φ' and Δφ' — φ^^υΐ)112 Howevei,
the mean (φ') = (Βι) diveiges foi P, but is fimte (equal to

φ') foi Pdlff Foi large B2 one has, asymptotically, P(B2)

~^Νγ3/2^Β2

3'2 As a consequence, m the tails Ρ(φ')
falls off only quadiatically [see Eq (32)], while in the diffu-

sive legime Ράΐ{ί(φ')~5<2Φ'2\Φ'\~3 falls off with an m-
verse thnd powei

G. Role of absorption

Although absoiption causes the same exponential decay
of the tiansmitted intensity äs locahzation, this decay is of a
quite diffeient, namely, an incoheient, natuie The stiong
fluctuations m the locahzed legime disappeai äs soon äs the
absoiption length ξα diops below the locahzation length ξ,
because long paths which penetiate into the locahzed legions
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FIG 6 Single-mode delay-time distribution P ( φ 1 ) in the pres-
ence of absorption The data pomts are the result of a numencal
Simulation of a waveguide with length ί^ = 4·5ξ Open circles are for
equal-mode excitation and detection n = m, and füll circles for the
case of disünct modes ιιφηι In the upper panel (with ξα<ξ), the
data are compared to the prediction [Eq (14)] of diffusion theory
In the lower panel we compare with the predictions [Eqs (27)-
(30)] of random-matnx theoiy

are suppiessed by absorption In this Situation one should
expect that the icsults of diffusion theoiy aie agam vahd
even foi LZ ξ This expectation is confirmed by oui numen-
cal simulations (We do not know how to incorpoiate absorp-
tion effects into our analytical theory )

In Fig 6 we plot the delay-time distribution for two val-
ues of the absorption length ξα< ξ and one value ξα> ξ, both
foi equal-mode and distinct-mode excitation and detection
The length of the waveguide is L = 4 l ξ The lesult foi
strong absoiption with ξα = 0 Ι ΐ ξ is veiy similar to Fig 2
Irrespective of the choice of the detection mode, the data can
be fitted to piediction (14) of diffusion theoiy The plot foi
ξα = 047ξ shows that the dynamic coheient backscattenng
effect slowly sets m when the absoiption length becomes
compaiable to the localization length The data also deviate
fiom the piediction of diffusion theoiy The füll factoi [Eq
(31)] between the peak heights quickly develops äs soon äs

0002

0001

0000
-600 -400 -200 0 200 400 600

Φ'/γ

FIG 7 Companson of the single-mode delay-time distnbutions
for preserved and broken time-reversal symmetry The number of
propagatmg modes is N = 50 The curves are calculated from Eq
(28), with P(Bl,B2) given by Eq (27) (,8=1) or Eq (41) (ß
= 2)

ξα exceeds ξ, äs can be seen fiom the data for ξα = 2 Ι ξ
Moreover, these data can already be fitted to the predictions
of random-matnx theory, with γ«= 53 2 a/c (The value γ
= 46 3 a/c of See IIE is leached when absorption is further
reduced)

H. Broken time-reversal symmetry

The case β = 2 of broken time-reversal symmetry is less
important for optical applications, but has been realized in
microwave expenments [24-26] Theie is now no difference
between n = m and n Φ m The matnces U and V have the
same statistical distnbution äs for the case of preserved time-
reveisal symmetry Hence, by followmg the Steps of See
III A, we anive agam at Eq (26), with spectral moments Bk

äs defined in Eq (23) Theu jomt distnbution has now to be
calculated fiom Eq (8) with ß = 2 This calculation is carried
out m Appendix B The result is

&χρ(-ΝΒ2

ι/Β2-2γΝ/Βι) (41)P(Bl,B2) =

The distnbution of single-mode delay ümes Ρ(φ') is given
by Eq (28), with the function P(Bl ,B2) We plot Ρ(φ') in
Fig 7, and compaie it to the case of preserved time-reveisal
symmetiy The distnbution is icscaled by about a factor of 2
towaid laigei delay times when time-reversal symmetry is
bioken This can be undeistood from the fact that the lel-
evant length scale, the localization length, is twice äs large
for bioken time-ieveisal symmetiy (ξ=2Νυ$, while ξ
= NL/s foi preserved time-reversal symmetiy)

IV. CONCLUSION

We have piesented a detailed theory, supported by nu-
meiical simulations, of a recently discoveied [7] coherent
backscattenng effect m the single-mode delay times of a
wave leflected by a disoideied waveguide This dynamic ef-
fect is special because it lequnes localization for its exis-
tence, in contiast to the static coheient backscattenng effect
in the leflected mtensity The dynamic effect can be undei
stood fiom the combination of the static effect and the laige
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fluctuations in the localized regime.
In the diffusive regime there is no dynamic coherent

backscattering effect: The distribution of delay tiraes is un-
affected by the choice of the detection mode and the pres-
ence or absence of time-reversal symmetry. The effect also
disappears when the absorption length is smaller than the
localization length. In both situations the large fluctuations
characteristic of the localized regime are suppressed.

Existing experiments on the delay-time distribution
[11,12] verified the diffusion theory [13]. The theory for the
localized regime presented here awaits experimental verifi-
cation.
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APPENDIX A: JOINT DISTRIBUTION
O¥Bl AND52 FOR/3=1

We calculate the joint probability distribution function
P(Bl ,B2) of the spectral moments BI and B2, defined in Eq.
(23), which determine Ρ(Ι,φ') from Eq. (26). We assume
preserved time-reversal symmetry (/3=1). Since Bk

= Έι\αΙ\
2μ~1', we have to average over the wave function

amplitudes u,, which are Gaussian complex numbers with
zero mean and variance l/N, and the rates μ, which are
distributed according to the Laguerre ensemble [Eq. (8)] with
yß=l . This Laguerre ensemble is represented äs the eigen-
values of an NX N Hermitian matrix W* W, where W is a
complex Symmetrie matrix with the Gaussian distribution:

- γ(Ν+ l)tr (AI)

The calculation is performed neglecting corrections of order
l/N, so that we are allowed to replace N+1 by N. The mea-
sure is

ι<]
W„dlm W„ .

(A2)

1. Characteristic function

In the first step we express P(B\ ,B2) by its characteristic
function,

P(Bl,B2)--
1

dp
— CO J — CO

«/r —+·1 1 \ ii

(A3)

(A4)

and average over the M ; 'S :

det(W 1W0 2
\

t det[ (W* W)2 + ip( W^ W) l N + iq/N] /

(A5)

We have expressed the product over eigenvalues äs a ratio of
determinants. We write the determinant in the denominator
äs an integral over a complex vector z:

\ dW\

(A6)

This integral converges because l¥t W is positive definite.

2. Parametrization of the matrix W

Now we choose a parametrization of W which facilitates a
stepwise Integration over its degrees of freedom. The distri-
bution of W is invariant under transformations H7— > UTWU,
with any unitary matrix U. Hence we can choose a basis in
which z points in direction l, and write W in block form:

a x

χ Χ
(A7)

Here α is a complex number. For any (N— l)-dimensional
vector χ we can use another unitary transformation on the X
block after which χ points in direction 2. Then W is of the
form

W=

α χ Οτ

ν Ι-, *τΤ (A8)

0 y Υ

with the real number y.— x|. In this parametrization

dW=d2ad2bdx dy dY,

with y = |y|. A suitable transformation on Y allows one to
replace the term y r7~'y by y2(Y~1)n ·

For this parametrization of W, the integrand in Eq. (A6)
depends on the vectors x, y, and z only by their magnitudes
x, y, and z= z|. Hence we can replace άχ-^>χ2Ν~3άχ, dy

~5dy, and dz^z2N~ldz.,2N-
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3. Integration

The integrand in Eq. (A6) involves z, p, and q in the form

(A9)

It is convenient to pass back to P(B^,B2) by Eq. (A3), be-
cause Integration over p and q gives delta functions:

(A10)= — δ(Βι/Β2-\α\2-χ2)δ(Β2-ζ2/Ν).

Subsequent Integration over z results in

d2ad2bdxdyx2N-3y2N-5B%'

X(B1/B2- a 2-x2

Xexp -NB-
BI

B2

-2yNy2
(All)

Here we omitted a term yN(\a\2+\b\2 + 2x2) in the expo-
nent, because it is of order l/N, äs we shall see later. Fur-
thermore, we denoted

(|dety|4)
(A12)

These coefficients will be calculated later, with the results
c 0 =l , c2 = 2y, and c4 = 4y2. Integration over y yields for
the terms proportional to c,„ the factors (B2x

2

+ 2γ)~"'~Ν+2, which can be combined with the factor
(B2x

2)N~2, giving, to order l/N [we anticipate γ/Β2χ
2

(B2x
2)2\N-2

N-2 + r,

2yN
(A13)

We introduce a new Integration variable by b ' = b + a * .
So far P(B} ,B2) is reduced to the form

d2ad2b'dxxd(Bl!B2-\a\2-x2)

,
ab'~X

X

B2x4

2yN
Xexp| -——

1 x2B7

(A14)

Let us now convince ourselves with this expression that we
were justified in omitting the term yN(\a 2+\b\2 + 2x2) in
Eq. (All) and in using Eq. (A13). Indeed, the various quan-
tities scale äs Β{ — γΝ, Β2—γ2Ν3, and \a\2—b2—x2

— IlyN2, because any y and N dependence disappears if one
passes to appropriately rescaled quantities Βι/γΝ, etc. The
terms omitted are therefore of order l/N.

The remaining integrations in Eq. (A14) are readily per-
formed, with the final result Eq. (27). The distribution of Blt

to order l/N, is

vN
—
B,

2γΝ
(A15)

The spectral moment Βγ appeared before in a different
physical context in Ref. [20], but only a heuristic approxi-
mation was given in that paper. Equation (A15) solves this
random-matrix problem precisely.

For completeness we also give the distribution of the

other spectral moment B2 (rescaled äs B2 = B2y~2N~3) in
terms of Meijer G functions:

14-n-ß2-16G°;o(52|-4,0,f)

Ί.3 ö

1 1 3 3
2 ' 2 > 2 ' 2

4. Coefficients

(A16)

Now we calculate the coefficients c2 and c4 defined in Eq.
(A12). It is convenient to resize the matrix Υ to dimension N
(instead ofN — 2), and to set γΝ=1 momentarily. We again
use a block decomposition,

Y =
W'

Z

and employ the identities

det Υ = (a - \vTZ~l w)det Z,

Hence

(|detZ|4) 4

<|detF| 4>

where we used Seiberg's integral [27] for
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(|detr|4) = -

In order to evaluate

Γ(Ν+4)Γ(Ν+2)
•>2N

<|detlf)

(A20)

(A21) Then

it is again profitable to use unitary invariance and turn w in
direction 1:

|w rZ"1w|2=w4 |(Z~1)1I |
2. (A22)

From (w4)=jN(N+l) and (|a|2) = l we then obtain the
recursion relation

cz(N)=·
(N+l)(N+3)

which is solved by

c2(N) =

). (A23)

N+l '

In order to reintroduce γ we have to multiply cm by (yN)m/2,
and obtain, to order l/N,

(A25)

äs advertised above.

APPENDIX B: JOINT DISTRIBUTION
OF Bl AND B2 FOR ß=2

For broken time-reversal symmetry, the distributions of
B ι and B2 have to be calculated from the Laguerre ensemble
[Eq. (8)] with β = 2. Similarly äs for preserved time-reversal
symmetry, this ensemble can be obtained from the eigenval-
ues of a matrix W^ W. The matrix W is once more complex,
but no longer Symmetrie (it is also not Hermitian). It has a
Gaussian distribution

with measure

P (W) oc exp( - 2 γΝ tr VF1" W),

d W= Π d Re Wijd Im W{j.

(B i)

(B2)

It is instructive to calculate P(Bi) first, because it will be
instrumental in the calculation of P(Bl,B2). After averaging
over the M.-'S, the characteristic function takes the form

= (exp(-ipB1))=( (B3)

We express the determinant in the denominator äs an integral
over a complex vector z. Due to the invariance W—-> UWV of
P (W) for arbitrary unitary matrices U and V, we can turn τ
in direction i, and write

a x' 0T\

x
W- γ

\ o

dpdzz2N-ld2adxx2tf-3dx'x'2N-3

(B4)

Xexp[ip(Bl-z2/N)-2jNx'2].

Seiberg's integral [27] gives

<|detlf)

2yN

' N-l

(B5)

(B6)

The Integration over/? gives 6(z2 — NB\), and allows one to
eliminate z. The Integration over x' amounts to replacing

(A24) x'2=(N-l)/2yN=d2

l. The final integrations are most
easily carried out by concatenating a to x, giving an
yV-dimensional vector y. Then

dyy 2N+lr>N-lB

which to order l/N becomes

2γΝ

(B7)

(B8)

The first Steps in the calculation of the joint distribution
function of B ι and B2 are identical to what was done in
Appendix A, and result in the characteristic function x(p,q)
in the form of Eq. (A6), but with γ replaced by 2 γ. Due to
the unitary invariance of the W ensemble we can write

W=

a x' 0 O r \

x b y' 0T

0 y

Y

\0 0 /

(B9)

One now integrales over p and q and obtains delta functions
äs in Eq. (AIO). This is followed by Integration over z· The
calculation is then much simplified by recognizing that one
can rescale the remaining Integration variables in such a way
(namely, by introducing a2 = a2Bi/B2, x2 = x2Bl/B2, y'2

B2
l) that

(B10)
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It is not necessary here to give /(B^ äs a lengthy multidi-
mensional integral, since its functional form is easily recov-
ered from the relation

P(Bl)= l (Eil)

We compare this with Eq. (B8), and arrive at Eq. (41). The
distribution of B2 has the closed-form expression

(B 12)

APPENDIX C: JOINT DISTRIBUTION OF C0 AND Cl

We seek the joint distributions of the spectral moments
C0 and Ci, which determine φ' and / for ß= l and n = m
via Eq. (29). We Start with the characteristic function

X ( p 0 , p i ) = (exp[iRe(p0C0 + piCi)]), (Cl)

where p0 and p ι are complex numbers, äs are the quantities
C0 and Ci themselves. Since Ci, = E1«2rf , we have to aver-
age over the r,'s and the M,'s. Averaging over the M/S flrst,
we obtain

N2

-l/2\

(C2)

We again regard the rates μ,= τ, ' äs the eigenvalues of a
matrix product YY\ where Y will be specified below. Then
the product of square roots can be written äs a ratio of de-
terminants:

Π 1 +
\PiT,+Po\'

= detyy r det (yy r)
,N2+\p0\

N2

IP,
N2

-1/2

(C3)

We will express the determinant in the denominator äs a
Gaussian integral over a real /V-dimensional vector z. Hence
it is convenient to choose y real äs well, so that one can use
orthogonal invariance in order to turn z in direction 1. More-
over, there is a representation of Y which allows one to in-
corporate the determinant in the numerator into the probabil-
ity measure: We take y äs a rectangular NX (N+3) matrix
with random Gaussian variables, distributed according to

(C4)

The corresponding distribution of the eigenvalues μ, of yy r

is given in Ref. [23], and differs from the Laguerre ensemble
[Eq. (8)] by the additional factor Ϊ1,μ, = άκ1 ΥΥΤ. In this rep-
resentation,

Xexp [YYT]n (C5)

where the average is now over Y. Inverse Fourier transfor-
mation with respect to p0 and p t results in

P(C„,Ci)«i
-z2[(yyr)2]„]

Xexp
C,\2N2 N2

4z2 2

x-
|c0-[yy r]HCiP

T-\ \2
[(ΥΥτ)2]η~([ΥΥΊη)

(C6)

The orthogonal invariance of YYT allows us to param-
etrize Υ äs

y=

ja υ 0T\

w b

0 y Z

0 0

(C7)

with real numbers i>>0, w>0, y>0, a, and b, and an
[(N— 1 ) X ( / V + l)]-dimensional matrix Z. It is good to see
that Z drops out of the calculation, because it does not appear
in

(C8a)

2y2. (C8b)

We replace b = b' — aw/v, and introduce z' = zy υ. The inte-
gral over z' can be written in the saddle-point form

ϊ d z ' z ' N e ~ z ' 2 f ( z ' ) κ f ( ^ [ N / 2 ) for large N. The resulting ex-
pression varies with respect to the remaining variables on the
scales

(C9)

We use the given Orders of magnitude to eliminate terms of
order N~l, but keep the residual correlations R e C o C f / y W
= O(N~1'2). The joint distribution function of C0 and C\ is
then
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: l dadb'dvv3dwwN~2dyye\p[-yNy2] x ( p ) = l dxdydzd2ad2bdYX\detY\*\a[b-y2(Y~l)n]
2

Xexp

Xexp

_ ff Jl + ̂ \_JL( 2+ 2 + b,2
Ύ W \ V 2 j 2y2(" y

^ NvyiC.l2 N\C0\
2

(C10)

Now we can integrate over a, b', w, and v, and arrive at

exp[ — ·
P(Co,C,)«

Γ

J \5/2

(Cll)

The final result [Eq (30)] is obtamed by substitutmg s

APPENDIX D: DISTRIBUTION OF Al FOR ß=l

In the large-jV limit the jomt distnbution function
i) = P(A0)P(Al) factonzes, äs explamed in See

III E The distnbution of A o is given m Eq (31) It remams
to calculate the distnbution of Α\ = Σιτιιιιυι The M/S and
u, 's are mdependent Gaussian random numbers Averagmg
over them, we obtam the charactensüc function

= ( Π
\pr,\2

4N2

2\ -M

(Dl)

where p is a complex number The Laguerre ensemble is
agam represented äs the eigenvalues of the matnx product
H^W, wheie W is the complex Symmetrie matnx with dis-
tnbution (AI) Followmg the route of Appendix A we ιερ-
resent the determmant m the denommator by a Gaussian in
tegral over a complex vector z, and choose a basis in which
W is of the form of Eq (A8) The characteiistic function is
then obtamed äs the following multidimensional integral

-x2 4exp exp[ — Z2((\a\2+x2)2+x2\a

+ b*\2+x2y2)']exp[-yN(\a\2

(D2)

Let us bnefly descube in which order the mtegrations are
performed most conveniently Founer transformation with
respect to p converts the charactenstic function back mto the
distnbution function P(A\) This Step gives nse to a factoi
z~2 e\p(~\Al\

2N2z~2) We can also integrale over y, which
results in a factor exp[-2yM(zz)2] We mtroduce new vari-
ables by the substitutions b = b — a*, x=v/z, and a = a ' / z
After these transformations one succeeds m mtegratmg over
b', z, and a' The remaimng integral over u = |v is of the
form

-5

X

2\A{

\Αϊ\
6ν2(ί92+Π6υ-Πν2)

8\Al

Χ arctan
\\A

(D3)

The more compact form [Eq (38)] is the result of the re-
placement v =2/5, followed by a number of paitial mtegra-
tions
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