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Abstract. - Random matrix theory is used to show that the proxiniity to a superconductor
opens a gap in the excitation spectrum of an electron gas confmed to a billiard with a chaotic
classical dynamics. In contrast, a gapless spectrum is obtained for a non-chaotic rectangular
billiard, and it is argued that this is generic for integrable Systems.

The quantization of a System with a chaotic classical dynamics is the fundamental problem
of the field of "quantum chaos" [1], [2]. It is known that the statistics of the energy levels
of a two-dimensional confmed region (a "billiard") is different if the dynamics is chaotic or
integrable [3]-[5]: A chaotic billiard has Wigner-Dyson statistics, while an integrable billiard
has Poisson statistics. The two types of statistics are entirely different äs far äs the level
correlations are concerned [6]. However, the mean level spacing is essentially the same:
Particles of mass m in a billiard of area A have density of states πιΑ/2ττΗ2, regardless of
whether their dynamics is chaotic or not.

In the solid state, chaotic billiards have been realized in semiconductor microstructures
known äs "quantum dots" [7]. These are confmed regions in a two-dimensional electron gas,
of sufficiently small size that the electron rnotion remains ballistic and phase-coherent on long
time scales. (Long compared to the mean dwell time idweii of an electron in the confined
region, which itself is much longer than the ergodic time ierg in which an electron explores
the available phase space.) A tunnelling experiment measures the density of states in the
quantum dot, if its capacitance is large enough that the Coulomb blockade can be ignored. As
mentioned above, this measurement does not distinguish chaotic from integrable dynamics.

In this paper we show that the density of states becomes a probe for quantum chaos if
the electron gas is brought into contact with a superconductor. We first consider a chaotic
billiard. Using random matrix theory, we compute the density of states p(E) near the Fermi
level (£7 = 0), and find that the coupling to a superconductor via a tunnel barrier induces an
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energy gap Egap of t he order of the Thouless energy ET ~ Τι/idweii More precisely,

Egap - οΝΓδ/2π, (l)

where 7V is the number of transverse modes in the bainer, Γ is the tunnel probability per
mode, 2δ is the mean level spacing of the isolated bilhard, and c is a number which is weakly
dependent on Γ (c decreases from l to 0 6 äs Γ mcreases from 0 to 1) Equation (1) requires
l <C ΝΓ <C Δ/δ, where Δ is the energy gap m the bulk of the superconductor In this hmit
p(E) vanishes identically for E < Egap In contrast, for a rectangular bilhaid we do not find
an energy gap m which p = 0, but mstead find that the density of states vanishes hnearly with
energy near the Fermi level We present a general argument that m an mtegrable bilhard p
has a power law dependence on E for small E

The System considered is shown schematically m the inset of fig l A confined region m a
normal metal (N) is connectcd to a superconductor (S) by a narrow lead contammg a tunnel
barner The lead Supports N propagating modes at the Fcrrm energy Each mode may have a
different tunnel probability Γη, but later on we will take all jTn's equal to Γ for simphcity The
proximity cffects considered here require *time-reversal symmetry, so we assume zero magnetic
field (The case of broken time-reversal symmetry has been studied previously [8]-[10] ) The
quasi-particle excitation spectrum of the System is discrete for eneigies below Δ We aie
interested in the low-lymg pait of the spectrum, consisting of (positive) excitation eneigies
En <C Δ We assume that the Thouless energy ET = ΝΓδ/Ίττ is also much smallei than

Δ(ι)
There are two methods to computc the spectrum m the regime E, Εγ <C Δ The first

method is a scattermg approach, which leads to the determmant equation [11]

Oei[l + S0(E)S0(-E)}=0 (2)

The N χ N umtaiy matrix So(E) is the scattermg matnx of the quantum dot plus tunnel
barrier at an energy E above the Fermi level Equation (2) is a convenient starting point for
the case that the quantum dot is an mtegrable bilhard For the chaotic case, we will use an
alternative —but äquivalent— determmant equation mvolvmg an effective Hamiltoman [10],

The M χ M Hermitian matrix HQ is the Hamiltoman of the isolated quantum dot (The fimtc
dimension M is taken to mfimty later on ) Because of tmic-reversal symmetry, H0 = HQ The
M χ N couphng matrix W has elements

/2M<5\ 1 / 2/ _ j
mn \ 7Γ2 ) \ n

(4)
The energy δ is one-half the mean level spacing of HQ , which equals the mean level spacing of
H if W = 0

We now proceed to compute the density of states We hrst considcr the case of a chaotic
bilhard The Hamiltoman H0 then has the distribution of the Gaussian orthogonal ensem-
ble [6],

P (Ho) oc exp - M\-* Tr H% , λ = 2Μδ/π (5)

( J )The opposite regime ET 3> Δ has a trivial discrete spectrum, consisting of 7V states with
energies En just below Δ
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We seek t he density of states p(E) — — 7r~1ImTr ((E + iO+ — H)~1), where (· · ·} denotes an
average over H for fixed W and HO distributed according to eq. (5). The method we use to
evaluate this average is a perturbation expansion in l/M, adapted from ref. [12], [13]. Because
of the block structure of H (see eq. (3)), the Green function Q(z) = ((z — -ff)"1) consists of
four M χ M blocks Q\\, Qiz, Qi\, ε/22· By taking the trace of each block separately, one arrives
at a 2 χ 2 matrix Green function

(We have multiplied by A/M = 2δ/π for later convenience.) One more trace yields the density
of states,

(7)
Z;

To leading order in l/M, the matrix G satisfies

~ λ Λ / z-XGu W + A G v (o\

M ™l + AG2i z - AG22 ' { '
n— l x

where we have abbreviated w^ = (WWT)nn. Equation (8) is a matrix generalization of
Pastur's equation [14]. A unique solution is obtained by demanding that G goes to A/z tirnes
the unit matrix äs z\ — > oo.

We now restrict ourselves to identical tunnel probabilities, Γη = Γ. For M 3> N ^S> 1/Γ
eq. (8) simplifies to

NGnS = irzG12(-G12 + l - 2/Γ), G22 = Gn, G2i = G12, G?2 = l + G2

n. (9)

This set of equations can be solved analytically (2). The result is that p(E) = 0 for E < Egap,
where E&ap is determined by

fc6-fc4

 6 3fc 4 -20fc 2 + 16 4 3fc2 + 8 2 1o-t> _ _ 4 | _ Z — -l
+ ~ '

_

(l -A;)6

x = Egap/ET, k = l-1/F. (10)

The solution of this gap equation is the result (1) announced in the introduction. The complete
analytical solution of eq. (9) is omitted here for lack of space. In fig. l we plot the resulting
density of states. In the limit Γ = l of ideal coupling it is given by

], (Ha)

Q±(x) = 8 - 36X

2 ± ZxVZx4 + 132z2 - 48 , (116)

(llc)

(2) It is worth noting that eqs. (9)-(12) also apply to the case that the chaotic billiard is coupled via
two identical leads to two superconductors, having a phase difference φ. The density of states of such
a quantum-dot Josephson junction is obtained by the replacement Γ —> Feg = 2cos(|0)[cos (\φ) —
l + 2/Γ]"1. For a phase shift of π the excitation gap closes (since φ — > π corresponds to Fe« — » 0), in
agreement with Altland and Zirnbauer [9].
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Fig 2

Fig l - Density of states of a chaotic bühard coupled to a superconductor (mset), for vanous
couplmg strengths The energy is m umts of the Thouless energy ET = ΝΓδ/2-ιτ The solid curves are
computed from eqs (7) and (9), for Γ = l, 0 5, 0 25, 0 l The dashed curve is the asymptotic result
(12) for Γ <C l The data pomts are a numencal solution of eq (3), averaged over 105 matnces HO
m the Gaussian orthogonal ensemble (M = 400, N = 80) The deviation from the analytical curves
is mamly due to the finite dimensionahty M of HO m the numerics

Fig 2 - Histogram density of states for a rectangular bilhard (shown to scale m the upper left
mset), calculated numencally from eq (2) Dashed curve Bohr-Sommerfeld approximation (14)
The lower nght mset shows the mtegrated density of states, which is the quantity followmg directly
from the numencal computation The energy ET = Νδ/2π, with N = 200 modes m the lead to the
superconductor

where 7 — |(\/5 — 1) is the golden numbei In the opposite hmit Γ <C l of weak couplmg we
find

p(E) = E > Esap = ΕΎ (12)

To check the vahdity of the perturbation theory, we have computed p(E) numencally from
eq (3) by generating a large number of random matnces H0 in the Gaussian orthogonal
ensemble The numencal results (data pomts m fig 1) are consistent with eq (9), grven the
finite dimensionahty of HQ m the numerics

We now turn to a non-chaotic, rectangular bilhard A lead perpendicular to one of the sides
of the rectangle connects it to a superconductor (The bilhard is drawn to scale in the upper left
mset of fig 2 ) There is no tunnel barrier m the lead The scattermg matnx SO (E) is computed
by matchmg wave functions in the rectangle to transverse modes m the lead The density of
states then follows from eq (2) To improve the statistics, we averaged over 16 rectangles
with small differences in shape but the same area A (and hence the same δ = πΗ2/πιΑ) The
number of modes m the lead (width W) was fixed at N = mvFW/Trh — 200 (wheie VF is
the Fermi velocity) In the lower nght mset of fig 2 we show the mtegrated density of states

v (E) = fQ dE'p(E'), which is the quantity followmg directly from the numencal computation
The density of states p(E) itself is shown m the mam plot
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We have also computed the Bohi-Sommerfeld approximation to the density of states,

(13)
n=0

Here P (s) is the classical probability that an electron entering the bilhard will exit after a path
length s Equation (13) is the Bohr-Sommerfeld quantization rule for the classical penodic
motion with path length 2s and phase mcrement per penod of 2Es/Hvp — π The penodic
motion is the result of Andreev reflection at the mterface with the superconductor, which
causes the electron to retrace its path äs a hole The phase mcrement consists of a part
IEs/hv-ρ because of the energy difference 2E between electron and hole, plus a phase shift of
—π from two Andreev reflections For s — > oo we find P ( s ) — * 8(A/W)2s~3, which implies a
linear E-dependence of the density of states near the Fermi-level,

In fig 2 we see that the exact quantum-mechamcal density of states also has (approxmiately)
a linear -E-dependence near E = 0, but with a smaller slope than the semi-classical Bohr-
Sommerfeld approximation

We argue that the absence of an excitation gap found in the rectangular bilhard is generic
for the whole class of integrable bühards Our argument is based on the Bohr-Sommerfeld
approximation It is known [15], [16] that an integrable bilhard has a power law distribution
of path lengths, P (s) — > s~p for s — » oo Equation (13) then implies a power law density of
states, p(E) oc EP~2 for E -» 0

To conclude, we have shown that the presence of an excitation gap in a bilhard connected
to a superconductor is a signature of quantum chaos, which is special in two respects It
appears in the spectral density rather than in a spectral correlator, and it mamfests itself
on the macroscopic energy scale of the Thouless energy lather than on the microscopic scale
of the level spacing Both these characteristics are favourable for experimental observation
Our theoretical results are rigorous for a chaotic bilhard and for an integrable rectangular
bilhard We have presented an aigument that the results for the rectangle are genenc for the
whole class of integrable bühards, based on the semi-classical Bohr-Sommerfeld approximation
There remams the challenge to develop a rigorous general theory for the integrable case
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