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PACS. 05.454-b — Theory and models of chaotic systems.
PACS. 74.50+r — Proximity effects, weak links, tunneling phenomena, and Josephson effects.
PACS. 74.80Fp — Point contacts; SN and SNS junctions.

Abstract. — Random matrix theory is used to show that the proximity to a superconductor
opens a gap in the excitation spectrum of an electron gas confined to a billiard with a chaotic
classical dynamics. In contrast, a gapless spectrum is obtained for a non-chaotic rectangular
billiard, and it is argued that this is generic for integrable systems.

The quantization of a system with a chaotic classical dynamics is the fundamental problem
of the field of “guantum chaos” [1], [2]. It is known that the statistics of the energy levels
of a two-dimensional confined region (a “billiard”) is different if the dynamics is chaotic or
integrable [3}-[5]: A chaotic billiard has Wigner-Dyson statistics, while an integrable billiard
has Poisson statistics. The two types of statistics are entirely different as far as the level
correlations are concerned [6]. However, the mean level spacing is essentially the same:
Particles of mass m in a billiard of area A have density of states mA/2rh?, regardless of
whether their dynamics is chaotic or not.

In the solid state, chaotic billiards have been realized in semiconductor microstructures
known as “quantum dots” [7]. These are confined regions in a two-dimensional electron gas,
of sufficiently small size that the electron motion remains ballistic and phase-coherent, on long
time scales. (Long compared to the mean dwell time t4wen of an electron in the confined
region, which itself is much longer than the ergodic time ., in which an electron explores
the available phase space.) A tunuelling experiment measures the density of states in the
quantum dot, if its capacitance is large enough that the Coulomb blockade can be ignored. As
mentioned above, this measurement does not distinguish chaotic from integrable dynamics.

In this paper we show that the density of states becomes a probe for quantum chaos if
the electron gas is brought into contact with a superconductor. We first consider a chaotic
billiard. Using random matrix theory, we compute the density of states p(E) near the Fermi
level (E = 0), and find that the coupling to a superconductor via a tunnel barrier induces an
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energy gap Egap of the order of the Thouless energy Et =~ hi/tawen More precisely,
Egop = cNI'6/2m, (1)

where N 18 the number of transverse modes m the bairier, I' 1s the tunnel probabihity per
mode, 26 1s the mean level spacing of the isolated billiard, and ¢ 1s a number which 1s weakly
dependent on I' (¢ decreases from 1 to 0 6 as I" increases from 0 to 1) Equation (1) requires
1<« NI « A/§, where A 1s the energy gap n the bulk of the superconductor In this it
p(E) vamshes 1dentically for E < Egn, In contrast, for a rectangular bilhaid we do not find
an energy gap i which p = 0, but instead find that the density of states vanishes linearly with
energy near the Fermi level We present a general argument that i an integrable billiard p
has a power law dependence on E for small F

The system considered is shown schematically in the mset of fig 1 A confined region m a
normal metal (N) 1s connected to a superconductor (S) by a narrow lead containing a tunnel
barrier The lead supports N propagating modes at the Fermu energy Each mode may have a
different tunnel probability I7,, but later on we will take all I3,’s equal to I" for ssumplicity The
proximity cffects considered here require é1me-reversal symmetry, so we assume zero magnetic
field (The case of broken time-reversal symmetry has been studied previously [8]-[10] ) The
quasil-particle excitation spectrum of the system 1s discrete for energies below A  We aie
mterested m the low-lying pait of the spectrum, consisting of (positive) excitation eneigies
E, €« A We assume that the Thouless energy Er+ = NI'§/27 18 also much smaller than
A

There are two methods to compute the spectrum n the regime E, Ep < A The first
method 1s a scattering approach, which leads to the determinant equation [11]

Det[1 + Sy(E)Si(~E)] = 0 @)

The N x N umtary matrix Sp(E) 15 the scattermng matrix of the quantum dot plus tunnel
barrier at an energy £ above the Fermi level Equation (2) 18 a convenient starting pont for
the case that the quantum dot 1s an mntegrable bilhard For the chaotic case, we will use an
alternative —but equivalent— determinant equation mvolving an effective Hamiltoman [10],

Hy —TWW T )

Det(E—H)=0, H= ( A WWT _Hy (3)
The M x M Hermitian matrix Hy 1s the Hamiltonian of the 1solated quantum dot (The finite
dimension M 1s taken to infinity later on ) Because of time-reversal symmetry, Hy = Hf The

M x N coupling matrix W has elements

1/2

2M6\1/? .
Wmnzémn( 7r2> (2Fn‘1—1+2fn‘ \/1~Fn> Cm=12 .M, n=12 N

The energy 8 1s one-half the mean level spacing of Hp, which equals the mean level spacing of
HifEW=0

We now proceed to compute the density of states We first consider the case of a chaotic
billiard The Hamiltoman Hy then has the distribution of the Gaussian orthogonal ensem-
ble [6],

P(Hp) o exp [— le-M,\—2 Tng}, A= 2Mé/n (5)

() The opposite regime Et > A has a trivial discrete spectrum, consisting of N states with
energles F, just below A
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We seek the density of states p(E) = —r~HmTr ((E + 0T — H)™!), where (---) denotes an
average over H for fixed W and Hj distributed according to eq. (5). The method we use to
evaluate this average is a perturbation expansion in 1/M, adapted from ref. [12], [13]. Because
of the block structure of H (see eq. (3)), the Green function G(z) = ((z — H)™!) consists of
four M x M blocks Gi1, G2, Ga21, Goo- By taking the trace of each block separately, one arrives
at a 2 x 2 matrix Green function

A TrGin TrGe
¢= M < TrGo1 TrGa ) (©)

(We have multiplied by A/M = 26/x for later convenience.) One more trace yields the density
of states,

o(E) = ~%6“1ImTrG(E oM. (1)
To leading order in 1/M, the matrix G satisfies
Pt z— MGy mw? 4+ MG -
- _]\Z; < mws + AGa1 2 — MGz ) ’ ®)
where we have abbreviated w? = (WWT),,,. Equation (8) is a matrix generalization of

Pastur’s equation [14]. A unique solution is obtained by demanding that G goes to A\/z times
the unit matrix as |z| — oc.

We now restrict ourselves to identical tunnel probabilities, I, = I'. For M >» N > 1/TI
eq. (8) simplifies to

NG116 = m2G15(—Gra + 1 = 2/T), Gag = Gy, Ga1 = G2, G35 =1+ G2,. (9)

This set of equations can be solved analytically (?). The result is that p(E) = 0 for E < Eg,p,
where E,,p, is determined by

6 k4 k* — 20k 4+ 1 3k%+8

k x6—3 0k+6$4+ + =1,

(1-k)° (1=k)* (1-k)?

%= Egop/Er, k=1-2/T (10)

The solution of this gap equation is the result (1) announced in the introduction. The complete
analytical solution of eq. (9) is omitted here for lack of space. In fig. 1 we plot the resulting
density of states. In the limit I" = 1 of ideal coupling it is given by

ETf

o(B) = E31Q, (B/Br) - @_(B/Bx)) (11a)

1/3
Qui(z) = [8 ~ 3607 & 33/307 + 13207 — 48] (110)
E > Egop = 2B0~%? 0.6 B, (11c)

(%) It is worth noting that eqs. (9)-(12) also apply to the case that the chaotic billiard is coupled via
two identical leads to two superconductors, having a phase difference ¢. The density of states of such
a quantum-dot Josephson junction is obtained by the replacement I' — I'g = 2cos(3¢)[cos (2¢) —
1+2/I)". For a phase shift of 7 the excitation gap closes (since ¢ — 7 corresponds to I'g — 0), in
agreement with Altland and Zirnbauer [9].
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Fig 1 — Density of states of a chaotic billiard coupled to a superconductor (inset), for various

coupling strengths The energy 1s in units of the Thouless energy Er = NI'§/2r The solid curves are
computed from eqs (7) and (9), for I' =1, 05, 025, 0 1 The dashed curve 1s the asymptotic result
(12) for I' « 1 The data pomnts are a numerical solution of eq (3), averaged over 10° matrices Hg
in the Gaussian orthogonal ensemble (M = 400, N = 80) The deviation from the analytical curves
1s mainly due to the finite dimensionality M of Hy mn the numerics

Fig 2 - Histogram density of states for a rectangular billiard (shown to scale m the upper left
mset), calculated numerically from eq (2) Dashed curve Bohr-Sommerfeld approximation (14)
The lower right nset shows the integrated density of states, which 1s the quantity following directly
from the numerical computation The energy Ev = N§/2n, with N = 200 modes 1n the lead to the
superconductor

where v = %(\/5 — 1) 1s the golden number In the opposite hmit I' < 1 of weak coupling we
find

p(E) = E§YWE?-E2)"Y2 E> E,,=FEr (12)

To check the validity of the perturbation theory, we have computed p(E) numerically from
eq (3) by generating a large number of random matrices Hy n the Gaussian orthogonal
ensemble The numerical results (data pomts n fig 1) are consistent with eq (9), given the
fimte dimensionality of Hy 1n the numerics

We now turn to a non-chaotic, rectangular bilhard A lead perpendicular to one of the sides
of the rectangle connects 1t to a superconductor (The bilhard 1s drawn to scale 1n the upper left
mset of fig 2 ) There 1s no tunnel barrier i the lead The scattering matrix Sy(E) 15 computed
by matching wave functions 1n the rectangle to transverse modes in the lead The density of
states then follows from eq (2) To improve the statistics, we averaged over 16 rectangles
with small differences 1n shape but the same area A (and hence the same § = 7#?/mA) The
number of modes m the lead (width W) was fixed at N = mopW/nh = 200 (whete vp 15
the Fermi velocity) In the lower right mset of fig 2 we show the integrated density of states

v(E) = fOE dE’'p(E'), which 1s the quantity following directly from the numerical computation
The density of states p(E) itself 1s shown 1n the main plot
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We have also computed the Bohi-Sommerfeld approximation to the density of states,
pBS(E):N/OOdsP(s)i(S E— (n+1>7rhvp/s (13)
0 n=0 2

Here P(s) 1s the classical probability that an electron entering the bilhard will exit after a path
length s Equation (13) 1s the Bohr-Sommerfeld quantization rule for the classical periodic
motion with path length 2s and phase mcrement per period of 2Es/fivp —« The periodic
motion 18 the result of Andreev reflection at the interface with the superconductor, which
causes the electron to retrace 1ts path as a hole The phase mcrement consists of a part
2Es/hvp because of the energy difference 2E between electron and hole, plus a phase shift of
—7 from two Andreev reflections For s — oo we find P(s) — 8(A/W)2?s~3, which imples a
hnear E-dependence of the density of states near the Fermi-level,
1F 2F

= E—0 (14)

B it
res(E) = 55 = TEes

In fig 2 we see that the exact quantum-mechanical density of states also has (approximately)
a linear E-dependence near F = 0, but with a smaller slope than the semi-classical Bohr-
Sommerfeld approximation

We argue that the absence of an excitation gap found n the rectangular billiard 1s generic
for the whole class of integrable bilhards Our argument 1s based on the Bohr-Sommerfeld
approximation It 1s known [15], [16] that an mntegrable bilhard has a power law distribution
of path lengths, P(s) — s7? for s — co Equation (13) then imphes a power law density of
states, p(E) o< EP~2 for E — 0

To conclude, we have shown that the presence of an excitation gap mn a bilhard connected
to a superconductor 1s a signature of quantum chaos, which 1s special 11 two respects It
appears 1 the spectral density rather than in a spectral correlator, and it manifests itself
on the macroscopic energy scale of the Thouless energy r1ather than on the microscopic scale
of the level spacing Both these characteristics are favourable for experimental observation
Our theoretical results are ngorous for a chaotic bilhard and for an integrable rectangular
billlard We have presented an argument that the results for the rectangle are generic for the
whole class of integrable bilhards, based on the semi-classical Bohr-Sommerfeld approximation
There remains the challenge to develop a rigorous general theory for the integrable case
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