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Summary. We present a Monte Carlo study of the matter
distribution in a kinematical model of superclustering in the
Universe. It has been shown (Centrella and Melott, 1983; Icke,
1984) that the regions of lower than average density in the early
Universe become more and more spherical as time goes by. Thus,
the large scale morphology of the high-density baryonic material
in the Universe, consisting of “‘clusters” in the form of pancakes,
filaments, and nodes is obtained when matter streams away from a
distribution of low-density expansion centres (‘nuclei”’) and
collects in the interstices of a close packing of spheres.

This naturally leads to a partitioning of space generated by a
process known as Voronoi tessellation. We have studied the
statistical properties of specific instances of these tessellations,
which we call Voronoi foams, for several model distributions of
expansion centres. We derive the statistical properties of the
regions where baryonic matter accumulates, and of the voids
between the galaxies. These can be compared with observations,
leading to indirect constraints on the initial spectrum of the
density perturbations that produced the matter distribution we
observe today.

In this article we give numerical results on two-dimensional
Voronoi foams and several of their statistical properties in the case
of correlated as well as anticorrelated distributions of nuclei,
together with a description of the algorithm used for generating
these foams from a given distribution of nuclei. The properties of
three-dimensional Voronoi foams will be presented in a sub-
sequent article.

The appearance of a Voronoi foam closely resembles the mass
distribution found in numerical hydrodynamic experiments, and
the bubble structure observed in the galaxy distribution. Concern-
ing the statistical properties of the Voronoi cells, we conclude that
the most promising way to discriminate between several distri-
butions of nuclei is looking at the variance of the angles between
filaments of galaxies. For example, a notable finding is that the
variance of the angle between Voronoi cell walls is about a factor
two smaller than the variance of the angle between randomly
placed walls. This large factor should be easy to discern in galaxy
statistics, and will be useful in discriminating between a “cell”
structure of the Universe and a random distribution of luminous
matter.

The distribution of angles in a Voronoi foam generated by a
completely random distribution of nuclei is known analytically. In
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the Poissonian limit, our numerical results agree precisely with the
analytical expressions.
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1. Introduction

1.1. General outline

Because we intend this article to be the first in a series of
investigations of the large scale structure of our Universe, we
present an introduction that is a little longer than usual, in order to
outline the various ramifications we hope to study.

Theoretical predictions of highly anisotropic structures in the
Universe (Oort, 1970; Zel’dovich, 1970; Icke, 1972, 1973) have
been confirmed by extensive observations of the large scale
distribution of galaxies (Einasto et al., 1980; Zel’dovich et al.,
1983; cf. also Oort, 1983, and references therein). The analytic
estimates referred to above have been confirmed, extended and
refined by numerical calculations of the formation of structure in
the early Universe (Centrella and Melott, 1983; Klypin and
Shandarin, 1983; Melott, 1983; Shapiro et al., 1983; Frenk et al.,
1983; Bond et al., 1984). Although there is doubt about the
reliability of some galaxy counts (De Lapparent et al., 1986), it
would appear that the reality of the sponge-like distribution of
luminous matter is well established (Oort, 1983; De Lapparent et
al., 1986). Filaments in redshift sections might also be due to the
type of ‘““velocity crowding” cusps that plague galactic (/,v)-
diagrams (Burton, 1976; Kaiser, 1987), but this effect cannot
explain the evident filaments that are seen projected in the sky. We
will therefore proceed on the assumption that the void-and-
filament mass distribution is typical of the Universe on scales
above, say, 15megaparsec (using a Hubble parameter of
75kms™ ! Mpc™1).

The statistical properties of the galaxy distribution calculated
in the numerical models (Centrella and Melott, 1983; Klypin and
Shandarin, 1983) should be compared with those of the actual
galaxy statistics of our patch of the Universe. However, these
calculations suffer somewhat from resolution problems, and in
any case they are very expensive in computer time. It may
therefore be useful to see if simpler models can help to narrow
down the parameter space of the actual mass distribution. To this
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end, it is very helpful that it can be shown that the low-density
regions, or “‘voids”, become more and more spherical as time goes
by (Icke, 1984; see Sect. 1.2 below).

This leads to a picture of structure formation that is fully in
accord with the sponge structure (Gott et al., 1986) of the observed
galaxy distribution: we can imagine a collection of expansion
centres, i.e. areas where the cosmic expansion goes a little faster
than the average Hubble speed, from which matter flows away
and collects on the interfaces of a population of spheres that
surround the expansion centres. This gives rise to three topologi-
cally distinct mass aggregates: contact surfaces (pancakes), which
divide adjacent expanding bubbles; filaments, where those
pancakes intersect; and nodes, formed by the intersection of the
filaments. Not only is this interesting because it gives a basis for
comparison with observations, but also it suggests a way out of the

.apparent conflict between the small-scale statistical properties of

the galaxy distribution (as seen in the two point correlation
function) and the epoch of formation of the larger structures.
Because in the Voronoi foam (see Sect. 2.1 for definition of terms)
matter streams towards the pancakes along one spatial dimension,
these grow most slowly; the filaments grow by accretion in two
dimensions, and thus their density increases faster; and nodes
acquire matter from all directions, and therefore grow fastest.
Thus, it is possible that the basic foam structure does form before
galaxies, but that galaxies form before the pancakes have become
very evident. In fact, it may be that the pancakes become hardly
noticeable at all, so that the foam structure is mostly visible in the
distribution of filaments and nodes.

In this scenario, the first generation of stellar systems forms in
the nodes. If these are associated with quasars, the clustering
properties of the latter are expected to be different from those of
galaxies, which are assumed to form in the filaments as well as in
the nodes (only later; see Sect. 5). The two point correlation is then
presumably established by the comparatively small-scale process
of interactions among individual stellar systems, which dynami-
cally are known to behave as very inelastic bodies (see Sect. 1.3).

In this article, we present the results of a Monte Carlo study of
the statistical properties of such a cellular distribution in two
dimensions. Our aim is, to provide a family of statistical
distributions, based on the dynamic properties of the evolution of
voids (namely that they become more spherical as they become
less dense in the course of time); observations can then determine
which, if any, member of this family most resembles the actual
mass distribution of the Universe. We can thus put constraints on
the properties of the perturbations from which the voids
developed. The algorithms, computer code, and comprehensive
results will be published separately; work on the three-
dimensional case is in progress. The special case of a Poissonian
cell distribution was originally applied by Kiang (1966) to the
problem of fragmentation during star formation.

We expect that our results have a wider application than in
cosmology alone; possible areas include other fragmentation
scenarios, such as star formation, the statistics of cellular structure
in turbulent atmospheres, or in the interstellar “cirrus”. Further-
more, the “minimal triangulation” properties of the Delaunay
triangles associated with the Voronoi tessellation suggests that it
would be a very useful instrument for the plotting of contours of
an irregularly sampled function (Kendall, 1971). Applications of
Voronoi tessellations include such diverse fields as molecular
physics, biochemistry, materials science, physical chemistry,
geology, the study of liquids and amorphous solids (e.g.
structureal studies of metallic glasses and the glass transition) and
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even the study of the growth of weeds in a field of crop plants
(Fischer and Miles, 1973).

1.2. The bubble theorem

It was shown by Lynden-Bell (1964) and by Lin et al. (1965) thata
homogeneous ellipsoidal dust cloud collapses in such a way that
any slight departure from sphericity is systematically magnified
during the evolution of the cloud. Subsequently, Icke (1972; see
also Fig. 5in Oort, 1970) extended this result and argued that all
large-scale density excesses in the Universe will thus become
filamentary, leading to the formation of very elongated clusters of
galaxies. Some evidence for these structures was seen in the Virgo
and Perseus clusters (Icke, 1972), but the redshift data were at that
time insufficient to establish the presence of the expected
systematic large-scale streaming (Icke, 1973).

By a simple inversion of Lynden-Bell’s (1964) argument, it can
be shown that the reverse of the above holds true too. A void can
be considered as a negative-density region in an average
background of positive density, so that, when the condensations
collapse, the voids expand. This seems like a useless tautology,
until one realize that a reversal of the sign of the density means that
as the void becomes bigger, its asphericities will gradually disappear
(Icke, 1984). The effects of this ‘““bubble theorem” show up clearly
in the numerical work of Centrella and Melott (1983) and of
Bertschinger (1985b). The virtue of the above is, that precisely
those regions which represent most of the volume of the Universe
have the simplest geometrical shape. Therefore, it would seem to
be sensible to construct a model of the mass distribution in the
Universe based on such simple entities. One may then think of the
condensations as occupying the interstitial spaces of a close
packing of expanding spheres of different sizes.

1.3. “Large” and “‘small”’ structures

Theories of the formation of structure in the Universe are usually
rather vague about what determines the shape and spectrum of the
density deviations, and about precisely what is meant by ‘‘large”
and “small” structure. Some general mass scales and fluctuation
spectra have been identified (e.g. Rees, 1971; Efstathiou and Silk,
1983), but these often depend on the details of the thermal history
of the Universe or on the intricacies of hypothetical ““grand unified
theories” of relativistic quantum fields. We will take a rather more
pedestrian view, and identify our mass scales as follows.

Implicit in our scenario is the assumption that galaxies form
later than their parent clusters, or at least at an epoch when the
cluster collapse was well under way (Oort, 1970; Icke, 1973; Oort,
1983). This allows us to estimate the minimum size of the Voronoi
cells that will be considered in what follows. If a cell wall collapses,
the Kelvin-Helmholtz radiation that is thereby liberated must not
be absorbed by another wall, or else the added energy would
prevent this wall from collapsing in its turn. Accordingly, it is
plausible that the light travel time across a Voronoi cell must
exceed the collapse time of galaxies in a cell wall. The
corresponding cell size is then roughly 10 Mpc; if this occurred at a
redshift of about 5, the present cell scale would be of the order of
50 Mpc, with a corresponding velocity scale of some 4000 km s ™.
These numbers then determine what will be called “‘large scale” in
the remainder of this work.

As to the “‘small’ scale, this is clearly determined by the length
scale on which the motion of galaxies is influenced by the fact that
they are not elastic point particles. In some work, it is assumed
that galaxies and gas form a two-component system, where one
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(the gas) is collision dominated, whereas the other (the galaxies) is
collisionless. This would be a good approximation for a mixture of
stars and gas under typical galactic circumstances, but it is
inadequate for galaxies-and gas. After all, galaxies have an
immense number of internal degrees of freedom, which are easily
excited in encounters (Toomre and Toomre, 1972). Thus, it seems
plausible to define any distance as small if a galaxy collision at that
distance is likely to produce significant tidal distortion. If both
galaxies have mass M, the tidal acceleration A across a galactic
diameter 2 R is equal to 4 GM Rr~ 3, if r is the distance between the
galaxies. The encounter induces an excess speed 4v in about one
galactic year 27 R/v, where v is the circular speed at R, and
Av ~8mv (R/r)3. If the induced velocity change exceeds 10 % of the
galactic rotation speed, noticeable tides can be expected, so that
any distances less than r = R (807)'/? can be called “small”.

This distance is 200 kpc or so, or several hundred times less
than our ““large” scale. This justifies our use of the large scale cells
without explicit reference to the behaviour of the galaxies in their
walls. However, it clearly shows the need for incorporating the
galaxies as soft particles in calculations of the transverse cell wall
structure (we intend to do this in our future work). Moreover, the
sizable ratio between large and small scales indicates the difficulty
of properly resolving the collapsing structures in numerical
simulations (Centrella and Melott, 1983, 1985; Klypin and
Shandarin, 1983). We suspect that the filamentary clusters are
transversely virialized on small scales, and that the two point
correlation of galaxies, extensively studies by Peebles and
collaborators (Peebles, 1980, and references therein), finds its
origin in the dissipational behaviour of galaxies in the small scale
encounters that produce this virialization. If that view turns out to
be correct, the two point correlation would be a ““final touch” to
the evolution of the structure of the Universe, mostly unrelated to
the events on a large scale.

2. The Voronoi problem

2.1. The tessellation

Consider a box of finite size in N-dimensional space (in our case
N=2 or 3), in which are distributed a fixed number of points
according to some statistical process (e.g. Poissonian). Suppose
that each of these points is the centre of a spherical expanding
bubble. If all the bubbles begin their expansion at the same time
and at the same rate, the bubbles will come together on planes that
orthogonally bisect the lines connecting the expansion centres (in
accordance with accepted terminology, we will call such a centre a
nucleus). The bisecting planes intersect each other, thereby
generating lines; these lines in turn intersect and form a network.
In this way, each nucleus is enclosed by a set of plane N-1-dimen-
sional planes, encompassing a convex cell containing the nucleus.
Accordingly, the distribution of nuclei generates a unique tiling of
N-space, the Voronoi tessellation (Voronoi, 1908).

The points of a Voronoi cell all share the property that they are
closer to the cell’s nucleus than to any other (Fig. 1). Present
knowledge about Voronoi tessellations stems from the pioneering
works of Meyering (1953), Gilbert (1962) and Miles (1970). Only
one distribution function (i.e. the distribution function of angles
between adjacent lines, see Sect. 3.2 and Fig. 9) and only a limited
number of statistical moments (e.g. expectation values) of
Voronoi tessellations are known analytically in the case of a
homogeneous Poissonian point distribution (see Tables 1 and 2).

Fig. 1. Example of a Voronoi tessellation (thick solid lines) and its correspond-
ing Delaunay triangulation (thin solid lines) with periodic boundary conditions.
The points where several lines of the Delaunay triangles meet are the nuclei of the
Voronoi tessellation; the points where several lines of the Voronoi tessellation
meet are the circumcentres of the corresponding Delaunay triangles. Note that
the circumcentre can lie outside its Delaunay triangle

Apparently, this mathematical construct is a wheel that keeps
being reinvented, and so it has acquired a set of alternative names:
Dirichlet regions, Voronoi polygons/polyhedra, Wigner-Seitz
cells, or Thiessen figures. In fact, the senior author was guilty of
the N reinvention, but his junior uncovered the vast amount of
literature on Voronoi tessellations via the work of Kiang (1966).
We will use the name Voronoi tessellation for the division process;
a particular realization of this process (i.e. a subdivision of
N-space according to the Voronoi prescription for a particular set
of nuclei) we will call a Voronoi foam. In the calculations pre-
sented below, we will restrict ourselves to N =2.

For the homogeneous planar Poisson point process the exact
known expectation values for a Voronoi cell are given in Table 1
(Miles, 1970). The corresponding exact moments for a Voronoi
polyhedron produced by a homogeneous three dimensional
Poisson point process are shown in Table 2 (Meyering, 1953;
Miles, 1972). Other properties of Voronoi figures have been found
by Monte Carlo techniques, generating a large number of
statistically independent tessellations and thereby determining
experimentally the distribution functions of; say, the lengths of the
tile edges, the angles between adjacent edges, or the tile surface.
We will do the same here, with a view toward comparing these
statistical measures to those inferred from the actual galaxy
distribution. We will not restrict ourselves to Poissonian nuclei
(the only case extensively treated in the mathematical literature),
but consider correlated and anticorrelated nuclei as well.

Eventually, we will compare the resulting Voronoi foams with
the actual distribution of galaxies; this is made possible by
automated analysis of large samples of galaxies (Rhee and
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Table 1. Exactly known moments for a two-dimensional Voronoi
cell in the case of a homogeneous Poisson point process. Here g is
the “intensity” of the process, i.e. the number of points per unit
volume in N-space

Quantity Moment
1. Number of vertices EN)=6
2. Area E(4)=1/0
3. Perimeter E(S) =4/1 0

Table 2. Exactly known moments for a three-dimensional Vor-
onoi polyhedron in the case of a homogeneous poisson point
process

Quantity Exact Numerical
1. Volume

E®W) 1/e 1/e
2. Surface area

E(S) (2567/3)13 1(5/3) o~ 2 5.821 9723
3. Edge length

E(L,) {453 753 I (1/3)}/{3%350'/3} 17.50 913
4. Number of edges

E(N,) 14472/35 40.61
5. Number of faces

E(N,) (4872/35) +2 15.54

6. Number of sections per unit area cut by a plane

E(M;)  {#Pa%2 T(1)3)}/{3%3 50"} 1458717

Katgert, 1987). By finding a connection between the distribution
(of (say) edge lengths and the amount of (anti)correlation of the
nuclei, we may be able to place some limits on the latter by
comparing it with observations. This would enable us to
“observe what is not there”, i.e. the statistical properties of the
voids between the galaxies, and indirectly the spectrum of
perturbations that led to the formation of large scale structure in
the Universe.

2.2. The algorithm

From the above, it follows that the algotithm for the Voronoi
tessellation must proceed as follows:

(1) Pick a distribution of nuclei;

(2) Prescribe boundary conditions;

(3) For each nucleus, construct the circumference of its
Voronoi tile, which encompasses all points that lie closer to the
given nucleus than to any other.

In step (1), the distributions we use can be correlated,
uncorrelated (Poissonian), or anticorrelated. Because there is an
infinity of possibilities for (anti)correlation, we had to make a
choice. In order to explore the most characteristic possibilities we
will proceed as follows. We take a two-dimensional grid of 25 x 25
arbitrary length units, in which we place 100 nuclei. In the case of
anticorrelation the grid is subdivided in 25 grids of 5 x 5; in each
subgrid four nuclei are placed in such a way that the minimum
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distance to any other nucleus in the 25 x 25 grid is larger than a
prescribed value, denoted by &, which may be called the
“anticorrelation parameter”. We ran 18 different ¢’s, from 6 = 0.0
to § = 1.7, in steps of 0.1; 6 = 0.0 is the most random distribution
(i.e. it most closely resembles a Poissonian distribution).
Examples for 6=1.7, §=1.0 and 6=0.0 are shown in
Fig. 2a, b, c.

We also explored a correlated process. In this case, the first
nucleus is placed at random, and each subsequent nucleus is
placed with respect to its predecessor according to the following
prescription:

r =—21logRJ[0,1]
¢ =RI0,27].

Here r is the distance to the preceding nucleus, while ¢ marks the
direction with respect to the x-axis; R [a, b] is a random number
between a and b. The number A will be called the correlation
parameter. If ) is small (i.e. 4 <2.0) we have very correlated
distributions (Fig. 2f). As far as we know, these bear little
resemblance to physical reality as seen in the actual distribution of
low- and high-density regions in the early Universe. If A lies
between ~2.0 and x7.0 (Fig. 2¢), we obtain a middle correlated
distribution; above 4 7.0 (Fig. 2d), the correlation becomes very
weak. We ran 40 different A’s; from A =0.2 to A =4.0 in steps of
0.2 and from 4.4 to 12.0 in steps of 0.4.

The above two processes were chosen mostly for convenience.
For the benefit of those who want to explore Voronoi foams
centered on other distributions of nuclei, we will publish our
algorithm and FORTRAN code elsewhere, together with more
statistical details than are given here. Our processes become
poissonian only in the asymptotic limit § | 0 and A — co.

In step (2), we prescribe toroidal boundary conditions: our
sample of a two-dimensional universe is square, and the opposing
edges are identified with each other.

In step (3) there ar two possibilities. The first one is recursive,
has a finite resolution, and can be generally applied. We subdivide
our square (e.g. into four quarters, but the actual number can be
chosen freely for optimal convergence); determine of each corner
of a small square where the nearest expansion centre is; and if not
all four corners belong to the same centre, apply the same
subdivision to the small square. We will be using this method in
the more difficult case of unequal expansion velocities, which is
known in the literature as the Johnson-Mehl subdivision of space
(Johnson and Mehl, 1939). A comparable method was used by
Kiang (1966), who determined the Voronoi tessellation of a
random distribution of 80 nuclei by determining the nearest
nucleus for each point out of a grid consisting of 6400 points. The
second method is geometric, exact, and is economic only in the
case of equal expansion velocities.

The essence of the method we used for constructing a Voronoi
foam is described by Tanemura et al. (1983) in the case of three
dimensions. Other algorithms, which turn out to be less efficient,
can also be found in the literature (Kiang, 1966; Green and
Sibson, 1978; Brostow and Dussault, 1978; Finney, 1979) 1. Our
method works as follows.

Consider a distribution of nuclei in a plane. We take any
nucleus and label it N, , and determine the Voronoi cell of nucleus
Ny; this step is repeated for each nucleus in the grid.

! In fact, we discovered the article of Kiang (1966) and, via this
work, a host of further articles, after we had already written and
tested our own program.
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Fig. 2a—f. Six examples of the distribution of nuclei (expansion centres) according to our prescription of correlation and anticorrelation. Panels a through ¢ are
anticorrelated distributions: a very anticorrelated (quasi-crystalline) (6 =1.7); b mildly anticorrelated (6 =1.0); ¢ quasi-Poissonian (6 =0.0). Panels d through f are
correlated distributions: d weakly correlated (4=7.6); e middly correlated (4=3.2); f strongly correlated (A=1.0)
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The determination of a Voronoi cell consists of a sequential
search for all so-called Delaunay triangles, which are the triangles
having three nuclei as vertices and a circumscribing circle that
contains no other nuclei (Fig.1). A property of a Delaunay
triangle is that the centre of the circumscribing circle is a vertex of
the Voronoi foam (Fig. 1), because by definition each triple of
nuclei that generates a Voronoi vertex is equidistant from that
vertex and is the nearest triple of nuclei to that vertex. If we have
found all Delaunay triangles having N, as a corner, in the right
order, we can construct the Voronoi cell belonging to N; by
joining the circumcentres of the Delaunay triangles.

Our program stars with looking for the nearest neighbour
nucleus of N; and labeling it N,. The plane that perpendicularly
bisects the line between N, and N, is a wall of a Voronoi cell (a
line, in two dimensions). Now we look for a third nucleus N, such
that (N,, N,, N;) forms a Delaunay triangle. Finding that nucleus
is done by using the property that the circumscribing circle of
(Ny, N,, N3) is empty; if there is another nucleus inside the circle,
it is nearer to the circumcentre than N,, N,, or N3, and therefore
the circumcentre cannot be a vertex in the Voronoi tessellation.
The nucleus N; is found by starting at the midpoint M between
N; and N, and moving a trial point T outward along the
perpendicular bisector. We always move in a counterclockwise
direction along the bisector, i.e. we “‘turn left” as seen from N, .
This direction is arbitrary, but it must be adhered to once the
choice is made. The search begins with a point T such that
TM = MN,. Around T a circle is drawn with a radius equal to the
distance TN; (and TN,). If no nuclei are found in that circle, we
move further outward to a new T on the bisector and repeat the
same step, at each such move the distance TN, is increased by a

fixed factor (1/5 in our calculations) in order to speed up the
search process; as soon as we find nuclei inside the circle we
calculate for each such nucleus (say P;) the circumcentre of the
triangle (N, N,,P;), followed by the determination of the
distance D; of that circumcentre to the midpoint between N; and
N,. The nucleus N3 is that nucleus P; for which D; is minimal (see
Fig. 3); consequently, (N;, N,,P;) is a Delauney triangle. The
circumcentre found is the first vertex of the Voronoi polygon
centered on N;. Then we move along the perpendicular bisector
between N; and N (again in counterclockwise direction) and, in
like manner, find a fourth nucleus N, which defines the second
vertex of the polygon (circumcentre of triangle (Ny, N5, Ny).

21

Fig. 3. The construction of a new Delaunay
triangle from two known nuclei (¥, and N,)
by searching for a new nucleus N; such that
(Ny, N, N;) forms a triangle whose
circumsphere doesn’t contain any other
nucleus (see text). The points Ny, Ny, N, form
a Delaunay triangle obtained in a previous
search; within the (dashed) circumcircle of
(No, Ny, N,) is shown corresponding Voronoi
vertex V, and stubs of the Voronoi cell walls.
On the left hand side of the diagram, the T are
a sequence of trial points, the third of which
produces a circle that encompasses two nuclei,
P, and P,. Because the radius of the
circumcircle of (N, N,, P,) is smaller than
that of (N, N,, P,), the point P; = N, i.e. the
third corner of the Delaunay triangle. Thus,
the circumcentre of (N,, N,, P,) is the next
Voronoi vertex, which, if connected with V,
produces a complete Voronoi cell wall

This procedure is repeated until we are back where we started,
and have completed the Voronoi polygon associated with N;.
With the proper bookkeeping to avoid duplications, the same
procesure is applied to all the other nuclei, and thereby the
tessellation is completed. The process is shown schematically
in Fig. 3.

The extension to three dimensions is obvious: four nuclei form
a Delaunay tetrahedron if it has a circumsphere that has no other
nuclei inside. The centre of the circumsphere is a Voronoi vertex.

It is clear that at a generic Voronoi vertex in two dimensions,
three cells meet; however, if by chance a vertex has four or more
Voronoi polygons in common, i.e. two contiguous Delaunay
triangles have the same circumcircle, the vertex is said to be
degenerate. Although such degeneracy will not occur in reality, we
have for the sake of safety tested our programs on degenerate
cases (€. g. a square grid of nuclei), and found that these are treated
properly by our algorithm.

The literature is replete with illustrations of poissonian
Voronoi foams (Kiang, 1966; Green and Sibson, 1978; Sibson,
1980; Miles and Maillardet, 1982). However, we wanted to look
especially at the change of the properties of the tessellations as a
function of the distribution of the nuclei. To give an idea of the
resulting patterns, six Voronoi foams, corresponding with the
distributions of nuclei from highly correlated to highly anti-
correlated (Fig. 2), are shown in Fig. 4.

Although it is clear that the Voronoi tessellation correspond-
ing to highly, and even mildly, correlated distributions of nuclei
(Fig. 2f) bear no resemblance to the observed cell structure of the
Universe, the anticorrelated and weakly correlated distributions
do resemble the large scale structure of the Universe (cf. De
Lapparent et al., 1986) and the structure seen in numerical
simulations (e.g. Centrella and Melott, 1983). There are two ways
we can interpret the two dimensional Voronoi foams shown in
Fig. 4. First, we can consider them as a slice of the Universe (as in
De Lapparent et al., 1986); alternatively, we can consider the foam
as a projection on the sky of the galaxy distribution, as seen in a
map of the famous Shane-Wirtanen counts (Shane and Wirtanen,
1967; Seldner et al., 1977). Although our two-dimensional
pictures are not yet the projection of three-dimensional Voronoi
foams, we can make a preliminary comparison between our results
and the actual sky because the galaxy counts are magnitude
limited and, consequently, encompass a finite slice in depth. If that

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1987A%26A...184...16I&amp;db_key=AST

b)

f)

L9t 8T . L VRV .86T.

* Provided by the NASA Astrophysics Data System

© European Southern Observatory


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1987A%26A...184...16I&amp;db_key=AST

FTI987ARA T _I84- " "161

depth is of the order of the cell size, the two dimensional results
should be a first approximation of reality. The limiting photo-
graphic magnitude of the Shane-Wirtanen counts is 19™.
Assuming an absolute photographic magnitude for a typical
galaxy of —18™, this corresponds to a depth of 250 Mpc. The
typical size of a void could easily be 50 Mpc (Oort, 1983; De
Lapparent et al., 1986), which means a depth of five Voronoi cells;
a projection of a shell with a width of this number of cells will
probably still look much like a two-dimensional cell structure. We
intend to test this when we have produced our three-dimensional
Voronoi algorithm.

It must be emphasized that the Voronoi foams (Fig. 4) do not
give the density distribution of galaxies; they represent, as it were,
the skeleton around which the galaxies will assemble during the
evolution of the Universe. Matter first arrives in the pancakes,
followed by the filaments and lastly the nodes; however, the
density at the nodes grows much faster than at the filaments,
whose density, in turn, grows faster than the density at the
pancakes (Icke, 1984). In advanced stages of collapse of the
filaments we must also expect streaming of matter from the
pancakes and the filaments towards the nodes so that it is possible
that only a relatively small number of galaxies will exist in the
pancakes, giving rise to a sponge-like picture of the galaxy
distribution (Gott et al., 1986). It would be very interesting to
calculate the density evolution of our Voronoi model and the
topological properties of the resulting low- and high-density
regions, after the manner indicated by these authors.

3. The statistical properties of Voronoi foams

3.1. Quantities derived from the Monte Carlo simulations

Each Voronoi foam was analyzed statistically, by determining for
each cell: a) the circumference; b) the area; c¢) the number of
vertices; d) the length of each wall; €) the angle between each
pair of neighbouring walls; f) the distance between the centre
and each vertex; g) the perpendicular distance between the centre
and each wall (Fig. 5). This produced seven sets {4;} of cell pro-
perties. We calculated, over the whole foam of K= 100 Voronoi

L
cells, 1) the mean of each set {4;}, 4= Y 4,/L; 2) the variance
i=1
L _ 1/2
5A={Z (Ai—A)Z/(L—l)} ; 3) the maximum; 4) the min-
i=1

imum. For each correlation- and anticorrelation parameter A

resp. & we initiated M =26 different distributions of nuclei and

calculated the corresponding Voronoi foams. For each foam, the

four quantities mentioned above were obtained, producing four
M

sets {B;} for each cell property. The mean B= ) B;/M and its
j=1
M 1/2
variance dp = { Y (B;— B)*/M (M — 1)} were determined. In
j=1

cases a) through ¢), L is the number of cells in the foam (equal to
K=100 in the simulations presented here). In case e), L is the
number of angles in the foam, i.e. three times the number of
vertices. In cases d), f), and g), L is the number of walls, i.e. 3/2
times the number of vertices. The values B were plotted as a
function of A and 6. The variance d was indicated with an error
bar at each point. Representative examples of such plots are
shown in Fig. 6.

By this procedure, we hoped to identify those quantities which
are most sensitive to correlation or anticorrelation of the nuclei.

23

filament
(wall)

nucleus
(expansion centre)

Fig. 5. Identification of the four quantities which were calculated in each
Voronoi cell: /;: length of wall i; «: angle between two walls meeting at a vertex;
dy : distance between the nucleus and a vertex: dy, : distance between the nucleus
and a wall (note that the projection of the nucleus doesn’t necessarily lie on the
wall). Other quantities which were calculated are the number of vertices of the
cell (here 6), the circumference, and the area

From these, we may be able to derive information about the
distribution of the expansion centres in the Universe, which are of
course invisible, but which ought to contain fossil information
about the fluctuation spectrum from which the observed
structures of luminous matter arose.

Furthermore, if the Voronoi cells got their initial push from
expansion that was initiated by early vigorous phases of galaxy
formation (Ostriker and Cowie, 1981; Ikeuchi, 1981) one ought to
expect that the expansion centres lie near these initially active
objects. Then these centres become interesting regions for study,
because the cinders of the first generations of active stellar systems
might still be found there.

Quantities like the mean and the variance of cell properties
give an impression of the effect of correlation or anticorrelation on
the foam structure. However, the distribution of other quantities
may be more sensitive to 4 and . In order to identify these, we
made histograms of the cell properties a) through g) (Fig. 7a
through g). Each histogram contained the data of the entire
Monte Carlo sample of 26 foams, for a given value of A or 8. The
graphs (except in case c) were constructed by binning the data such
that each interval contains the same number of points. The bin
width is equal to the largest value of any point contained in it,
minus the largest value of the points in the former bin. The height
of the histogram at each bin is equal to the relative frequency,
given by f, = n;/N,,, b;. Here n; is the number of poinths in the it
bin, N,, is the total number of points contained in the 26
tessellations, and b, is the width of the i bin. If the number of
points per bin is chosen carefully, this procedure gives proper
resolution and a constant scatter per bin.

3.2. Qualitative behaviour of the derived quantities

First, let us consider how the frequency distributions of the
derived quantities vary as a function of the (anti)correlation of the
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Fig. 6a—i. Plots of the mean and the variance of several quantities of the Voronoi tessellation as a function of the correlation parameter (1) resp. anticorrelation
parameter (9). a The mean circumference as a function of A. b The variance of the circumference as a function of A. ¢ The variance of the area as a function of §. d The
same as ¢) but as a function of 1. e The variance of the number of vertices per cell as a function of §. f The mean length of a wall as a function of 4. g The variance of the
length of a wall as a function of . h The variance of the angle at a vertex as a function of 6. i The same as h, but as function of A. Each point in the plot is the result of 26
different distributions of nuclei with that particular correlation or anticorrelation parameter. The error bars give the variance of the quantity as calculated from these

26 distributions (see text, Sect. 3.1)

nuclei. The least variable is the number of vertices per cell
(Fig. 7¢). This is surely due to the fact that the average number of
vertices per nucleus is constant, independent of the statistical
distribution of the nuclei. Accordingly, the average number of
vertices per cell is the same as in the crystalline grid > (which is a

2 This is one of the reasons that the hexagonal distribution used by
Hoffman et al. (1983) closely resembles our poissonian Voronoi
foam

special case of a Voronoi foam), namely six. Strongly correlated
nuclei generate a low and long tail on the distribution, but this will
be very difficult to observe in reality; moreover, the pattern of
inhomogeneities of the galaxy distribution in the sky is obviously
not generated by a very strongly correlated set of expansion
centres. This by itself is a useful datum, but comparison with other
derived quantities of the Voronoi foam will be seen to be
preferable for comparison between the statistical models and the
actual distribution.
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Apparently, the frequency distributions of a quantity for
different anticorrelation parameters do resemble each other, as
seen in Fig. 7a through 7g, panels A and B, where frequency
distributions in quasi-poissonian (6=0) and quasi-crystalline
(6=1.6-1.7) cases are shown. These distributions are seen to be
centered on practically the same mean value, although the quasi-
crystalline case has clearly a distribution with a smaller width and
a higher peak. However, the distributions in the case of strong
correlation clearly have another appearance than those of the
anticorrelated cases: they peak around another mean value, they
have a much larger width, and their tails can be very long. This
appearance changes fast when the correlation gets weaker, and
after A 2 5 the distribution functions closely resemble those of the
poissonian case, as they should. This behaviour is clearly seen in
the plots of the mean and variances of the quantities a) through g)
as function of the (anti)correlation parameter (Fig. 6).

Because it would be very difficult, if not impossible, to
determine observationally the frequency distribution of these
quantities with the accuracy needed to discriminate between the
different cases of (anti)correlation, the frequency distributions are
not expected to be primarily useful for comparison with galaxy
counts. Therefore, we turned to the variances (Figs. 6b—e, and
6g—i). There, the situation is rather better. We think that the
variance of the angles at the vertex (Fig. 6h and i) is the most
useful, for three reasons: the angle is a dimensionless quantity, and
therefore is independent of the distance to the cell walls, and is
likely to be more immune to selection effects; the variance spans a
reasonable range of about 25° between correlated and quasi-
crystalline distributions of nuclei (Fig. 61); and the variance is
always at least a full factor two less than the variance that would
be caused by a completely random distribution of line segments in
the sky. Some observational data on the angles between filaments
of galaxies exist (Binggeli, 1982; Rhee and Katgert, 1987), but a
comparison with our theoretical distributions has not yet been
made.

Useful limits on the variance of the vertex angle can be
obtained from the following estimates. First, consider a vertex
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Fig. 6g—i

where three lines come together which are completely randomly
distributed. The probability distribution of the angles between the
lines is constructed by taking an arbitrary line at the vertex; let the
angle between it and a second line be o, and the angle with the third
line B. Then the probability densities for « and § are P (o) = P ()
= 1/2 7. The joint distribution is the product of these, and because
we have to restrict ourselves to the case o + f <27 we have to
multiply this with a factor 2:

P(a,p)=1/272. (€Y)
We easily verify that
1 2n 2n—a
{oy = — _f o do _f dp=2n/3 )]
2% o

and the same for () and the third angle {y> ={2n—a—f).
Furthermore, the variance of each angle is found from {f2)

—<B*

"(j’_a B2 dp =212/3. 3)

Thus, the square of the variance is 272/9, and the variance itself is
/3 /2 = 84°9.

Comparison with the angle variances given in Figs. 6h and 6i
shows immediately that even in the strongly correlated case, the
Voronoi variance is about half the 85° corresponding to a purely
random distribution of wall directions. The finding that this
variance is so much smaller is primarily due to the fact that the
angle in a Voronoi cell is always less than 7, while in the pure
random case the angle can vary from 0 to 2n. We think that this
finding could — and should - be put to the test immediately. If the
angle distribution as studied by Binggeli shows a variance of the
order of 90°, then either the galaxy filaments do not show cell
structure, or three-dimensional projection effects obscure its
effects. But if the variance is markedly less than that, is seems
certain that the filaments are physically connected, probably in the
shape of a Voronoi foam. In other words, we urge observers to
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Fig. 7a—g. Histograms of each of the properties a through g (see Sect. 3.1) for a strongly anticorrelated (quasi-crystalline) (A), quasi-Poissonian (B) and a strongly or

mildly correlated (C) distribution of nuclei:
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Fig. 7a. The circumference of a cell. A: §=1.7, B: §=0.0, C: 1=2.0
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Fig. 7b. The area of a cell. A: 6=1.6, B: §=0.0, C: =38

consider the variance of the angles measured when searching for
the “Binggeli effect”.

The variances of the vertex angles in our two dimensional
Voronoi foams range from about 42° in the case of strong
correlation of the nuclei, down to roughly 30° for nuclei generated
by a Poisson process. When the nuclei are strongly anticorrelated,
the variance tends to zero, as expected for a crystalline
distribution. The variance in the Poisson case can be exactly
determined (cf. Miles, 1970). Consider an arbitrary Delaunay
triangle. Because we are only interested in angles, the absolute
scale of the triangle does not matter, so that we can freely pick a

200

0 15 20
AREA

v

circumcentre and three vertices on its corresponding circumcircle
(with arbitrary radius). The distances between the vertices, i.e. the
lengths of the sides of the triangle, follow the Poisson distribution;
because this does not contain an intrinsic length scale, the
probability distributions of the sides are proportional to the
lengths of these sides, so that the probability density F of finding a
Delaunay triangle with sides 4, B, and C is

F(A4,B,C)cc ABC. 4)

Evidently, a side 4 of the Delaunay triangle is proportional
to the sine of the angle opposing it (Fig. 8a and b). Thus the
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probability density P, for the distribution of the angles a, b, and ¢ __ 8 . .
(=m—a—b)is P, = 3nsmcxsmﬂsm(a+ﬂ). @)
Ppocsina sinbd sin ¢ ®) a+B+y=2n
Normalization of Py, and insertion of c=n—a—b gives (Miles, gq<z, f<m y<7
1970) at B>, @®

Py,= :;nsina sinb sin(a+b). 6)
The angles «, f, and y spanned by the Voronoi walls meeting at the
circumcentre of the Delaunay triangle have, for geometrical
reasons, (a+a=mn, b+pf=mn, c+y=m, see Fig.8a and b), a
probability density P, which is the same as P, (apart from a minus
sign):

It is straightforward to show that the expectation value and the
variance of any vertex angle are

{ay =27/3
ey =5n%/9 —5/6
<a?y —<ap? =m?/9 — 5/6. €))

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1987A%26A...184...16I&amp;db_key=AST

FTI987ARA T _I84- " 161

T T T T T T v T T LI T T 1
0.02 A 1t B 1 c 1t D
>
2
&5 oo15} {1t 5 4 F .
)
e
LJ
o
Lo
W 0.01 | 41t 4 F -
=
5
Ll
x 0.005 |- 1 F 1 F b
0 1 1 " 1 1 1 1 1 1 1 1 1
0 50 100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150

200
ANGLE AT VERTEX
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This variance, 29°40, is the one that is observed in our Monte
Carlo experiments (Fig. 6h and i). Furthermore, by integrating
over f§ we get the distribution function f;, («) for any angle o at a
Voronoi vertex (Fig. 9):

4sina

F@="5

{sine —a cosa}. (10)
The most likely Voronoi angle, the mode of f;, («), is given by the
root of tan 200 =2 (& < m):. Its values is approximately 129°. The
probability of having a Voronoi angle less than n/2 is

P(a<m/2)=1/6. 11)

In Fig. 10a and b this distribution function is compared with the
two cases in our numerical experiments which most closely

approximate a poissonian distribution (i.e. §=0.0 and 1=12.0);
the resemblance with the analytical curve is as exact as can be
expected [note that f,(«) in Figs.9 and 10 is expressed as a
function of angles in degrees, and is scaled accordingly].

The variance in the case of strong correlation in much more

difficult to calculate. We suspect that its value is )/ (n/6) = 41°45,
but we have not yet found a proof. However, an upper limit can be
easily given. In the strongly correlated case, the Delaunay
triangles that contribute most to the variance are those that have
two corners very close together (at distance D, say) and one far
away, producing a triangle with height H above base D (Fig. 8c¢).
Thus, the angles at the circumcentre (i.e. one Voronoi vertex) are
to first order

a~f~n2+DH,y~n—2D/H. (12)
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Since the expectation values are all 27/3, it is straightforward to
show that

(o> +<{B*) +<y*>) ~n*/18 —2nD/3H, (13)
var ~7/1/18 = 42°43 (14)

which fits quite well with our Monte Carlo observations.

3.3. Quantitative behaviour of the derived quantities

We have attempted to fit the Monte Carlo results to simple
functions that behave like the observed histograms, but the results
were not particularly encouraging or illuminating. Thus, we refer
to the accompanying figures for the quantitative results. In order
to facilitate the application of our statistical model, we will publish
the computer code that can be used to generate — for any
distribution of nuclei — the Delaunay triangulation and the
corresponding Voronoi foam.

DISTANCE CENTRE—WALL

Fig. 8a—c. Plots of Delaunay triangles (solid
lines), with their nuclei (filled circles) and
circumcentres (open circles; these are also
Voronoi vertices). Dashed lines indicate the
stube of Voronoi cell walls. a A Delaunay
triangle whose angles a, b, ¢ are all smaller than
7/2. b A Delaunay triangle with one angle
(here b) larger than 7/2; the circumcentre lies
outside the triangle. Note that a +a=8+b
=y+c=m, thus sina=sina etc. a and b are
used as illustration of the derivation of Eq. (7).
¢ A Delaunay triangle which contributes most
to the variance of the angles at the vertices of
a Voronoi cell in the case of strong correlation
of nuclei [see Eq. (12)]

0.015 — T T

RELATIVE FREQUENCY

0 50 100 150 200
ANGLE AT VERTEX

Fig. 9. The analytical distribution of the angles at vertices in a Voronoi foam
with Poissonian distribution of nuclei [Eq. (10)]. Because we work with angles
expressed in degrees we scaled expression (10) with a factor 7/180
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4. The dynamical evolution of the voids

We have given a description of the morphology of the large scale
structure of the Universe in terms of the Voronoi tessellations,
which result from a spherical expansion of matter from
underdense regions in the initial mass distribution. However, we
have not described in detail the evolution of the matter and
velocity distribution of a spherically expanding hole. In a future
publication, we intend to study the formation of (1) cell walls as a
consequence of the one-dimensional flow of a medium consisting
of gas and (soft-particle) galaxies, (2) filaments as two-
dimensional cylindrical flow, and (3) nodes as spherical inflow of
the same medium.

Several authors have proposed models for the growth of
underdense regions. In the pancake theory of Zel’dovich and his
coworkers (Zel’dovich, 1970) voids result as a consequence of the
formation of sheets where matter coalesces dissipatively in
superclusters. Ostriker and Cowie (1981) and Ikeuchi (1981)
suggested that spherical shock waves, generated by primordial
explosive “‘seeds” (e.g. quasars and supernovae) would propagate
outward, thereby evacuating spherical voids. But bubbles with
diameters larger than 5SMpc are difficult to make by this
mechanism; it may be possible to sweep out a hole with a diameter
of 50 Mpc (as seen in the observations) by assuming amplification
by some kind of chain reaction of detonations (Bertschinger,
1985a) although these seed explosions have to occur very early in
the Universe.

The possibility that a hole develops in the Hubble flow as a
consequence of an initial deficit in the mass density was studied by
Peebles (1982), Hausman et al. (1983), Hoffman et al. (1983), and
Icke (1984). The latter showed explicitly that any region which is
initially less dense than average will expand in such a way that it
becomes more and more spherical. This effect clearly occurs in the
numerical simulations carried out by Centrella and Melott (1983)
and by Fujimoto (1983), who followed the nonlinear growth of a
triaxial rotating underdense ellipsoid. Bertschinger (1985b) tested
numerically, by a two-dimensional axisymmetric hydrodynamics

code, the expansion of a nonspherical underdense region, and
thereby confirmed Icke’s (1984) prediction. Peebles (1982) numeri-
cally integrated the equations of motion for 2000 concentric mass
shells. He finds a density profile that consists of a prominent mass
ridge around a hole; the velocity field around the hole has peculiar
streaming velocities which are only a small fraction of the general
Hubble expansion. Hoffman et al. (1983) constructed spherically
symmetric pressureless Bondi-Tolman models for hole formation
in Friedmann universes, assuming a uniform initial underdensity
surrounded by a compensating overdense region; they find that
deep holes form even in the absence of dissipation, although the
density contrasts needed at recombination to form the observed
holes and rich clusters are larger than the observed limits on
anisotropies in the 3K -background would permit. Hausman et al.
(1983) performed a similar study by specifying an initial
spherically symmetric negative density perturbation and examin-
ing its growth and nonlinear evolution; they found choices for the
initial density profile which lead to the formation of deep holes
which are not surrounded by overdense shells.

Bertschinger (1983, 1985b) and Vishniac et al. (1985) recently
found a general expanding self-similar solution, related to the
Sedov similarlarity solution, which could be initiated by suf-
ficiently large negative density fluctuations. Fillmore and Gold-
reich (1984) also derived similarity solutions, which describe the
evolution of spherically symmetric voids in a perturbed Einstein —
de Sitter universe filled with cold, collisionless matter. The
character of a solution depends on the initial density profile,
gradual perturbations giving rise to holes with smoothly rising
density while steep perturbations result in voids bounded by
overdense shells with sharp edges.

Analytic fluid dynamical calculations (Sato, 1982; Maeda and
Sato, 1983 a, b) have been applied to demonstrate that empty holes
may evolve from initial perturbations of slightly subcritical
density. This work was extended by Lake and Pim (1985) and Pim
and Lake (1986), who studies the evolution of spherical vacuum-
or radiation-filled voids in a Robertson-Walker background
within the context of the general relativistic thin-wall approxi-
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mation, by including background pressure, interior mass, and
surface pressure. They find that voids which do not collapse grow,
at late times, like the particle horizon.

These studies all clearly bear out our contention that it is easier
to study the large scale structure of the Universe by looking at the
evolution of the voids, because their tendency to become more
spherical produces a morphological simplicity, and because their
growth stays longer in the linear regime than the collapsing high-
density regions. Moreover, several physical mechanisms, such as
the explosion scenario of Ostriker and Cowie (1981) and Ikeuchi
(1981) and the bubble theorem (Sect. 1.2), have been proposed, in
which voids play a dominant role in the evolution of the large scale
structure. In these models, the voids appear as real dynamical
entities.

Since the luminous matter in the Universe traces the regions
where the baryons are, one tends to miss the fact that most of the
volume is, of course, elsewhere; this bias naturally induces
resistance to the notion of using the voids as primary constituents
when determining the geometry of the large scale structure.
Although the reality of the sponge-like structure has not been
proven beyond doubt, the discovery of large low-luminosity
domains in deep radial-velocity surveys, such as the Bodtes void
(Kirshner et al., 1981) and the voids in the CfA survey (De
Lapparent et al., 1986) make it practically impossible to argue
away the existence of systematic structure on a large scale: in
density, in velocity, or probably both.

5. Future work

One obvious extension of our work is, to study the properties of
three dimensional Voronoi foams. This should not only provide us
with a more realistic picture, but also give a check on our claim
that two dimensional Voronoi foams give a fairly good description
of the distribution of galaxies in the sky. The three dimensional
cells will be used as the basis for our study of the dynamical
evolution of the voids, and the processes taking place at the walls,
filaments, and nodes.

Another improvement, albeit less essential, would be to spread
the expansion centres in time and in velocity as well as in space: it
is unlikely that all underdense regions were formed at exactly the
same time and with the same excess Hubble parameter. However,
the slowness of the subsequent evolution reduces the effect of this
spread in time: if the voids start around a redshift z & 10, then the
relation ¢ = (1 4 z) ~ 32 indicates that the spread should be at most
1/30 of the present age of the Universe. Similarly, one might
introduce a spread in the expansion rate of the voids. In all these
cases, a cell wall is the locus of points where the flow travel time is
the same to either nucleus. In the (degenerate) Voronoi case, this
locus is a plane; in the more general cases indicated above, it is a
hyperboloid, where the line between the nuclei coincides with the
axis through the nuclei (Johnson and Mehl, 1939). A simple order
of magnitude estimate shows that the radius of curvature at the
apex of the hyperboloid is roughly equal to the distance between
the nuclei, divided by the fractional deviation from equal
expansion speeds. In the above case, this implies that the radius is
some 30 times the internucleus distance, large enough to treat the
cell walls as approximately flat.

It might be interesting to look at the possibilities of the use of
Delaunay triangulation in the statistics of the galaxy distribution.
Every method used to date (e.g. two point correlation, percol-
ation, and minimal spanning) only highlights some features of the
distribution; it may well be that pattern recognition methods
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based on Delaunay triangulation pick out some hitherto unknown
properties.

An intriguing question is whether the proposed Voronoi foam
structure can be seen at large redshifts. Oort (1981,1984)
considers the possibility that the Lyman a absorption lines in the
spectra of quasars are connected with supercluster structures, and
that they can give information on superclustering at large
redshifts, assuming that the luminous matter in the Universe is
largely concentrated in supercluster structures. We will simulate
the correlation properties of the Lyman « lines in the spectrum of a
quasar, by assuming that those lines are formed when the line of
sight traverses an ensemble of hydrogen clouds distributed as a
Voronoi foam. Comparing these with the observations, it might be
possible to say something about clustering at early epochs.

Another possibility of applying our Voronoi tessellations is by
looking at the correlation properties of the nodes in our diagrams.
Because these will be the regions that attain the highest density
first (where the first generation of galaxies might arise), we expect
to find quasars surrounded by rich clusters in such nodes. The
distribution of these objects should then be rather different from
that of the filaments, as is evident in the pictures of the Voronoi
foams presented here. Although Shaver (1986) concludes that the
clustering scales and amplitudes of galaxy and quasar clusters are
“similar”, the statistics of quasar distribution is still so poor and
beset by selection effects that no definitive statement can be made
at present.
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