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Figure 1. The 2 stages of visual identification and classification.

1 Introduction
It need hardly be stated that the identification of objects
(usually artefacts) is a fundamental requirement for the
practice of archaeology. In particular, when the iden-
tification takes the form of assignment of the artefact to a
classification (pre-existing or not) the information
associated with the artefact is greatly increased. In the case
of assignment to a pre-existing classification, the task may
be called recognition, but the procedure(s) are the same.
Classification, which may be defined as the division of a set
of artefacts into subsets containing objects that are more
like each other than other members of the set (Doran/
Hodson 1975: 159), is very closely related to identification/
recognition.

Identification has traditionally been carried out by experts
in the field. The task requires a large amount of training
and experience, because although in many cases specific
features are diagnostic of a particular class of artefacts, the
identification often rests on a visual judgement by the
worker. Of course every method has its pros and cons,
but for our purposes the most important disadvantage of
the traditional approach stems from the limitations of the
human brain when it comes to large data sets. Humans find
it difficult to think of more than 3 or 4 things simultane-
ously, let alone several hundred (or even tens of thousands
as is often the case with pottery). Large data sets also take
time for the human to consider, introducing the possibility
that fatigue may affect the results. A third factor is the lack
of repeatability of this method. As the results depend on
human judgements, there is no guarantee that a different
person will produce the same result, or that the same person
will produce the same result at a different date. We have
been looking at ways of producing an automatic aid to
classification that will alleviate these problems.

Much work has been done on computer-based
classification in archaeology (e.g. Doran/Hodson 1975;
Gero/Mazzullo 1984; Main 1988; Wilcock/Shennan
1975). However these methods have not been as successful
as might have been hoped when applied to practical
situations.

Our work has concentrated on using the shape
information contained in images of the artefacts. Shape is
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an important factor in identification. Visual identification as
we have implemented it, requires a 2 stage strategy (see
fig. 1). The first stage is to use an image processing
algorithm to extract shape information from the image.
This information may then be used individually to identify
the object, or when this information is extracted for a set
of objects, to classify that set. It should be noted that the
image processing algorithms can be used on any shapes,
not just whole objects. Thus, although the case study in this
paper is concerned with the identification of the profile
shapes of whole artefacts (pots), the methodologies used
can equally well be applied to other categories of shapes,
such as partial/broken artefacts, or surface decoration
motifs.

In the remainder of this paper, we describe and compare
the abilities of several different strategies that have potential
for classifying a set of artefacts on the basis of their profile
shapes. These strategies are different combinations of
alternative algorithms for each of the two stages of the
procedure, both for extracting the shape information, and
for identifying the object statistically on the basis of this
information.

2 SMART
The first part of the work was to create a visual lookup
front-end for a database. Such a system could be used by
the excavator in the field to help identify newly-excavated
objects. A prototype of this interface was implemented as
the System for Matching ARTefacts (SMART see fig. 2;
Durham et al. 1995). This uses a pattern matching
algorithm known as the generalised Hough transform
(GHT) to compare the unknown image to a set of known
library images. The GHT calculates a value for the
similarity between two images. The similarity of the



unknown image to each of the library images is calculated,
and a ranked list of the library images is displayed.
It should be noted that the system does not assign the
unknown image to a specific class, but indicates which
library images have shapes most similar to the unknown.

In the SMART identification method, the calculation of
the similarity values is the first of the 2 stages mentioned
above, the ranking of the list is the second. To extend the
method to classification, only one set of images is used.
Every image in the list is compared to each of the others,
and the table of similarity values so produced is used to
classify the artefacts (Durham et al. 1994). 

The GHT gives good results but is very slow, especially
when classifying large sets of objects. This is because it
calculates a relationship between two images which needs
to be done for each possible pair in the set (in the
classification case this calculation is Order n2). It would be
much quicker if the shape information calculated were a
property of the individual images rather than a comparative
measure between images. This would only require the
calculations to be made n times, and would have the added
bonus that the information could be calculated in advance,
as it is a property of the individual image itself and will be
independent of the other images. Thus the incorporation of
a new artefact would only require a single set of
calculations to be made.

Many such measures exist, but the one we have
concentrated on is shape moments. These are statistical
characteristics of the shape, based on the arrangement of its
parts. Many different moments can be calculated, and the
more that are used, the more detailed the description of the
shape will be. An infinite set of moments will completely
describe the shape (cf. Fourier harmonics). In practice it is

sufficient to use a subset of lower-order moments to give a
fingerprint for each shape with the desired level of detail. 

A commonly used set of moments is the set of invariant
moments (Sonka et al. 1993: 228ff). When considered
together these moments provide a description of the shape
that is translation-, scale-, and rotation-invariant (that is,
the result will be the same irrespective of where the shape
is, what size it is and which way up it is in the image).
These moments have been used successfully to identify
aeroplanes, etc. (Cash/Hatamian 1987; Mertzios/Tsirikolias
1993). However early experimentation revealed that the
invariant moments were inappropriate for symmetrical
shapes, such as pot profiles as they consist of combinations
of a few low order moments most of which are zero for
symmetrical shapes. A simpler form of moments, known as
normalised central (NC) moments do not suffer from this
problem as they may be calculated to any order. However,
they do not possess the property of rotation-invariance, but
this is not a problem if care is taken to ensure that all the
shapes have the same orientation.

In our 2-stage scheme for visual identification, the GHT
or the moments are used to do the first stage: to extract the
shape information. Several techniques can be used to
perform the identification based on this information. The
GHT produces a single number for each comparison, so a
simple ranked list can be used here as related above. A set
of moment values can be thought of as a set of features of
the shape, and the object can be identified by the use of
classical statistics such as the well-known k-nearest
neighbour method (looking at its nearest neighbours in the
feature space defined by the moments, the neighbours being
known examples). Alternatively, the moments can be used
as the inputs to a back-propagation neural network, which is
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Figure 2. The SMART interface.



Figure 3. GHT dendrogram. Figure 4. NC moments dendrogram.

trained to identify shapes using known examples. Both of
the methods have been implemented, and their performances
were compared to the GHT method.

3 Testing
To compare the methods a set of 30 pots were used. The
pots are modern, from Crete, and have been classified by a
human (S.J. Shennan) into two groups. These groups are
obvious to even the untrained eye, the pithoi being jars with
very small handles, and the amphorae having large handles.
Although the methods are quite capable of using the raw
images, the images were pre-processed to give a solid
shape. This was easily accomplished by extracting the edge
map of the image, then joining the gaps in the profile,
filling in the interior of the shape and removing noise from
the background, using an image painting package. Thus the
images used were ideal shape representations, and the
quality of the images would not affect the results. The first
7 NC moments were calculated for each image and the
neural net which was used had 7 input nodes, 2 output
nodes and 4 nodes in the hidden layer. The 3 methods were
compared using the leave-one-out method, where each
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member of the set is identified on the basis of the others,
and the percentage of correct identifications is recorded.

4 Results
The relative performances of the 3 methods were as
follows:

GHT 100%
NC moments - k-nearest neighbours 97%
NC moments - neural net 63%

It can be seen that the NC moments were slightly less
successful than the GHT when used with the k-nearest
neighbours method. The neural net results were rather
poor, but this work is still at a very preliminary stage and
it is expected that further work on this will produce better
results by using a different net topology and experiment-
ing with different parameters in the back propagation
algorithm.

The reasons for the different performances of the GHT
and the NC moments becomes apparent if the shapes are
classified on the basis of these methods. As mentioned
above, the shape information derived in the first part of the

Figure 5. GHT group assignment.



Figure 6. NC moments group assignment.

identification procedure can also be used to classify the
objects. To do this the second stage is to use Principal
Component analysis and Hierarchical Agglomerative cluster
analysis (Shennan 1990: chs 12, 13) to group the objects
into clusters based on the shape information. The Principal
Components extracted from the shape information variables
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are used for a Group Average Cluster Analysis. (More
details of this procedure can be found in Durham et al.
1994). The relationships between the pots are shown in the
accompanying dendrograms (figs 3, 5). 

The GHT successfully divides the shapes into two
groups, which correspond exactly with the pithoi and
amphorae (figs 3, 4). The level of resolution of the GHT is
demonstrated by the fact that the two shapes on the extreme
left of the dendrogram are in the pithoi group, but are
markedly separated from the other pithoi. From inspection
of the pithoi cluster in figure 4 it can be seen that these two
pots on the left are noticeably different from the rest, while
still being obviously pithoi.

On the other hand, the shape information from the NC
moments does not produce such a clear classification
(figs 5, 6). The pots are divided into 4 groups. Two of these
correspond to pithoi and two to amphorae. However, one of
the amphorae groups (group 3, the third from the left) is
classified as being more similar to the pithoi than to the
other amphorae. In addition, one of the pithoi has been
classified in this group. This is because the set of moments
used does not give a sufficiently detailed description of the
shape to make the necessary distinction. The moments can
only distinguish that group 3 are tall and thin, groups 1 and
2 tall and fat and group 4 are short and fat, but cannot
distinguish more subtle differences. The use of more,
higher-order moments should alleviate this problem.

5 Conclusions
We have shown that automatic identification and classi-
fication of artefact shapes is feasible, if rather slow, using
the GHT. Our preliminary results suggest that other
methods exist that have a performance approaching that of
the GHT, and will be much quicker to use. These results
promise to produce a practical tool for automatic classi-
fication of artefact shapes in the foreseeable future.
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