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COMMUNICATION FROM THE OBSERVATORY AT LEIDEN

Heat conductivity and nature of the lunar surface material, by 4. #. W esselink.

A quantitative explanation is given for the variations in the lunar surface temperature that have been observed during an eclipse
of the moon as well as throughout a lunation.

In the first eight sections the theory of heat conduction, with constant coefficient of conduction, £, and constant specific heat per
unit volume, ¢, has been summarized and developed. Analytical as well as numerical methods are described. It is shown how the
product k¢ can be found from theory and observation. In section g the observational data obtained by PETTIT and NICHOLSON are
described. In section 10 the provisional result (kc)% = ‘o012 cal cm2min~—% (°C)!is obtained from data outside an eclipse. The
amount of heat conducted inwards per minute at the subsolar point is less than one percent of the amount of heat radiated and of
the radiant energy which is absorbed in the same time.

A first approximation to the internal temperature distribution is given. In section 11 the more accurate result (k¢)¥%2 = ‘0084
is obtained from PETTIT’s data on the eclipse of October 28, 1939. It agrees with EPsTEIN’s result: (k¢)% = ‘0083 based on data
from an earlier eclipse. Section 12 contains a prediction of the variation in surface temperature of an area near the centre of the
lunar disc during a lunation (Figure 3). A second approximation to the internal temperature distribution is found. The constant
temperature in the inner part of the moon is found to be 212° K. Section 13 contains a theoretical determination of the surface
variation of T during the eclipse of October 28, 1939. In section 14 the variations during a lunation are compared with those during
an eclipse from the point of view of homology transformations, of which a general description is given in section 8.

In section 15 we take ¢ = ‘40, which gives £ = 16 X 1078 calcm™'min~! (°C)~.. The penetration of the variations in temperature
below the lunar surface is calculated to be only a few millimetres at an eclipse, whereas the wave-length ofa harmonic heat wave with
a period equal to the synodic month is 14°5 cm. In section 16 the difficulty of finding a terrestrial substance that has as low a heat
conductivity as was found for the moon, is discussed. It is remarked that pumice, which had been proposed by EpSTEIN, does not
give an adequate explanation. The solution is found in section 17, where it is shown that our result for the moon is in excellent
agreement with the laboratory measures of SMOLUCHOWSKI on powders in vacuo. As the heat conductivity of a powder increases
rapidly with the gas pressure in the interstices, PETTIT and NICHOLSON’s temperature measures may be said to give a new and
independent proof for the absence of a lunar atmosphere.

In section 18 it is shown that the grains of the lunar surface powder must be smaller than '3 mm. If the grain size is between ‘1
and '3 mm, k varies with temperature. If it is smaller than 1 mm, the variation of £ with temperature is small.

Notations and definitions

T, absolute temperature in degrees Kelvin.

x, depth in cm below the lunar surface, reckoned
positive inwards.

¢, time in minutes.

¢, specific heat per unit volume (cm?), or the amount
of heat in calories needed to raise one cm?® one
degree centigrade. .

k, coefficient of heat conduction; £ equals the amount
of heat in calories flowing per minute across a
square cm perpendicular to the direction of the
flow, when the temperature gradient is one degree
centigrade per cm. Unit:
calem™ min~ (°C.cm™) 7 =calecm™ min " (°C)

P, period of temperature variation; in the applica-
tion P equals the synodic month.

0, 0= -21—? ;the value corresponding toasynodic month
is 1°47776 X 10* min™".

Semi-infinite solid, a solid filling all space to one
side of a plane homogeneously.

[, wave length of harmonic heat wave.

E=uxl.

—I

F, flow of heat across a square cm per minute; F is
reckoned positive outwards. -

4, amount of heat absorbed by a square cm of the
surface per minute. 4, is the value of 4 at the
subsolar point. 4,= 1'55 cal cm™* min™ ; the value
is derived in the text.

o= Stefan’s constant; ¢ = ‘82 X 10 *° cal cm “min™"

car.

Introduction

1. The purpose of this article is to account for the
temperatures observed on the lunar surface, during
an eclipse of the moon and during a lunation, by
means of the theory of heat conduction. Throughout
the investigation we shall consider the situation in a
limited region of the lunar surface. The depths in-
volved in the problem are so small compared with |
the lunar radius, that it is perfectly legitimate to
neglect the curvature of the surface. Moreover the
roughness of the surface will be neglected. In our
problem the moon thus behaves as a so called semi-
infinite solid, a well known notion in the theory of
heat conduction. At any time we have the same situa-

35T

© Astronomical Institutes of The Netherlands ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1948BAN....10..351W&amp;db_key=AST

FT94BBAN. © ©.-107 “351Wh

352

tion for all points on planes parallel to the plane sur-
face. For a complete specification of the situation we
therefore need only a single spatial co-ordinate: the
depth below the surface, x, and the time, ¢, as in-
dependent variables. In general both the coefficient
of heat conduction, k£, and the specific heat per unit
volume, ¢, have been taken as absolute constants. At
the end of the article a possible variation of £ and ¢
with T is discussed and results of computations with
variable £ have been communicated in section 18.

The lunar surface is supposed to radiate as a black
body, i.e. according to Stefan’s law. All the absorp-
tion of the incident radiation is supposed to occur at
the smooth surface. Otherwise stated, we assume
infinite optical depth for every layer below the sur-
face. In sections 1 — 8 we summarize and develop the
theory of heat conduction for a semi-infinite solid
so far as is necessary for the treatment of the observa-
tional data (£ and ¢ are taken constant).

The change in heat content of an internal element
of volume equals the net amount of heat energy con-
ducted through its walls. This statement (law of con-
servation of energy) is expressed mathematically by
the well known equation of heat conduction:

cg=k£.
ox

o (1)
The same condition, but now applied to an infinitesi-
mal element of volume at the surface, leads to:

cTt=A4+F,. (2)
In (2) the index o indicates surface values (¥ = o).
At any depth we have further:

oT
F=k—a—x—.

(3)
With given boundary conditions, (1), (2) and (3)
determine a unique solution.

In the following sections some particular cases are
considered.

2. Suppose the variation of temperature on the
surface to be simply harmonic, and the constants of
this variation to be known. It is required to find the
variations in the solid when the periodic state has
been established. In the periodic state the variations
are periodic at any depth.

We have at the surface:

T(o,t) = a-+ bcos (ot +¢). (4)
When this harmonic surface variation of the tempera-
ture has lasted long enough, the state at any depth
inside the solid will also be periodic. This periodic
state is independent of the initial distribution of tem-
perature; apart from the constants £ and ¢, depending
on the nature of the solid, it depends on the surface
variation alone. _

The expression for the temperature as a function
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of x and ¢ in the periodic state is derived in several
textbooks on general physics 1).
It is:

T (x,t)=a-+ be_znx/lcoszrr<li)—';+ s>, (5)
k _\'2
1=2<ﬁzp> : (6)

It is seen from (5) that the phase difference between
the variation inside the solid and the variation at the
surface is proportional to the depth. At x = [ this
phase retardation is 2w, for which reason / has been
called the wave-length of the heat wave. The oscilla-
tions are damped, the amplitude at x = [ being only

e~ 2" or nearly 2°/,, of the surface amplitude.

If k/c is not known, we cannot determine [. The
temperature is however a known function of £ and ¢,
where £ = x/l.

Differentiation of (5) with respect to x and multi-
plication of the result with £ gives an expression for F.
At any depth F varies harmonically with period P:
the maximum flow inwards occurs one eighth of a
period before the moment of maximum temperature
(at the same depth). The amplitude of F declines
inwards exponentially, keeping a constantratio (kcw)¥2
to that.of T. In particular we have at the surface:

(7)

At large depths the temperature tends to a con-
stant value a, which is also the average temperature
over the time at any depth, in particular at the sur-
face. The limiting value of F at large depths is zero.

Suppose that the variation (4) is due to a periodic
variation in the incident radiation with period P. If
the periodic variation of the amount of radiative energy
absorbed is known as a function of the time, 4 (t), we
can find F, numerically from (2). Then (kc¢)'2
follows from (7).

in which

semi-amplitude of F,="5 (kcw)"2.

3. Consider the more general case that the given
variation of the surface temperature is periodic but
not necessarily harmonic. Again we want to find the
periodic state. The Fourier development of the given
surface variation may be written:

T (0,t) = S bycos (no t +-2,), (8)

in which the coefficients 4, and the phase constants e,
can be determined from the given function 7 (o, ¢).
Each of the terms in (8) if present alone would lead
to a periodic solution of the form (5), in which for the
term of order n,for P and [, respectively P/nand [/1'n
have to be substituted. As a consequence of the line-

1) E.g. R. A. HoustoNn, 4n Introduction to Mathematical Physics,
p- 94-
G. Joos, Lehrbuch der Theoretischen Physik, p. 406.
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arity of (1) we find the periodic state corresponding
to (8) by simple addition of the various solutions, each

13

Tt — S by 27 EV o

As in section 2, differentiation of (9) with respect
to » and multiplication of the result with £ according
to (3) gives an expression for F. If F, is the term in
the expansion for F corresponding to the term T, in
(8), we have the same relations of amplitude and
phase between F, and T, as noted in section 2, re-
membering that the period is P/n. At any depth, F is
richer in higher harmonics than T, the ratio between
the amplitudes of F, and T, being (kcwn)%, which
*is proportial to ],/ n. Both T'and Fapproach to simple
harmonic variation with increasing depth, the terms
of higher order dying away more rapidly. At large
depth T'is constant and equals b, while the limiting
value of F is zero.

Suppose again the surface variation (8) to be due
to a periodic variation in the incident radiation. If 4
is known, F, may be found numerically from (2). The
expression for F, deduced from (9) and (3) contains
the factor (kc¢)”%, which can be found.

4. It is convenient to introduce £ instead of x, not
only in the solutions of the equations but also in these
equations themselves. The following formulae are
equivalent to (1), (2) and (3). Equation (2) is not
altered; it is repeated as (11) for convenience.

oT Lo T
o (47 P) P (10)
cTot=A+F,, (11)
F=(4nP)™%. (kc)%.%%j. (12)
o

Though the period P occurs in these equations, they
are just as general as (1), (2) and (3) and are by no
means restricted to periodic phenomena with period
P. P has entered the equations as a consequence of the
introduction of £ =x/l and [/ is related to P by (6).
When the equations are applied to the temperature
variations during a lunation, P will be taken to be the
synodic month, which seems only natural. In our dis-
cussion of the variations at an eclipse of the moon, P
is again taken equal to the synodic month, but now
because it was found convenient to use the same
definition of £ as in the former case.

Equation (10) becomes very simple for numerical
integration if the small but finite differences A¢ and
At are chosen in the manner first proposed by
ScuMIpT 1). In finite differences (10) may be written

1) Scumipt, Foepples Festschrift, p.
Berlin 1924.

179, Julius Springer,

© Astronomical Institutes of The Netherlands e
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" of which corresponds to one particular term in (8).

The periodic solution in terms of & and £ is then:

cos 27r<—— — z‘f]/n—i— e,,), where & = x/l as before. (9)
AT (AT
£

Put ‘; ____‘% i ':if m and 7 being integers.
Then (AT): —_—- n41,m Tn,m (14)
(A,T),g: Tomsr—2Tm+ Tomer (15)

Choose A% and At such that
~ At

(47 P) Ok (16)

and substitute (14), (15) and (16) in (13); we obtain
ScuMIDT’s form of (10):

Tn+ I,ng‘(Tn,m—x‘FTn,m-}- !)- (17)
By (17) the temperature distribution at ¢ 4 A¢ can be
calculated if it is already known at £. (17) is of course
independent of &, and #. It is clear that the surface
temperature cannot be found from (17), so that (17)
is only sufficient for an integration when the surface
variation is known. In other cases (11) and (12) have
to be used in addition. (12) for the surface combined
with (11) gives:
o T — A+ (47 P) % (kc)%.@%) L (8)
5. Suppose the temperature distribution at {=o,
T (&, o), and the temperature variation at thesurface,
T (o, t), to be given. It is required to find T (£, ).
We take £, =1f,=o0. If AZ and A¢ are chosen ac-
cording to (16), the problem is solved by continual
application of (17).
When the surface variation of T'is due to a variation
in the incident radiation, F, follows from (11) when
A is known. According to (12), F, must be pro-

portional to <aa—z;> , which quantity can be found from
G /o
. ' . . oT
the solution T (£, f) just obtained. F, / <B_:‘;‘> then
yields (kc)*% by (12).

Consider the problem of a given periodic surface
variation. It is required to find the periodic solution.
The problem hasbeen treated analyticallyin section 3;
we shall now describe a numerical procedure.

Starting with some arbitrary initial distribution of
temperature, equation (17) is applied continually
until at any depth the variations have become periodic
with sufficient approximation. However, unless the
initial distribution of temperature is chosen with care,
this task may well prove rather elaborate. If the
initial distribution of temperature is taken constant
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and equal to the time average of the known surface

variation, and if the integration is started at any of |

the moments that this temperature is reached at the
surface, the amount of work will be relatively small.
The final state for the deeper parts of the solid, where
the convergence is slowest, is then reached already at
the start. :

6. The initial temperature distribution and (kc)%
are given. Let further 4 be known after ¢t = o. It is
required to find the surface temperature for ¢ > o,
We take t, = 0,&,= — L AZ. In the solid the integra-
tion proceeds according to (17), A% and A¢ having
been chosen in accordance with (16). A fictitious tem-
perature at — £ AZ is added for convenience. It is
determined by the requirement that 7" (o, f) shall be

the arithmetic mean of the simultaneous values of T'

at — £ Ag and + % A&. The temperature at 4 LA at
time ¢ + Atis found from (17), thus being the mean
of the temperatures at — £ Af and + 1% AZ at time
t. (18) in a form suitable for numerical integration is
written as follows:

e TA=A+ (mP)%. (k)% (AE) * (T yyae—To). (19)

T is found by solving the quartic equation (19). This
is most easily done by trial and error. The computa-
tion has been facilitated by a table, giving ¢ 7% as
a function of T, for every degree, which had been
prepared once and for all. When T is found, 7_ ¢

is determined, and so on.

It should be noticed that &, might have been taken
equal to zero. A solution as proposed above with
£,= — 1 AZ, however, with the same AZ, uses a more

- S oT . .
accurate approximation to <3—§—> ,, without appreci-

able increase in the amount of computation to be
done. The gaininaccuracyofthe method “&, =— L AE”
over “£,=0" is often significant, since especially
near the surface the variations are most rapid. It is
clearly not necessary to keep to the same values of
A& and At throughout the same solution. When at
some stage the variations of 7" with' and ¢ are rela-
tively small, it is often advantageous to use larger
values AZ and At If Af is taken twice as large as
before, the new At is four times larger than the old
one, and (16) is again satisfied. Hence an eightfold
increase in the speed of the numerical work is ob-
tained in the solid. The reduction of the work on (19)
is obviously four times.

7. Given (kc)% and the periodic variation of 4. It
is required to find the periodic solution, in particular
the surface variation. Starting from an arbitrary
initial distribution of temperature the integration
proceeds as in section 6. Since the periodic surface
variation is still unknown, it is not now possible to
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represent, as insection 3, the constant temperature at
large depths correctly at the start. A practical way
to obtain the required result quickly is to derive the
initial distribution for a second approximation from
(9), when the surface variation has been derived for
a complete period in the first integration.

8. Homology transformation.

Suppose T (&, t) is the solution of the equations
(10), (11) and (12) corresponding to a certain value
(kc)*,initial distribution 7 (£, o) and surface condition
A(t). ‘

When we substitute 1):

T=0o0Ty
(ke)? = (ke) 4 %
t=[3%.0 5.ty
E=[pa.E,
A=ca"A,
F=cd'F,

in the equations, we see that the factors «and (3 cancel
out and the equations are again satisfied in the starred
quantities. It follows that T is the same function of
£, and ¢, as Tis of & and . Hence, from one given
solutiorn: a whole class of solutions can be derived by
a simple change in the scale according to (20). -

The equations are said ‘to admit of a homology
transformation’, and the constants « and 3 are called
‘homology constants’.- As an example, consider the
variation of the temperature in a semi-infinite solid,
which initially is at a uniform temperature and that
is instantly allowed to cool by radiation from its
surface (4 = o), according to Stefan’s law. For a
particular value of the initial uniform temperature
and of (kc¢)” the solution can be found by the nu-
merical method described in the preceding sections.
The solution corresponding to any other initial uni-
form temperature and substance can be obtained
from this one without a fresh integration, by means of
a homology transformation. If we confine ourselves
to one and the same solid (same value of (k¢)*%, hence
8 = 1), we see that the rate of cooling, e.g. of a semi-
infinite solid initially at a uniform temperature a, is
10 ® times slower than that of the solid when initially
at the uniform temperature 10 a.

In Figure 1 the variation of the surface temperature
of a semi-infinite solid initially at the uniform tem-
perature 370° K, with (k¢)% = ‘0080 is shown, the
cooling having started at { = o. The curve has been
obtained by numerical integration in the manner de-
scribed in section 6. The temperature 370° K is the
temperature of the subsolar point adopted in.this
article (see section g). The value (k¢)” = ‘0080 is

(20)

1) Compare S. CHANDRASEKHAR, An Iniroduction to the Study
of Stellar Structure, Chicago 1939, p. 102.
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T FiGURE 1
400 —

300~

200 p—

100
) 60

Calculated variation of surface temiperature at subsolar point
in the imaginary case of a sudden total eclipse, at ¢ = o.

the final result adopted for the lunar surface material
in section 13. Though the temperature distribution at
the subsolar point is not uniform, the inward decrease
of the temperature is so slow that Figure 1 may be
regarded to show the variation of the surface tempera-
ture there, if the solar radiation were suddenly cut off.
We shall have occasion to use the curve of Figure 1
later on, when discussing the variations in the surface
temperature during the total phase of an eclipse and
during the lunar night.

9. The data of observation.

PeTTIT and NicHOLSON ') determined the tempera-
ture of a small area near the border of the lunar disc
during the eclipse of June 14, 1927. EPSTEIN 2)ana-
lysed these observations, and found (kc)% =-0083.
With an improved technique PETTIT 3) observed the
temperature of a small area near the centre of the
lunar disc during the eclipse of October 28, 1939.
These observations will be discussed in the present
article. PETTIT and NicHOLsON also measured the
variation of the temperature over the disc in a narrow
band of constant declination at full moon. They
measured the temperature of the subsolar point from
its appearance on the western limb until its disap-
pearance at the eastern limb. The same observers
found the temperature of an area opposite the sun to
be 120° K with an uncertainty of 13%, the recorded
amount of radiation having a probable error of 509,.
There does not yet exist a record of the temperature
of a definite area throughout a lunation. Though, as
a consequence of the extreme weakness of the moon’s
radiation during the lunar night, such an undertaking
would be very difficult, it would undoubtedly be most
valuable.

1) E. PerrIT and S. B. NicHoLsoN, 4p. 7. 71, 102, 1930.
2) P. EpsTEIN, Physical Review, 33, 269, 1929. '
3) E. PeTTIT, 4p. F. 91, 408, 1940.
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- The temperature near the centre of the lunar disc
at full moon, as found by PerriT just before the be-
ginning of the 1939 eclipse, was 370° K. We shall use
this value throughout this article.

10. Provisional estimate of (kc)% and first approximation
to the periodic solution from the data during a lunation.

The following, admittedly rough, treatment gives
already considerable insight into the order of magni-
tude of the various quantities involved. The only data
outside an eclipse of which we dispese are the tem-
perature 370° K for the subsolar point and the result
120° K for the point opposite to this. Let us assume,
as a first approximation, that the surface temperature
during a lunation varies harmonically, and that the
temperatures just mentioned are maximum and mini-
mum values, respectively.

The theory as given in section 2 is then applicable.
Neglecting the one eighth period difference in phase
between F, and T, the semi-amplitude of F, is equal
to the radiation corresponding to the minimum tem-
perature 120° K; it is ‘017 cal cm™” min~". We then
have by (7), since b = £ (370° — 120°) = 125°,

125 (kew)% = ‘o17,

w, corresponding to the synodic month, being equal
to 174776 X 10 *min". Hence we find:
\ (ke)% = o012 cal cm™ min™ (°C)™".

Apart from the fact that we applied a rough theory,
the main uncertainty in this provisional result is due
to that of the semi-amplitude of F,. We note that,
within the margin of uncertainty, the present result
agrees with EpsTEIN’s, which was found from eclipse
data. :

At full moon the heat radiation is ¢ (370)* = 1°54
calcm“min . F,is then o1y cal cmi™” min~" inwards.
According to equation (2) we find provisionally
As= 154+ "02=1"56 cal cm“ min~". Itthusappears
that during most of the time that the surface receives
solar heat F, is only a small fraction of 4 and ¢ T,
which quantities are then nearly equal. Only near
sunrise and sunset 4, ¢ T, and F, become comparable.
Throughout -the lunar night 4=o0 and ¢ T, =F,,
which is only one per cent of the values ofe 7.,* and
A at full moon near the centre of the disc.

The periodic solution can be calculated in terms of
£ and ¢ from (5). In particular, the internal distribu-
tion of temperature at the subsolar point is in first
approximation given by:

T (£) =245°+ 125°¢ “™ cos2m&. (21)

In Figure 2, (21) is shown graphically (upper curve).
Though we need only 4, in our future derivations,
it is of some interest to compare A4, with the incident

_energy. From the solar constant we find the amount

- of radiant energy falling on the subsolar point to be
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100 |

o I 2 3 4 5
£
Temperature distributions as a function of £ below the
subsolar point.

Upper curve: first approximation.
Lower curve: second approximation.
Dotted lines show limiting values for large &.

1°go cal cm™ min™". Hence 4; = 1°56/1°90 = 80 per
cent of the incident energy; 20 per cent is reflected.
PetTIT Obtains a reflected amount of 12 per cent from
somewhat different data. It should be noted that this
computation is rather uncertain; a change of one per
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cent in 4, causes a change of 5 per cent in the reflected
amount. The situation is discussed in detail by PETTIT
and NicrorsoN (l.c.).

11. Determination of (kc)” from PETTIT’s temperature
measurements made during the lunar eclipse of October 28,
1939. :

The numerical method of integration explained in
section 5 for the non-periodic case has been applied.
The initial distribution of temperature has been the
provisional result (21) derived in the preceding sec-
tion. #, corresponds to 4to4m G.M.T., which is a few
minutes before the beginning of the partial phase.
The surface temperature was taken from PETTIT’S
article (l.c.). We took &, = 0,A% = ‘003 and At = 2°407
min. These values Af and At satisfy (16) so that (17)
is valid. When the integration was completed,

@a—?) could be found as a function of the time.

F,=0o T, during the total phase, has been plotted
against (%g > . The quantities proved to be reasonably
well proportional to each other, as they should be
according to (18), 4 being zero. From the factor of

proportionality we found (k¢)%="0084, whichis in per-

T FIGURE 3

400°K
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‘0 ‘25

"50 75 ro

The calculated surface temperature of an area of the moon near the centre of the disc is shown during 1°1 lunation by the full-

drawn curve. The dotted lines show the variation in the hypothetical case of zero conduction. The open circle represents

PeTTIT and NICHOLSON’s observation during the lunar night. At full moon at left the variation during the 1939 eclipse is
drawn on the same scale.
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fect Tagreement with EpsTEIN’s result (kc)% = ‘0083
that hefound from the lunar eclipse of June 14, 1927.

It might seem as if the result just derived is rather
influenced by the uncertaintyin the initial distribution
of temperature, which had been derived from the un-
certain data during a lunation by a rough theory. The
eclipse phenomenon, however, is of relatively short
duration as compared with a synodic month (com-
pare Figure 3) and therefore penetrates relatively
little into the moon. At full moon, in the absence of
an eclipse, the inward decrease of temperature is very
slight in the small interval of &, where during an
eclipse the temperature undergoes noteworthy varia-
tion. It is therefore of little importance what initial
temperature distribution is taken in the present solu-
tion, provided its decrease inwards is sufficiently slow.
In fact, the result found above for (k¢)* might have
been obtained as well if we had started with a uniform
initial distribution of temperature just before the be-
ginning of the partial phase (370° K). The inclusion

of the partial phases in the plot of F, agamst( b?g)
would add but little weight to the determination of
(kc)2. Outside totality F, and <B§> are smaller

and F_ has an absolute error that is larger than during
the total phase.

(k¢)™2is found more accurately from eclipse obser-
vations than from observations made during a luna-
tion, F, during total eclipse being about 11 times
larger than during the lunar night, during which latter
interval the heat radiation is at the limit of measure-
ment.

We are now able to find the definitive value of A,.
Substitution of (k¢)2 = ‘0084 in (7) with b = 125°,
yields: semi-amplitude of F, during a lunation = ‘o1
cal cm™ min™.

Equation (2) gives 4, = 1°54 + ‘o1 = 1°55 cal
cm™ min~", which differs but little from our pro-
visional result 1°56, as could have been expected.

12. Calculation of the variation of the surface temperature
near the centre of the lunar disc during a lunation, and second
approximation to the periodic solution.

" This problem has been treated in a general way in
section 7.

The question which function A(f) has to be used
needs some consideration. If the lunar surface were
smooth and if the amount of radiation absorbed were
a constant fraction of the amount of energy striking
a square cm of the surface, whatever the angle
of incidence, A at a certain area would simply be
4, cos z, where zis the selenographical zenith distance
of the sun. If the small amount of heat conducted.is
neglected (F, = o), the temperature at any point
would simply follow from ¢7.* = A, cos z according
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to (2). Two deviations of this simple state of affairs
have been noted by PerTiT and NicrorsoN (l.c.). In
the first place they found the heat radiation at full
moon to vary over the disc not like cos z, but rather
as cos % z, so that the lunar surface at any point is
hotter than according to the simple cosine law ).

Secondly, they found the temperature of the sub-
solar point to be lower at quarter phase than at full
moon, so that the temperature of an area has been
found to depend on the direction from which it is
viewed. PETTIT and NicHOLSON were able to explain
these features of the lunar radiation by the roughness
of the surface. Though we are aware of the approxi-
mate character of the cosine law, we believe that its
use in the following calculation will give results that
are nearer to the truth than the first approximation
given in section (10).

Hence we took

A = 1°55 cos ot during the lunar day,

4=o during the lunar night,

t =o at full moon.

We consider an area near the centre of the disc, and
suppose the sun to pass through its zenith once in a
synodic month. (k¢)'2 = 0084, the result obtained
in section 11. As initial temperature distribution at
t, = o (full moon) the first approximation to this
functlon given by (21) and shown graphlcally in
Figure 2, was taken. We choose At = */, synodic
month and A£ = -o515; A¢ and A% so chosen satisfy
(16), so that (17) may be used. The numerical form
of (19) used has been:

o.:Z-'o“ =4+ 10004477 (T+ FAE— To)'

When the integration had been completed over a
single period, we calculated a second approximation
to the periodic solution by (9).

The corresponding distribution at full moon (shown
in Figure 2) was then used as initial distribution for
a second integration. The surface conditions and the
value of (kc)% were the same as in the first integration.
The second integration was continued for one complete
period and the resulting surface variation was found
practlcally identical with the result from the first inte-
gration. Both the periodic variation at the surface and
the periodic solution obtained in this second 1ntegra-
tion may therefore be considered as final. The time
average of the surface variation and hence also the
constant temperature at large depths is 212° K.

The full-drawn curve in Figure 3 shows the periodic
surface variation over 1'1 lunation. At phase "o (full

1) In Ap. F. T1 on pages 102 and 118 the heat radiation is
written E = @ cos32 8, 0 corresponding to what I have called
z. The exponent 3/, is not in accordance with the data as shown
for instance in Figure 4, page 118, nor does it agree with the
qualitative explanation of the effect that the authors give. There
is little doubt, therefore, that the form E = a cos %30 is meant.
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moon) we have inserted the variation during the 1939
eclipse on the same scale for comparison. The dotted
line in Figure 3 shows the variation of the surface
temperature in the hypothetical case of a complete
absence of conduction (£ = o). This curve has been
calculated from equation (2) with F, = o, thus from
the formula ¢ 7 * = A.

The curve drops to zero at sunset (phase ‘25) and
rises again at sunrise (phase *75). It is seen that the
curve is undistinguishable from the full-drawn curve
almost during the complete lunar day. The curves
separate and join respectively a short time before
sunset and after sunrise. We may say with fair accu-
racy that the surface temperature depends on the
incident radiation and is independent of k¢ and the
internal temperature distribution during the lunar
day, whereas it depends on k¢ and the internal tem-
perature during the lunar night. The situation is
shown mathematically in equation (2), in which F,
may be neglected during the lunar day, but which
reads ¢ T.* = F, during the lunar night. As moments
where the two cases pass into each other we may take
the times at which 4 = F,. This happens 2% hours =
‘003 lunation before sunset and £ hour = ‘0006
lunation after sunrise. This remark is of course only
approximate, since a complete rising or setting of the
sun takes ‘oo14 lunation, whereas the surface con-
dition 4 = 1°55 cos wt assumes a negligible angular
size of the sun. Moreover the effect of the rough
surface is most pronounced at these instants.

During the lunar night the temperature falls from
144° K to 9o° K, the temperature at the middle being
98° K. This moderate decline over so long an interval
as a fortnight is due to the low temperature, the loss
of heat by radiation being very small. It is determined
by the internal temperature distribution at sunset.
For, suppose the temperature gradient were constant
at sunset and equal to the actual value at the surface.
The surface temperature in that case would remain
constant (144° K) for an indefinite interval of time.
As an alternative extreme we may consider the case
that the temperature at sunset were uniform and
equal to 144° K. The variation in surface temperature
corresponding to this case is found by applying a
homology transformation on the curve obtained in
section 8 (Figure 1).

The interval in time in Figure 1 corresponding to

" 144y
47 days equals (370
this time interval in Figure 1 the temperature drops
from 370° K to 185° K or to half the initial value.
According to our assumption the temperature just
before sunrise would be: £ X 144°K=72°K.

The actual internal temperature at sunset rises with
£ whereas the gradient decreases; it is theréfore inter-

X 147days =78 minutes. In
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mediate between the simple cases, and so is the actual
temperature (go° K) before sunrise.

13. Theoretical determination of the variation of the
surface temperature during the eclipse of the moon of October
28, 1939 for the area near the centre of the disc observed
by PETTIT.

The small area of which PETTIT measured the vari-
ation in temperature is ‘17 lunar radii north of the
centre of the disc. In section 11 these measures were
used for the derivation of (kc)%. Then, we did not
use A(t) during the partial phases. We now want to
show that the complete curve can be calculated from
A(t) and the value of (k¢)” then found. During the
eclipse there is no appreciable change in direction
neither of the solar rays nor in the line of sight relative
to the area. The complications discussed in the be-
ginning of section (12) therefore do not arise and 4
can be taken to be proportional to the incident energy.
We have calculated the fraction « of the sun’s radiant
energy that is taken away by the earth for the area in
question, as a function of the time. The darkening
towards the limb of the integrated radiation was
taken into account with a coefficient of darkening in
the usual formula for limb-darkening, equal to *6 ).
It is easily verified that with this value for the co-
efficient of limb darkening we simply have:

a =1} (ay + ap) ?)
where «y is the fraction of the area of the solar disc
that is obscured, while oy, is the fraction of the light
that would have been taken aways, if the coeflicient
of darkening were 1. ayand ap, were taken from existing
tables originally designed for the derivation of the
orbital elements of eclipsing binaries 3).

The apparent radii of sun and earth as seen from
the area on the moon were °2677 and °9313 re-
spectively. The variation of the angular distance be-
tween the centres of sun and earth was derived from
the positions of sun and moon as given in the Nautical
Almanac for 1939. A(#) = 1°55 (1—«) has been given
in the 4th column of Table 1. The initial temperature
distribution has been the second approximation to
this function at the subsolar point as obtained in sec-
tion 12 (Figure 2). We took (k¢)% = *008; A% =003,
At = 2°407 minutes. AZ and A¢ satisfy (16) and hence
(17) isvalid. &, = —1AE, t, = 4*o4™ G.M.T. The nume-
ricalformof (19)ise T',;* = A + 007319 (T, 4 ar—T5)-
The integration at the surface has been explained in

1) AsBor, FowLE and ALpRIcH, Annals Astroph. Obs. Smith-

sontan Inst. 111. E. A. MiLNE, Handbuch der Aph., Bd. 111, 143.

M. MINNAERT, B.A.N. 2, 8.

2) H. N. RusseLL, 4p. 7. 36, p. 70, 240.

A. PanNEKOEK and Evrsa van Dien, B.A.N. 8, 142.

3) E.HEeTzER, Beitrag zu H. N. RUSSELL’s Methode. Diss. Leipzig
(1931).

ZEsSEWITSCH, Poulkove Circ. No. 24, 41, 1938.
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TABLE 1 o
2 5| 8 2] 58
T 8| 8|38 T | 8] 8| 8
E oo [ 2 T I
G.M.T. ay a A "6 E\: § B\i G.M.T. ay -4 A '_'3 § Bi E\:
To Tol Tol/ To/// To Tol T 24 To//l
h m h m
324 ‘ooo| '00o| 1'550| 370 | 370 | 370 | 371 6 o1 1°'000 | 1'000| ‘00O | 188 192 188 o
41 ‘o0o| ‘ooo| 1°'550| 368 370 370 | 371 o8 1'000 | 1°000 | ‘000 | 186 189 184 o
55 ‘o000 | ‘ooo| 1’550 | 368 370 370 | 371 16 1'000 | 1°000| ‘00O| 184 187 182 o
4 10 ‘000 | ‘000 | 1°'550| 370 370 370 | 371 26 1'000 | 1°'000| ‘000 | 182 184 179 o
25 ‘ogo| ‘076 | 1°432| 360 364 364 | 363 38 1'000 | 1°000| ‘000 | 181 182 177 o
31 ‘168 | ‘150 | 1'317| 356 357 357 | 356 52 - | 1’000 | 1'000| ‘00c0| 180 179 174 o
37 ‘248 | ‘232 | 1°'190 | 348 349 349 | 347 7 o5 1'000 | 1'000 | ‘000 | 178 177 172 o
44 ‘372 | 364 | ‘986 | 331 336 336 | 331 20 1'000 | 1'000| ‘00O | 177 174 169 ‘o
49 ‘460 | ‘460| °837| 324 | 324 | 324 | 318 29 1'000 | 1°000| ‘00O | 176 173 168 o
55 ‘s61| °579| ‘653 | 300 309 309 | 299 39 1’000 | 1I'000| ‘00O | 177 171 167 o
5 o1 663 | 682 493 | 203 294 | 294 | 278 45 ‘998 | '999 | ‘or7| 182 171 166 | 119
o4 716 | 738 | °406| 204 | 285 | 285 | 265 52 ‘021 | ‘035 | ‘IOI |° 2I0 189 185 | 188
o8 781 | ‘804 | ‘304| 269 | 272 | 270 | 247 8 o7 ‘608 |- ‘720 | ‘434 2350 | 248 | 252 | 270
14 ‘867 | ‘887 ‘175| 258 254 | 250 | 215 14 ‘581 | ‘504 | ‘629| 286 279 281 | 296
20 ‘943 | 953 | ‘073 | 244 | 235 | 229 | 173 23 | ‘424 ‘421| ‘897| 310 | -310 | 311 | 323
30 1°'000 | I'000| ‘000| 198 213 205 o 33 258 | ‘242 | 1°175| 336 336 336 | 346
35 1'000 | 1I'000 | ‘00O | 197 207 200 o 44 ‘103 | ‘088 | 1414 | 363 354 354 | 362
42 1'000 | 1°000| ‘000 | 194 | 20I 195 o 9 14 ‘000 | ‘o000 | 1'550| 373 360 | 369 | 371
48 1'000 | I'000| ‘000 | IQ4 197 192 o 32 ‘000 | ‘000 | I'550 | 374 369 | 369 | 371
54 1'000 | 1'000| ‘000 | IQO 104 190 o
T Ficure 4
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Temperature nzar centre of lunar disc during eclipse of October 28, 1939.  Dots: observed temperatures. Full-drawn curve:
theoretical variation (T7,") for (kc)% =*0080 cal cm™2 min—% (°C)~*. Dotted line: T,’, variation in the absence of conduction (k = o).
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Temperature distributions during the eclipse of October 28,

(=) at full moon, before eclipse.

(B) sh28m G.M.T., at beginning of total phase.
(v) 7 45 G.M.T,, at end of total phase.

(d) 8 12 G.M.T.

() 8 55 G.M.T., at end of eclipse.

section 6. The agreement between theory (7°,’) and
observation may be judged from the data in Table 1
and from Figure 4 and is seen to be satisfactory in
general. In Figure 5 the internal distribution of
temperature at some selected instants is shown.
The computed slope during totality (Figure 4) is
slightly steeper than observed. It was therefore tried
to obtain a better fit by varying (kc¢)%. A new solution
was made, which differed from the preceding one only
in the value for (kc)%, this being now ‘0oy. Though
the agreement with the observed temperatures was
somewhat better near the beginning of the total phase,
it became worse near the end, whereas the slope
during totality had hardly changed. The computed
values 7" of this latter solution are given in Table 1.
We adopt (k¢)* = ‘0080 as our final result.

The dotted line in Figure 4 shows the variation in
temperature (7,""’) in the hypothetical case k¢ = o.
It has been calculated from the formula ¢7',* = 4,
which did not require a fresh integration. 7,'"’ is zero
during totality and deviates butlittle from 7',’ during
the partial phases.

During the partial phases T’ is generally later than
thesame value 7", This time lag of T’ with respect
to T,'"" and theradiation is well shown by the observa-
tions. We found F, during the lunar day negligibly
small compared with 4 and ¢7,*. During the partial
phases of the eclipse F, is relatively small but not
negligible, the curves T, and T,”" being clearly
separated. At the same value of 4, F, during an
eclipse is more than 10 times larger than during a
lunation. As in our discussion of the lunation, we have
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calculated for the eclipse the times at which 4 = F,.
We found this to happen 10 minutes before the be-
ginning of totality and 2% minutes after the end.
Between these moments F, preponderates over 4,
whereas outside this interval 4 is larger than F,. The
relatively small decline of the temperature during
totality has been checked similarly as in section 12 for
the lunar night, by the aid of Figure 1.

~ PeTTIT has remarked that during the partial phase
the energy radiated (¢7.*) is nearly proportional to
the amount of radiant energy received. This is a
consequence of the relative smallness of F, as com-
pared with 4 and o7 *. If F, were zero, the propor-
tionality just mentioned would be exact, since 4 is
a constant fraction of the incident energy. The fact
shows moreover the accuracy of the observations and
the reliability of the involved reduction from galva-
nometer reading to temperature.

The remark made in section 11 is of course again
valid for the computation of 7" described in this
section: the initial temperature distribution is of very
little consequence for the resulting computed surface
variation, provided its decrease inwards is sufficiently
slow. A uniform initial temperature distribution of
370° K would have led to practically the same results
at the surface.

14. In this section we want to compare the solution
for the eclipse discussed in section 13 with that for
a lunation treated in section 12 from the standpoint
of homology. It will be shown that the relationship
between these solutions near the surface may be ex-
pressed concisely. We use the notation of section 8.
Let starred quantities refer to the eclipse, whereas
unstarred values shall indicate quantities during a
lunation. It is easy to see that the solutions do not
belong to the same homologous family.

A during a lunation is approximately similar to 4
during the eclipse, the ranges being equal (hence
« = 1) whereas the time scales are in the ratio 140.
Hence (5°« © should be 140, whereas, since k¢ is the
same in both cases (8 = 1), f’¢ ¢ = 1. Consequently
the solutions are not homologous.
~ Let us call I and II, respectively, the solutions for
eclipse and lunation with (k¢)*% = 0080, which differ
from those discussed in sections 12 and 13 in that the
initial temperatures are taken uniform and equal to
370° K.

We have already remarked that the surface temper-
ature variation in the eclipse solution is little de-
pendent on the initial distribution of temperature,
provided its decrease with £ inwards is sufficiently
slow. The same is true approximately for the surface
temperature variation during a lunation and there-
fore we shall neglect the differences of the actual
variations in the surface temperature with those

© Astronomical Institutes of The Netherlands * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1948BAN....10..351W&amp;db_key=AST

FT94BBAN. © ©.-107 “351Wh

B. A.N. 390

derived from I and II. Consider an eclipse solution I’,
which differs from I in that the value of (k¢)” is taken
1/ 140 or nearly 12 times smaller. The relations (20)
are seen to be satisfied for I’ and II. Hence the
variation in surface temperature of I’ is like that of
IT on a 140 times smaller time scale. Similarly we can
consider a solution II’, which differs from II in the
value of (ke)%, being ]/ 140 or nearly 12 times larger
than the value (kc)% = ‘0080 employed there. The
relations (20) are again satisfied for I1’ and I. Hence
the variation in surface temperature of I1” is like that
of I, except for the time scale, which is 140 times larger.

Hence approximately, the effect of multiplying
(kc) with a factor p has the same effect on the surface
temperature as the multiplication of the time scale
with p—. This is a concise way of comparing the
surface variations at an eclipse and during a lunation
as found in sections 12 and 13, respectively.

15. The specific heats per gram of minerals are not
widely different, a good average value being 20 1).
The average density of the moon is 3°332). The density
of the surface material is unknown but is likely to be
somewhat smaller than this average value. We tenta-
tively adopt for the surface density p = 2'0. The
specific heat per cm? is then ¢=2 X ‘20="40.

Combining this value of ¢ with the result (k¢)% =
‘0080, derived in preceding sections, we find

k=16 X 10° calcm™ min™* (°C)™.  (22)
The wave length of a harmonic heat wave with period
equal to the synodic month can now be found by (6).
We find / = 14'5 cm. This result shows how little the
variations in temperature penetrate below the surface.
The range in & in Figure 2 is half a wave length or
only 72 cm. The total range in abscissa of Figure g
(‘03 in &) is only 4°4 mm.

16. We have seen that the behaviour of the lunar
surface temperature throughout an eclipse and during
a lunation can be understood on the theory of heat
conduction (with constant values & and ¢), if (k¢)% =
‘0080 cal cm™ min% (°C)™. With the plausible
value ¢ = ‘40 we found £ = 16 X 10° cal cm™
min~ (°C)7.

We have yet to investigate whether this value is in
agreement with what is known about terrestrial sub-
stances. The smallest value 2) of £ which I could find
in an extensive list 4) of poor conductors of heat,
containing data on 140 substances, is ‘0044 cal cm™
min~ (°C)™". This is also about the lowest result
occurring in the Dictionary of Applied Physics 3).

1) B. GUTENBERG, Handbuch der Geophysik, Bd 11, 1, pag. 10.

2) RusseLL, DucaN and STEWART, Astronomy I, (1sted.), p. 168,

3) This result was found for a sample of highly porous ebonite.

4) H. J. HAMAKER, Technische warmiegeleidingsmetingen, Thesis
Utrecht 1939.
5) Vol. I, p. 433; the article is by F. H. ScHOFIELD.
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The results of EpsTEIN and the writer for the moon
are 28 times smaller than the laboratory results just
mentioned. I do not think that the discrepancy can
be removed by taking a much smaller value for the
adopted density p = 20, used in the estimate of ¢;
the volume of the interstices in terrestrial minerals
never exceeds 5o percent of the total volume ).
Pumice stone 2) is occasionally mentioned as fur-
nishing an adequate explanation. It has the advantage
of combining a low conductivity of heat with a low
specific weight. If, as is done in litterature, the value
k = -oor1 for pumice stone is combined with p = -3
and a specific heat per gram of 20, we obtain a value
k¢ = 60 X 10 °, which is in apparent agreement with
the result found for the moon, 66 X 1076 cal® cm™
min~ (°C)™. The agreement is however spurious
since the unit for £ in the value *oor1 is different from
that used for £ in EpsTEIN’s and the writer’s result
for k¢ given above.

We find 3) for pumice stone a heat conductivity of
‘92 X 10° joule cm™ sec” (°C)™". This is in nu-
merical agreement with the value oor mentioned
above, so that apparently there the unit is the same
as that employed in the 1.C.T.

Now 1 joule sec”™ = 1434 cal min~". Hence %
(pumice stone) in the units of this article is 14°34 X
‘00092 = '0133. With the same values for density (*3)
and specific heat per gram ('20) as used above, we
obtain a value k¢ for pumice stone that is 12 times the
result for the moon. We therefore do not think that
pumice stone furnishes an adequate solution for the
low conductivity found for the lunar surface material.

17. M. SmoLucHowskI determined 4) the heat con-
ductivity of a number of powders, the sizes of the
grains of which varied from ‘003 to *26 mm. The
average temperature during the experiment was
about 45° C. The pressures of the gases in the inter-
stices varied from very low values to one atmosphere.
His results may be summarized as follows:

1. The heat conductivity depends on the nature of
the powder and on that of the gas in the interstices.

2. For a given powder and gas it varies with the
pressure of the gas so that the heat conductivity is
smaller the lower the pressure.

3. Invacuum the heat conductivityisnot zero, butis
generally extremely small, viz., of the order of ‘o1 of the
valueat atmospheric pressure. In vacuumthereremains
the transport of heat through the contact places of the
grains, through the grains themselves by ordinary con-
duction, and through the interstices by radiation.

1) H. REeicH, Hdb. der Geophysik, Bd. 6, 1, p. 16.

2) Ap. F. 11, 129; Phys. Rev. 33, 269; RusseLL, DucaN and
StEwART I, 175.

3) Intematwnal Critical Tables, Vol. 11, 313.

4) Bull. Acad. d. Sci., Cracovie, A, 1910, p. 129 and A 1911,
p- 548. Compare also International Critical Tables vol. 11, p. 315.
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SMmoLucHOWSKI's results for vacuum do not show
much variation. They may be summarized concisely
by their average value and their dispersion. We find
from the data on all 15 powders:

k= (204 11) X 10° cal cm™ min™" (°C)™". (23)

The contribution by the radiation to the con-
ductivity of a powder can be shown to be proportional
to the sizes of the grains and to the third power of the
absolute temperature (compare section 18).

At the temperature of SMOLUCHOWSKI’s experiments
there are four powders, having the largest grains, for
which the contribution to £ by radiation is not negli-
gible (up to 50%) For the remaining eleven powders
with grain size smaller than ‘1 mm, we find

k= (16 + 8) X 10°calcm™ min™ (°C)™".  (24)

The values (23) and (24) are in excellent agreement
with EPsTEIN’s and the writer’s results for the moon
(22). We may say that PErTiT and NICHOLSON’s
lunar temperature measurements afford an inde-
pendent proof for the absence of an atmosphere on
the moon.

If the grains of the powder on the lunar surface are
smaller than for instance ‘1 mm, the dependence on
temperature of £ will be small. The specific heats of
many substances are known to vary with temperature,
especially so at temperatures near absolute zero. The
temperatures observed on the moon are notso extreme
that a material change in ¢ can be expected.

It follows that our analysis, which assumes constant
values for £ and ¢, is valid and gives a quantitative
explanation for the observed variations of tempera-
ture on the lunar surface if the surface layers consist
of a powder with grains smaller than ‘1 mm.

It should be noted that our conclusion with regard
to the powdery structure of the lunar surface has been
reached before in an independent way from the
observed phase function of the reflected light 1).

18. We have seen that powders, like those studied
by SMoLucHOWSKI in the laboratory, and in which the
transfer of heat by radiation can be shown to be
negligible, give an adequate explanation for the varia-
tions of the lunar surface temperature.

On the other hand it is instructive to study an
imaginary powder in which the conduction through
the contact places is negligible and the radiative
transfer prominent. We want to show that in this way
an upper limit to the dimensions of grains and inter-
stices of the powder on the lunar surface may be
derived. - :

Since the radiative ‘“coefficient of heat con-
ductivity” varies as the third power of the absolute

1) ROUGIER, Ann. Sirasbourg 2, fasc. 3, p. 328, 1933.
Lyot, Ann. Paris-Meudon 8, fasc. 1.
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temperature, the theory hitherto used, which assumes
constant £, is not applicable. We proceed to derive a
new set of equations in a form which takes the varia-
tion of £ with 7 into account.

Instead of equation (1) we have generally for
variable £: '

oT o r oT
“r —a< b_x>’
whereas (2) and (3) are not altered.

In order to proceed, it seems necessary to simplify
the true picture of grains and interstices of a powder
in a drastic manner. We do not think that the order
of magnitude of the dimensions of grains and inter-
stices subsequently found for the model will be widely
different from that in the true picture. :

We imagine the lunar surface material stratified
into horizontal parallel and solid slabs of equal thick-
ness. Let they be separated by empty spaces, bounded
by the parallel and plane surfaces of adjacent slabs,
so that their distances are all equal. Denote the sum of
the thicknesses of one slab and one space by s.

(25)

FIiGURE 6
A P @R B
BZ
-
T TN
—_ b
) \,
\ - C
«—§—>
x B

a). cross-section through model by plane perpendlcular to thc
surface.
b). schematic run of T* with x.
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A cross-section of this model by a plane normal to
the surface is shown in Figure 64. In the model s
should correspond to the sum of the average di-
mensions of grain and interstice. Like in the actual
powder, the heat energy in the model traverses al-
ternatively matter and space.

Let the temperatures on the faces 4 and B be kept
constant. When the temperatures have become
stationary everywhere, there will be a constant flow
of heat through any plane parallel to the surface, from
A to B. In the solid the conductivity is relatively high,
and the temperature gradient consequently relatively
small. A finite drop in 7™ occurs at each space. The
course of T* with depth is sketched in Figure 6b.

We have:

F=0(To' — Tx').

We neglect the small difference between 7p and T,
then:
F=o(Tp*— T%x")
or
oT* oT
anTx—sz 4osT? P
In (26), 07" /oxstands for the average gradient from
4 to B.-Comparison of (26) with (3) gives:

k=40sT>. (27)

The equations which replace (1), (2) and (3) may
be written:

(26)

0T OoF

6—37:5 (28)
cT.}* A—i—F (29)
F=4os T%; (30)

We now introduce new variables: z and 7 by the
relations:

We then find for (28), (29) and (30) the equivalent

set:
iz 0z
a—t=243’7‘72‘ (31)
z,=4+F, (32)
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F= BM (33)
sc)%
where B = (?;)1/—8 (34)

Equation (31) was then integrated numerically
with the following boundary conditions:

1. z(n,0)=A;=1'55

2. z(o,t) is the observed variation of the heat
radiation during the eclipse of October 28, 1939.

When the solution had been completed, (9z/dn),
could be found from the known solution z (u, f).
During the total phase z, and (0z/04), were found
reasonably well proportional, as they should be
according to (32) and (33), since then 4 = 0. From
the factor of proportionality we found:

B = 956,
and from (34), with ¢ = 40,
we obtain:

s = ‘028 cm = ‘28 mm.

So *3 mm is an upper limit to the size of the gralns
of the lunar surface powder.

It is a pleasure to express my gratitude to Professor
Oorrt for his interest in this article. I am much
indebted to Miss H. A. KLuyVER for her assistance
in looking up litterature inaccessible to me.

When this article had been written, my attention
was called to a paper by W. G. Kan~nuruik and L. H.
MARTIN 1) in which accurate results are given of £ for
powders at various gas pressures. Their result for the
order of magnitude of £ in vacuo is 60 X 10 ° calcm™
min~" (°C)™, which is rather larger than Smoru-
cHOWSKI's result for powders of similar grain size.
KannuLuik and MARTIN’s extrapolation to vacuum,
however, must be considered with reserve, their
lowest pressure being as high as 35 mm Hg, whereas
SMOLUCHOWSKI’s extreme lowest pressure is ‘05 mm
Hg. Additional measures on KanNuLuik and MAR-
TIN’S method at pressures as low as a few hundredths
of a mm Hg would be most valuable.

Johannesburg, July 1947.

1) Proceedings of the Royal Society, A 141, 144, 1933.
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