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In the analysis of core-hole spectra it is usually assumed that the response of the valence electrons
upon the creation of a core hole can be treated independent of the subsequent decay of the core hole.
We show that for near-threshold decay processes this is no longer true and that the modification of
the satellite spectra is considerable even for relative slow decay processes. Taking the 2p x-ray
photoemission spectra of NiBr, as an example, we show that the large difference between the 2p;,,
and 2p,,, spectra of transition-metal compounds is due to the near-threshold Coster-Kronig decay

of the 2p,,; hole.

I. INTRODUCTION

Recently, several theoretical models have been proposed
to interpret core-hole line shapes and, in particular, satel-
lite structures, in terms of the valence-electronic structure
of materials. This is an extremely important development
since if applicable to real materials we can obtain quite
detailed information about the valence-electronic structure
from core-line spectroscopies. Examples for which the
theoretical models have had considerable success are the
x-ray photoemission spectroscopy (XPS) spectra of copper
dihalides, "> cerium compounds,®* scandium and titani-
um halides,’ and La and Ce intermetallic compounds.®’

These theoretical models treat in various approxima-
tions the valence-band structure and the valence—
valence-electron—electron interactions, as well as the
core-hole—valence-electron Coulomb interactions. The
approximations made in the Hamiltonians used to
describe the above are usually well founded for the partic-
ular systems studied. There is, however, one commonly
used approximation which has received little theoretical
attention and which can lead to incorrectly calculated line
shapes and can even lead to large errors in the various pa-
rameters appearing in the models when comparison is
made to experimental results. The approximation we
refer to is the neglect of the details of the core-hole decay
processes. In the above models the decay processes are
usually included merely by convoluting the theoretical
spectra with a Lorentzian.

In our recent confrontation with the interpretation of
2p XPS satellite structures in the transition-metal
dihalides, we tried to understand the large difference in
the 2p;,, and 2p,,, satellite structure. This problem,
reproduced in Fig. 1 for the Ni dihalides, is especially evi-
dent in all the Ni, Co, Fe, and Mn compounds.®~'® The
first obvious possible explanation is the influence of
final-state multiplet splittings, but we found that this
could certainly not explain the results. !9~

The purpose of this paper is to show that under certain
conditions, as met in the above examples due to the
Coster-Kronig decay of the 2p;,, hole, the relaxation of
the valence electrons and the decay of the core-hole can-
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not be treated independently. The interference between
both processes can even be so strong that the use of inten-
sities and line positions in terms of theories which do not
explicitly include the decay continua can lead to quite in-
correct values for relevant parameters.

We will show that the decay process will affect the
overall satellite line shape if the decay process is near
threshold, even though the lifetime width is only
10—20% of the line splittings. By near threshold we
mean that the Auger electron is emitted at low kinetic en-
ergy. From the work of Ohno and Wendin (for a review,
see Ref. 24), it is well known that fast decay processes can
effect tremendously the shape of single-component XPS
core lines as is the case for 4s and 4p lines of the elements
surrounding Xe which decay by giant Coster-Kronig
channels. However, the problem of multicomponent spec-
tra is considerably more complicated because the full
screening dynamics before and after the decay has to be
considered in order to give a proper description of the
XPS line shape. For this reason this paper can be con-
sidered a generalization for near-threshold processes of a
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FIG. 1. Ni 2p XPS spectra of the Ni dihalides. In Nil, the
2p3,, region is eclipsed by the I 3p;,; line.
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part of the dynamical theory of the Auger process as
developed by Gunnarsson and Schénhammer.?

The organization of this paper is as follows: In Sec. II
we go into the problem of spectral line shapes of systems
containing a number of mutually coupled discrete states
which, in turn, are coupled to many continua. Although
the formal aspects of the theory are not new,2%?" this sec-
tion serves to give a physical intuition, using simple
models, about the kind of effects which can be expected.

In Sec. III the theory is applied to the situation encoun-
tered for the transition-metal and rare-earth compounds.
Within the limitations of the cluster approach,'~*28 we
illuminate here the basic physics involved and the condi-
tions under which these interference effects will be impor-
tant. Finally, in Sec. IV the theory of the preceding sec-
tion is applied to the 2p XPS spectra of NiBr,. In this
section we show that we have, in principle, enough
knowledge about the large-energy-scale valence-electronic
structure in the presence of a core hole of this compound
to determine the thresholds of the Coster-Kronig decay
continua. Indeed, it appears that the Coster-Kronig pro-
cess meets the above-mentioned criteria and explains the
strong difference in the 2p;,, and 2p, /, satellite structure.

II. THEORY OF SPECTROSCOPIC LINE SHAPES

For spectroscopies, in general, we must consider transi-
tions from a ground state to a set of final states. The final
states which can be reached can, by a suitable choice of
basis functions, be divided into discrete states and contin-
uum states. The Hamiltonian can be factorized as fol-
lows:

H=7 [DESi |+ 3 DTy |+ 3 [kedEx Ky
i ij k

n

+ 32 Vi, (kn | s (1)
ik

where E; are the energies of the discrete states, Ey, the

energies of the various possible continuum states, and T;
describes a coupling of the discrete states and Vi,i de-

scribes the coupling of discrete states to the various con-
tinua.

The spectral distribution of transitions to the states
described by H will be determined by

I(w)=ilm 2 AT A;G+ 3 A" Ay Gy
m ij ik,
+ X AL4,. G | (2)
k",k,:- n n™n
where
/.1 . 3
G,’j— i Z_H J ) 3)

with z=w—i8 and A are the transition matrix elements
from the ground state which depend on the spectroscopy.
The second term in (2) is largely responsible for the well-
known Fano line shape?’ for situations in which both the

discrete and continuum state are spectroscopically accessi-
ble and are in the same energy region.

Here we want to consider the case in which only the
discrete states are spectroscopically accessible but where
these states couple to one or more continua, describing the
decay processes. In this case we are only interested in Gj;
with i and j referring to the discrete states. The continua
then refer to decaylike channels for the discrete states.

Using the Dyson equation, we can write

Gij = Gi(z?aij + Gi? 2 Tip Gpj + G,(,) 2 Vik,l Gknj ’
4 kn

0 (4)
Gk, j =Gk k, 2 Vi, 1Gyj»
I

or

Gy=G8;+G) X |Tu+ 3, Vi, GRi Vi1 |Guj» (5)
]

nk
where
Gy = L 6)
nn k w-—Ekn
and
Go=—1 7
w—E;

Equation (5) describes the spectral distribution of the
discrete states having projected out the continuum states.
We note that Eq. (5) can be described by considering only
the discrete states with an effective Hamiltonian

H=3 |iei |+ DTG+ DTG, ®
i ij

where

, R |uk.-n IZ T
E,‘——Ei+ (] k%ﬂ a_)—Ek" “+1 i
T} =T,;+R CALYN (9)
ij=1i+Re kzn o—tx +ily;,

[Vii|?
F,=Im ’

k. .n (l)—Ek’l
(10)

Vik, Vi, j

I‘,_,=Im —_—

k",n (J)—-Ek"

We note first that €; and Tj; contain an imaginary part
and also that Tj;=T}; for Vi,i real and not, as usually is

the case, T;;=(T};)*. Note also that the T}; are real un-
less the discrete states couple to the same continuum.

In the usual treatment of XPS the coupling to the decay
continua is replaced by a single decay rate so that it is as-
sumed that I';=TI'; and I';;=0. We will refer to this as
the optical potential approximation.

Since it is well known that the relative intensities of
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spectral components depend strongly on the matrix ele-
ments mixing the discrete states, we can expect large devi-
ations from the optical potential model if T};5T;;. This
will occur if the discrete states can couple to the same
continuum. Also, as we will show below, deviations from
the optical potential model can be expected if I';T;.

To illustrate the deviations which can occur from the
optical potential model, we resort to a simple example of
two discrete states coupled to a number of continua. We
will here also assume that the continuum densities of
states are constant. We then have the relations

G =(w—ey—ilL)d,
Gyp=(w—e;—il))¢p, (11)
Giu=Gy=(T +il'1)¢,
with
o= ‘ .
(@—e;—iTNw—g,—ily)—(T +iT},)?

(12)

In order to see physically what happens, we define a
transformation

cos@  sinf

—sinf cos@ (13)

so as to diagonalize G.
Defining the diagonal components of G as G, and
Gy, we find that G,, =0 for

(sinfcosB)[e; —e;+i(T,—Ty)]
+( cos?0— sin*0N T +il},)=0,

or
2T +ily,)
=—— 14
tan(260) e—e, +IAT (14)
where
AT =I,-T,. (15)

This looks similar to the solution in the absence of decay
for a two-level problem, as, for example, treated by van
der Laan et al.,! except that now the angle 6 has become
complex. We see immediately from Eq. (14) that for
I';;=AI'=0 one can use the optical potential model to
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describe the problem.
In terms of our original basis set, the spectrum will be
given by Eq. (2). With

G, =(sin?0)G,, +( cos?0)Gy, ,
G, =(c0s%0)G,, +(5in%0)Gy, , (16)
G, =(sinBcosO)(Gpy —Gy,),
or defining 6=X +i¢,
G 11 =3 G,a[ 1+ cos(2X) cosh(24)]
+ 3 Gpy[1— cos(2X) cosh(2¢)]

+ % sin(2X) sinh(26)(Gpy — Gy ),

G, =~ [ sin(2X) cosh(2¢)
+ i cos(2X) sinh(26)](Gyy — Gag) , (17)
Gy =3Gou[1— cos(2X) cosh(24)]
+ 3Gy [ 1+ cos(2X) cosh(2¢)]

_ é $in(2X) sinh(26)(Gpy — Gyg) -

The reason for doing things this way is that G,, and Gy,
are Lorentzian shapes:

1 1

Gu= Gy =

= 18
wo—¢g;—il, 18

W—Ep— i Fb ’
so we can relate the total spectrum to that obtained from
the optical potential model which assumes Lorentzian
shapes.

The optical potential model would assume 'y =T}, =T
and ¢=0 in Eq. (17). The “exact” expression contains
factors cosh(2¢) which modify the intensities of the two
components in the spectrum and introduces interference
terms Re( G, — G, ), which changes the spectral shape. In
addition the energies €,,€;, and the widths I',,[, of the
Lorentzian components can be strongly different from
those obtained in the optical potential model.

Let us first look more carefully at the Lorentzian con-
tributions and see how they are modified. The energies
and widths €,, and I';; are determined from a solution
of a quadratic complex equation,

€2+&+i (D +Ty)+[(e;—e+i AT +4(T +iT)]' 2

Wgq p = 2

where wg p =¢€5 5 +il, 5, With €, , being the real parts and
I, 5 the imaginary parts.

This shows that both the position and the width of the
lines can be influenced by AL and I'j,. Of course, if
AT'=T'},=0 we obtain two lines of equal width. To
demonstrate the influence of AT and I';, on the peak po-
sitions and widths we plot in Fig. 2 the peak separation
(e,—ep)/(e3—e;) and the difference in widths
(Fg—Tp)/(e;—¢) as a function of AT /(e,—g;) for

) (19)

[

I';;=0 and as a function of I'},/(g;—¢;) for AT'=0 for
various values of T /(g,—¢g;).

For I';=0 and T =0 the states | 1) and |2) are local-
ly, as well as via the decay processes, fully decoupled. We
thus find the trivial result that the difference in decay rate
is reflected fully in the difference in width of the pseudo-
states | a) and | b), while the line splitting is unaffected.
This is no longer true if the states | 1) and |2) are cou-
pled locally. As can be seen from Fig. 2(a), AT tends to
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FIG. 2. Difference in splitting [panels (a) and (c)] and width [panels (b) and (d)] of Lorentzian contributions to the line shape as a
function of AT for I';;=0 [(a) and (b)] and I';, for AT =0 [(c) and (d)] using different values for T. Insets of (c) and (d) show large

€, —¢, behavior.

decrease the extra line splitting due to T. Consider, for
instance, the limit AT >>2T. It is easily shown that
®, — @y approaches the value (g, —¢g;)+iATL.

From Fig. 2(b) the influence on the width of the lines
on AT can be inferred. As can be seen, the local coupling
T has the effective influence to decrease the difference in
width. Taking, for instance, T,AT >>¢g,—¢g;, we find,
from (19), wp—w,=(4T?>—AT?)!/2. For this case the
width difference in the measurable lines has vanished
completely, while the effect of AT is only responsible for
a reduction of the line splitting.

In Figs. 2(c) and 2(d) the same pictures are shown as a
function of I'y, for AT'=0. As can be seen, the behavior
is completely different from Figs. 2(a) and 2(b). It is in-
teresting to explore the regime I'y,,7 >>¢,—¢;. We then
have, from (19), wy —w, =2(T +iTl';). In this limit the
line splitting is the same as the splitting found for nonde-
caying states. On the other hand, the widths of the lines
show interesting behavior. The important property of I"y,
is that it exchanges width between lines in such a way that
differences in width are amplified. For instance, it can be
shown that I}, is constrained to a maximum value of 3T
(I'=T,=T,). For this value of T}, we thus find a &-

function line superposed on a broad line with a width of
2XT. Note that this behavior is in strong analogy with
the well-known phenomenon of exchange narrowing in
spin-resonance experiments.

To obtain the core-line XPS spectrum, we must use Eq.
(2), which requires knowledge of the transition amplitudes
A; from the ground state to the discrete final states. In
the sudden approximation for XPS these are given by

A"—_—(iIC\I’0>, (20)

where ¥ is the ground-state wave function and ¢ annihi-
lates a core electron. The discrete states | i ) which can be
reached therefore contain a core hole. Usually in XPS
one assumes the core hole to be structureless, so that the
states | i) = |ci), where the labels i refer to various pos-
sible valence-electron configurations. The only influence
of the core hole is to introduce a potential which changes
the energetics of the various possible electron configura-
tions relative to the energies in the absence of the core
hole. The ground state is, in this model, therefore deter-
mined by a linear combination of the same valence-
electron configurations as those describing the discrete
states in the presence of the core hole. In our simple
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two-state model we can therefore write
Wo=(cosfy) | 1) —(sinbp) | 2). (21

We choose this sign convention because the lowest-energy
state in the presence of the core hole is usually the
higher-energy state contributing to the ground state be-
cause of the core-hole potential. The transition ampli-
tudes of Eq. (2) are then given by A4,;=cosf, and
A, = — sinfy, so that

Gxps = c08%00)G 1, + (sin*6y)G,

—2( sinfy)( cosby)G 1, . (22)
Using the relations in Eq. (17), we obtain
Gxps =CaaGas +Crp Gop +iCop(Gpp — Gaa) (23)
with
Caa =7 {1— cosh(2¢) cos[2(X —6)1} ,

1
7
Cps =+ {1+ cosh(2¢) cos[2(X —6))]} , (24)
C, =7 { sinh(2¢) sin[2(X —6,)1} ,

where the angles ¢ and X are determined by Eq. (17). The
XPS spectrum is given by

prs(w)=‘717Imeps(w) . (25)

We now clearly see the influence of the coupling to the
continua. For ¢ =0, as would be the case for AT =T",=0
[Eq. (14)], the spectrum consists of two Lorentzian lines
of equal width. The influence of nonzero AI" and/or I'},
is to transfer intensity between lines at €, and g, because
of the cosh(2¢) factor and to add a dispersivelike contri-
bution given by the last term in Eq. (23). In addition, as
discussed above, the peak positions and widths are strong-
ly influenced by AT and T'y5.

To illustrate this, Eq. (14) is worked out in its real and
imaginary parts. For the real and imaginary components
of 6 we find

cosh(2¢(2T)+ sinh(24)6

_ 26
tan(2X) = h(24)Ac— sinh(24)(2T13) (26)
r‘12 =0
o T =0.00
o T =0.50
2 4 72338
x T =22.00

cosh (2]

{a)

0 2 4
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and

_gp_ (Ae+2T )’ + (AL —27)°
e = ’
(Ag—2T )+ (AL +27)?

27

with Ae=¢,—¢,. As can be seen from Egs. (17) and (26),
deviations of cosh(2¢) from 1 are a good measure for the
importance of intensity redistribution in—and non-
Lorentzian contributions to—the spectral line shape. In
Fig. 3 we show the behavior of cosh(2¢) in the same pa-
rameter range as used in Fig. 2.

For I'j,=0 [Fig. 3(a)] we see that the deviation of a
Lorentzian line shape has an extremum, which shifts to
higher A" for increasing 7. The location of the ex-
tremum is at

AT =[(e,—€,)*+4T%]V/2 .

In the limit AL,2T >>¢,—¢;, cosh(2¢) then has a max-
imum value T'/? at AT,,,=2T. This result shows that
the weight of the non-Lorentzian contribution to the line
shape [ sinh(2¢)] is, in principle, unbounded.

In Fig. 3(b) cosh(2¢) is shown as a function of Iy, for
AT=0. As for Fig. 2, an interesting limit is
I3, T >>€,—¢€;. As can be seen, cosh(2¢) is very near to
1, which leads us to conclude that in the fluctuation-
dominated regime the effect of I'j; is mainly the
aforementioned ‘“‘exchange narrowing.”

In Fig. 4 we have shown several calculated spectra to
demonstrate the influence of AT and I'y,. The spectra
have been decomposed into the various contributions from
Ga>, Gpy, and Gg,. As parameters, we have taken
g;—€;=1 eV in the presence of the core hole and
€,—¢€;=—1 eV in the initial state.

On the extreme left-hand side of Fig. 4 are the spectra
corresponding to AT=T"},=0 for various values of T.
These would correspond to the optical potential approxi-
mation. Figure 4(b) shows the result of different decay
rates for the two states (AI'= — 1) exhibiting a strong dis-
tortion of the spectra. In fact, there is little resemblance
to the optical approximation. In Fig. 4(c) we show the in-
fluence of the coupling to the same continuum (I'j;=—1)
for AT'=0 and the same values of T as used in Fig. 4(a).
This shows the strong dependence of the line shape on

cosh (2)

(b)

4] 1 1 1 1 1
(] 2 L
M2

FIG. 3. Measure of interference cosh(2¢) as a function of the same parameters as used in Fig. 1. Divergency as a function of I'},

is cut off.



33 STRONG INTERFERENCE BETWEEN DECAY CHANNELS AND. ..

8079

{a): [11 =r'2=1 r‘,2=o hb) q=15 r'2=.5 n;z:o

(C). r'1= r‘z=1.2 I",2=-1 d): F,: 15 r‘2=-5 r‘12=--5

T T T T T T T T

T T T T T T T T

I 11 1 1 i 1 L
-2 0 2

1
-2 0 2 4 -2 0 2 4

BINDING ENERGY

FIG. 4. XPS spectra of the two-level model as a function of T for various values of 'y, and I'. Straight line is the total XPS spec-
trum, dotted lines show the Lorentzian contributions, and dashed-dotted line shows the sum of the dispersionlike contributions.

I'y,, especially for large 7. Finally, in Fig. 4(d) we.show
the combined influence of AT" and I'|; on the spectrum.

III. APPLICATION TO XPS
CHARGE-TRANSFER SATELLITES

Having shown the possibly strong dependence of the
XPS core line shape and relative component intensities on
the details of the coupling to continua, we must now see
for which core lines and materials we expect to get sub-
stantial values for AT and/or I'y,. First of all, we note
that AT and/or I'y, since they involve core-hole decay
processes will usually not be larger than several eV. For
example, in the 3d holes in the rare-earth metals or the 2p
holes in transition metals the total lifetime broadenings
are between 0.5 and 2 eV. From the foregoing discussion,
we see that a substantial influence of AT" and/or I'y, is
only expected for final-state energy separations less than
about 10 eV. The spectra which can be influenced then
are those involving the same core hole, but with differing
valence-electron configuration, as for the screened and un-
screened peaks observed in 3d photoemission of Ce com-
pounds>*®7 and the 2p satellite lines in 3d-transition-
metal compounds. "%8~182% The question remaining then
is that concerning the physical origin and magnitude of
AT and T'y,.

To see how these terms enter, consider the general prob-
lem of satellite spectra due to charge transfer. For the
sake of simplicity, we take a cluster approach, which has
been shown to be quite accurate for at least insulating
strongly correlated materials.!=>?® In these models a
cluster consisting of a metal ion surrounded by ligands is
solved by configuration interaction. The ground state of

the cluster can be written as a linear combination of states
|d"L™), |d"*'L™~!), etc. In the presence of a core
hole the energy of these states is lowered, proportional to
the number of d electrons they contain, due to the core-
hole—d-electron interaction. New eigenstates are found
which are assigned to the satellite structure. Relating to
our general treatment in the preceding section, the states

d"L™) are the discrete states which are coupled
((d"L™|H |d"*'L™~')=T).

Next we consider the decay channels. As an example
we take an LMV Auger channel (the argument applies
equally well to LVV, etc.). Starting from a state
|2pd"L™), a state like | 3pd" ~!L™k ) (k denoting a con-
tinuum electron) is reached. These continuum states,
however, cannot be directly identified with those given in
Eq. (1) since the continuum states |3pd”~'L™k) and
[3pd"L™ "'k ) are coupled. Neglecting the k dependence
of the coupling, this will be given also by

(3pd"~'L™k |H |3pd"L™ k)« T .

If we first diagonalize the continuum part of the spec-
trum, we find, in the case of two continua,
Wy =(cos6,)|3pd" ~'L™k ) +(sin6,) | 3pd"L™ "'k ),
(28)
Wi, =(—sin6,)|3pd" ~'L™k ) +(cos6,) | 3pd"L™ "'k ),

in which 6, are determined by the hybridization of the
Auger final state.

We now see that the discrete states |2pd"L™)( | 1))
and |2pd"*'L™=')( |2)) supposed to be reached in the
photoemission process couple to both continua W, and
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W,,. Taking
(1| H |3pd"~'L™k)=(2|H |3pd"L™ "'k )=V,
we find from Eq. (28), for the Vi, i’s appearing in Eq. (1),

Vk11=( COSG(_-)Vk, Vk12=( sinGc)Vk ,
(29)

Viji=—(sin6:)Vy, Vi,2=(cos6.)Vy .
Inserting these into Eq. (10) yields, for I';, 'y, and Ty,
', =(cos?8, )p(w—ex 1)+ ( sin?0, )p(w — e ,),
I, =(sin%0, )p(w —ex 1)+ ( cos?8, )plw —ek,), (30)
I'j;=(cos6, ) sinf, )[p(w—ex ) —plo—ery)],

in which €, and €, are the eigenenergies of the continu-
um states ¥y, and W, and

2

5

plo—g)=Im (31)

From Eq. (30) we see that if p(w—g;,) is unequal to
plow—gg,), we generally expect that the AT as well as the
I'y, are unequal to zero. This condition will be met for
near-threshold decay processes. Because the thresholds of
continua ¥, and ¥;, are, in general, nondegenerate due
to the energy stored in the system after Auger emission,
evaluation of Eq. (31) at the positions of the discrete states
which are reached in photoemission will yield different
values for p(w—g;) and p(w —¢€g,), as long as the density
of states of the emitted Auger electron is not constant.
This condition is certainly met for the Coster-Kronig de-
cay of a 2p,,, hole in 3d transition metals, as we will
show in detail in the next section; strong interference ef-
fects can then be expected.

On the other hand, if the Auger process is far away
from threshold, the density of states of the emitted elec-
tron will be essentially constant over at least the energy
range of the XPS spectrum. As can be seen from Eq. (30),
we retain in this case the “optical potential approxima-
tion.” In the Appendix we generalize this theory to many
locally coupled continua. it appears that for this case AT’
and I'; also vanish far from threshold.

As far as valence-band charge-fluctuation processes are
concerned, this seems to be a general rule. Only under the
special condition of scarcity of valence electrons it can
happen that a KLV or KVV Auger decay process of a par-
ticular valence-electron configuration becomes impossible,
giving rise to AI-like effects in the XPS spectrum as
shown by Gunnarsson and Schonhammer.?> At least for
the late 3d transition metals this effect will be unimpor-
tant.

IV. APPLICATION: THE 2p,,,
SPECTRUM OF NiBr,

In order to show that the Coster-Kronig decay rates
have the proper order of magnitude to cause the large
differences between 2p,;, and 2p;,, line shapes of
transition-metal compounds, the special case of NiBr, 2p
XPS (Fig. 6) is worked out.

As we showed recently,?® the 2p;,, XPS lines of the Ni

dihalides can be well understood within the framework of
the cluster approximation. One assumes that the ground
state can be approximated by the ground state of a
(NiLg)*~ cluster,?®

Oy=ay|d®)+By|d°L) +7o|d"°L?), (32)

where L denotes a hole in the anion p orbital.
This wave function has to be determined by solving a
Hamiltonian matrix with the nonzero matrix elements

(d*|H |a*)=0,

(d°L |H |d°L)=A,

(d’OLZIH {d‘°L2)=2A+U,

(d®|H |d°L)=(d°L |H |d"°L*)=V2T,

(33)

A being the energy cost to transfer a valence hole from Ni
to the ligands, U the mutual Coulomb repulsion of two
electrons centered on the Ni ion, and T the hybridization
interaction.

After core ionization the valence electrons on Ni are
stabilized with an amount Q because of their Coulomb in-
teraction with the core hole, while the hybridization rates
are assumed to be unaffected by the presence of the core
hole,

(2p3d* | H |2p30d%) =65, ,,

(2p3,,d°L |H |2p3,0d°L) =g, ,+A—Q,
(34)
(2p3,d'°L2|H |2_P3/2d101_4>=€2p3/2+2(A—Q)+U,

(2p3,d® |H |2p 30d°L)=(2p 3,,d°L | H | 2p 3,,d '°L?)
=V2T .

As we showed,?® the quantitative analysis of these 2p; )
satellite spectra yields quite accurate results for the
ground-state properties for all Ni dihalides. The fit of the
NiBr, spectrum using A=3 eV, U=5 eV, Q=7 eV, and
T=2 eV, and convoluted with a Gaussian and a
Lorentzian to mimic instrumental, lifetime, and multiplet
broadenings is shown in Fig. 6(a).

For the 2p,,, spectrum, we incorporate the Coster-
Kronig decay in the way explained in Sec. IIl. We have
the Coster-Kronig (CK) channels

gy K 7
[2p1d°) — |2p3,d'k),
Yck
|2_Pl/2d9L) — ]2_173/2‘18[_4](), (35)

Yck
12D 1,2d"°L?) — |2p3,d°L%),

in which k denotes a continuum electron in the conduc-
tion bands. Aside form the additional Coster-Kroning de-
cay channels, the 2p,,, XPS states are assumed to be
governed by the Hamiltonian matrix given in Eq. (34).
The location of the Coster-Kronig final states on the
right-hand side of (35) can be estimated with some accura-
cy. The Coster-Kronig final states resemble the valence-
band spectrum in the presence of a 2p;,, hole and a 4sp
eleciron. Taking the energy of |2p,,d 8) as the zero
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point, we then find
(2p3,d"k |H |2p30d k) =¢L — Fa+e—(A-Q)+ U,

(2p 3,d°Lk | H | 2p 3 pd®Lk ) =€, — Ta+e,

(36)
(2p 3,,d°L% | H |2p 3,d°L% ) =g, — sa+ex+(A—Q),

STRONG INTERFERENCE BETWEEN DECAY CHANNELS AND . ..

(2p3/,d"L> | H |2p 3,d"°L3k ) =¢; — Ja+e

+2(A-0)+ U,

in which %a is the spin-orbit splitting ( ~18.0 eV), €, the
energy it costs to create a ligand hole, and g; the energy

of an sp electron.
Taking into account the degeneracy of the Coster-
Kronig final state as for the UPS spectrum® and neglect-

ing k dependence, the hybridization of the Coster-Kronig
states is given by

(2p 3,47k | H | 2p 3,d°Lk’)

=(2p 3,,d°Lk | H |2p 3,,d"°L3k’)
=V3T8,
(2p 3,,d°Lk |H |2p 3,d°L?%’) =V'4T 8y .

The energetics of the Coster-Kronig final state is now
fully determined, except for the factor €; +&x_o— >,
which determines the position of the edge of the continu-
um |2p3,d®Lk) with respect to the state |2p,,,d®).
This can be determined from the recent x-ray-absorption
spectroscopy (XAS) data of van der Laan et al.’® These

spectra show white lines which are interpreted in the clus-
ter approximation as
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FIG. 5. Level scheme of the discrete XPS states and the
Coster-Kronig continua as found for the 2p XPS of NiBr,.
Straight lines on the right-hand side indicate continuum thresh-

olds and shaded areas simulate the uprise of the 4sp density of
states.
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fiw
|d®) — |2pd®),
o (38)
|d°LY — |2pd™°L) .
Also, continuum absorptions are observed which are as-

signed to absorptions into the Ni 4sp continua accom-
panied by relaxation from d-channel electrons,

|d8)iw»|._7£d8k),

fiw
|d°L) — |2pd°Lk), (39)

fiw
lleLZ)__) |_2£dml_,2k) X

From the position of the 2p;,, continuum edge with
respect to the 2p,,, white lines, the energy difference be-
tween |2p,,,d°) and |2p;,d°Lk) can be determined,
which equals the unknown energy €; +¢&; =0—-%a. van
der Laan et al.*° find for this quantity ~ —9.0 eV.

In Fig. 5 we show the level scheme using the foremen-
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FIG. 6. Experimental and theoretical 2p XPS spectra of
NiBr,. In (a) the 2p;,; spectrum is shown and in (d) the 2p,,,
spectrum with the theoretical line obtained from the full theory.
(b) and (c), respectively, show theoretical results for no imagi-
nary parts and surpressed ImI;;, i5j.

1 1 1
848 852 872
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tioned parameters. From this figure it can be seen that
the Coster-Kronig process will influence the XPS line
shape. The |2p,,,d®) state is even beneath its “own”
continuum and is only allowed to decay via the mixing of
|2p 3,.d "k ) character in the other continua. On the oth-
er hand, |2p,,d'°L?) will decay rapidly, while
|2p 1,2d°L) lies somewhere in between. Moreover, al-
though the energy spread of the Coster-Kronig basis
states is large, the hybridization matrix elements are also
large, yielding strongly mixed continua.

In Fig. 6(d) we show the result of a numerical calcula-
tion of the 2p,,, spectrum using the method explained in
the Appendix. Only the shape of the sp continuum and
the strength of the Coster-Kronig matrix element are ad-
justable parameters in the calculation, although they are
together constrained by the integrated width in the spec-
trum. We used a density of states which linearly increases
up to 10 eV above threshold and is constant hereafter. In
the flat region the decay strength 7V2gp equals 2 eV.

In order to give an impression of the relative impor-
tance of the various contributions to the line shape, we
show in Fig. 6(b) the spectrum obtained by taking only the
real parts of €; and Tj; in Eq. (9) into account and an
equal linewidth for all components. This looks much like
the 2p;/, spectrum, showing that the influence of the con-
tinua on the real parts is small. In Fig. 6(c) we add the
imaginary parts of €;, which are different for the various
final states. We still see a spectrum qualitatively similar
to the 2p;,, spectrum. In Fig. 6(d) is shown the calculat-
ed spectrum taking all effects into account. This agrees
very well with the 2p,,, experimental spectrum shown as
dots. This shows that for these systems the ImIj; is the
dominant cause of strong distortion in the 2p;,, spec-
trum.

V. CONCLUSIONS

In this paper we have shown that it is important to in-
clude the details of decay processes in XPS line-shape

<2__]_Jd"+ILm—IIZ—H |2_£d"+ILm_I)=Z __E(Z_pdn+le—l)_ 2 V%(égdn+l—-1Lm—lk

and nondiagonal elements

<2_£d"+le—l‘2—H |2_£dn+"Lm_Il>=—T6“'+l— 2 V]3<§£d”+1_1Lm_Ik
k

in which we defined H =QHQ, which thus only acts on
the Auger states. Because the dynamics contained in H is
k independent, it makes sense to define a transformation

which diagonalizes H,
U-'HU=A. (AS)

The decay self-energies appearing in Egs. (A3) and (A4)
can be rewritten using (AS),
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analysis if the continua involved are close to threshold.
We have presented a general theory for doing this and
have shown that the line-shape difference between the
2p3,, and 2p,,, regions of the XPS spectra of Ni
dihalides can be understood, provided one includes the de-
tails of the Coster-Kronig decay continua.

Since, however, the details of the decay continua are
often not known, one should try to avoid using XPS core
states with near-threshold decay continua in the analysis
of line shapes in terms of model Hamiltonian parameters.
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APPENDIX

Here the example of two coupled states and two cou-
pled continua is generalized to many coupled states and
many coupled continua. The easiest way to do this is by
defining a projector operator projecting out the discrete
states,

P=2 IZ—Bdn+ILm—I)(2_£dn+ILm——I| . (A1)
1
From the well known identity (Q =1—P),
-1
1
P P= (zP —PHP —PHQ——————
—H | Q. —omp %t |
(A2)

we find that the XPS spectrum is found by inverting a
pseudo-Hamiltonian with diagonal elements,

1

3pdn+1—le—lk> ,

k z—H
(A3)
— 3pdn+l'—1Lm—I’k>, (A4)
7 o’ 4
l
2V]§<3pd"+l_1Lm‘lk 1~ 3pdn+1’—-le—l'k>
k - z—H |7
S uituy S — 2 (A6)
= . Ui & M—er

with
|’-)= I §£dn+1-—1Lm—1k)
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and
|j)= I:}Edn-i-l'—le—l’k) ,

while A; denotes the /th eigenvalue of H and u;j ',u;; are
matrix elements of U~! and U.

Equation (A6) is the result which we used in the calcu-
lations of Sec. IV. Also, the validity regime of the optical
potential approximation can be easily found from (A6).
We argued that far away from threshold the continuum
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electron density of states (and ¥}?) will be essentially con-
stant (iT"). From Eq. (A6) we find
—1 V’% .1 .
2oui'uy 3 Ik 2 iu uy =il §;,
! koo : (A7)

which shows that the optical potential approximation is
valid for processes far away from threshold, independent
of the number of coupled Auger continua.
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