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Summary.We aim at a consistent scenario for the generation of the
baryon-antibaryon asymmetry in the early Universe. First we
discuss recent calculations using unified interactions, especially
how the required CP violation can be provided for. Secondly we
consider finite temperature effects, namely the existence of phase
transitions, i.e. changes in gauge symmetries in a cooling Universe.
Although the expansion of the Universe can be affected signi-
ficantly, the final baryon number is surprisingly insensitive to the
nature of the phase transition, as numerically calculated in a simple
model. Also we briefly discuss problems with monopole pro-
duction and the generation of the density perturbations required
for galaxy formation.

Key words : baryon number creation — early Universe — galaxy
formation — cosmology

1. Baryon Number Creation

Grand Unified Theories (GUTs) have a single coupling constant g
(e=g?/4m~1/40) at high energies (> My~ 10'*~10**> GeV) and
have quarks and leptons in common representations, which may
lead to baryon number violating reactions (for example uu—e™* d).
This symmetric (i.e. one simple gauge group G) theory is
spantaneously broken (see Sect. 2) at high energies into the
presently observed weak, electromagnetic and strong interactions.
Low energy remnants of unified interactions predict proton
(p=uud) decay into e* and n°=dd, but with a large lifetime ¢
~const M3/M;~103%% yr (Ellis et al., 1980a), because the
relevant boson, generally denoted by X, received a large mass My
by the symmetry breaking (for a review see Ellis, 1980). Here and in
the following we take h=c=kpz=1, but keep Mp=G '?
=1.22 10'° GeV.

It is well known that GUTs, which violate baryon number (B)
conservation and the symmetries of charge (C) conjugation and
charge + parity (CP) can produce a net baryon number density in
the Universe during a period out of thermal equilibrium
(Weinberg, 1979, and references therein). This last ingredient is
provided by the mass of the X bosons (7a = const) and the rapid
expansion of the Universe [rate H=d/a, with a(¢) the scale factor;
see Weinberg (1972)] compared to the interaction rates. In the
simplest scenario the final ratio of densities of baryon number over

Send offprint requests to: F. R. Klinkhamer
*  Present address: Institute for Advanced Study, School of
Natural Science, Princeton NJ 08540, USA

entropy is produced by the decay of the lightest superheavy bosons
(Nanopoulos and Weinberg, 1979)

45
nB/S=4—4 {(3) (Nx/N)4B, 1
b

where 4B is the average net baryon number produced in the decay
of an X —X pair and Ny and N are the effective number of spin
states of X and all particles (mass < My), respectively. This np will
be generated at temperatures T, (when I'yeeay (Ty) ~ H(Ty)) below
the bosons mass (T; < M) after a period of free (I'gecay <H for T
> T,) expansion giving the required non-thermal distribution (rny
~ny~ T2 £ nperm~ (MxT)*? exp (—T/My)). The observed ng/s
~ 10710 (02,,/0.01) thus requires ABz 1078, since Nx/N~10"?in
typical GUTs, where the inequality is required if there are entropy
increasing processes at lower temperatures (e.g. some super cooling
in the Weinberg-Salam transition at 7'~ 300 GeV, but see below).

AB is determined by the different branching ratios of X and X
(see Appendix A), which come from higher order Feynman
diagrams.

But in the minimal G =SU (5) theory broken by 5 and 45 Higgs
scalars (these numbers give the dimensionality of the repre-
sentations) the produced AB~ Iierterence/Itotal 1S t00 small [in
Tiner 1s the imaginary part of the trace of 8 Yukawa coupling
matrices (in generation space) f; and in I'iya) ~ Iiree the trace of 2f;’s
(Barr et al. (1979)]. Already Nanopoulos and Weinberg (1979) had
observed the need of different scalars in order to have a net 4B
within the numerator Im 77 of 4fs. In the Yukawa terms (i.e.
scalar fermion-antifermion f ) of the GUT Lagrangian density
L there are two non-trivial unitary matrices in generation space
(nx n). These have a) (n —1)* parameters to be identified with the
usual Kobayashi-Maskawa matrix (giving CP violation for n>3,
i.e. 26 quark flavours) after breaking with a 5 of Higgs H ({H)
=(0,0,0, 0, vy) with vy ~ 300 GeV)), and b) (n —1) parameters only
observable at unification energies and essential for AB (Ellis et al.,
1979). The simplest way to have a 4B of the right magnitude is with
two 5’s of Higgs (Yildiz and Cox, 1979). Recently a direct
connection was noticed (Ellis et al., 1981a) between the 4B
interference graphs and those leading to a finite renormalization
(60gur) of the O parameter of the QCD (SU(3)) vacuum. (This
0 defines the ground state when topologically distinct Yang-Mills
vacua exist, analogous to the Bloch functions for periodic
potentials.)

Assuming =0 at a high energy, say Mppnck, the present
observational limits on the electric dipole moment of the neutron
d,, which gets a dominant contribution of the CP violating term
with parameter 0 (1 GeV) 2 60ur, allow for practically no entropy
generation after the np generation at unification energies (Ellis et
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al., 1981a, b). The reasoning goes as follows: d, =4 10716 605y e-
cm would violate the experimental upper limit (2 102 e-cm) if the
generated {np/s}cur had to be significantly larger than 107 to
allow for later entropy generation. We remark that in comparing
00cur and AB graphs moduli of typical unitary matrix elements
U, connecting the different contributing Higgses [see point b)
above] were naturally assumed to be O(1). If these are substantially
smaller they could alleviate the nearly conflicting theoretical (660
<const. |Uy,|*ng/s) and observational d, limits [see Eqgs. (24) of
Ellis et al. (1981a)]. Note that these arguments do not hold if the
anomaly of a global U(1) axial symmetry makes all § equivalent to
zero (Peccei and Quinn, 1977). Another possible alternative (see
also the Note) for CP violating decays, namely mixing of X and X
into X, and X, Hamiltonian eigenstates which are not CP
eigenstates, is not allowed for superheavy bosons X coupled to the
observed fermions, these bosons all being charged electrically
(Kolb and Wolfram, 1980b; Nanopoulos and Weinberg, 1979).
This needs not hold for a GUT with superheavy fermions (Barbieri
et al., 1980).

Up till now we have considered the simple delayed decay
scenario. More general calculations have been done, which show
how truly primordial (quantum gravity epoch?) baryon-
antibaryon asymmetry would be washed out at unification energies
by a complicated interplay of decay (X—abc), inverse decay
(a'b'c’>X) and X exchanging collisions (ab—cd, B(ab)+ B(cd)),
after which a fresh asymmetry is created (Kolb and Wolfram,
1980b, Harvey et al., 1981; Fry et al., 1980). As expected (cf.
Weinberg, 1979) these numerical solutions confirm the simple
delayed decay estimates for small enough couplings of the relevant
Xto the fermions (€. g. aere 1074, My~ 10'* GeV). If the lightest X
decays with a larger o.¢ a considerable dilution of the generated
baryon number takes place (Kolb and Wolfram, 1980b, Fig. 4).
The reason that these Yukawa couplings could very well be smaller
than the gauge coupling g is the following: these terms in Lgyr give
at lower energies simultaneously with the Weinberg-Salam break-
ing to the weak and electromagnetic forces the observed fermion
masses. This breaking (Higgs doublet with <0]¢|0>=v,(9), vo
~300 GeV) gives the weak boson W the mass My, ~ gv,~ 80 GeV
(cf. example in Sect. 2) and the small effective Fermi coupling G
=g%/2 M% . The Yukawa couplings fi}; ¢y, give after spontaneous
symmetry breaking a mass term for lepton [ of foof,;, hence f
~mpy * is very small (e.g. Taylor, 1976).

2. Phase Transitions

In Sect. 1 all calculations described were done in a flat space zero
temperature formalism (as laboratory physics) with as only
cosmological effect the use of a statistical ensemble of massive
particles driven out of equilibrium by the expansion of the
Universe. However an important phenomenon is not taken into
account yet: symmetry restoration of spontaneously broken gauge
theories at high temperatures 7,~v. Let us briefly explain the
mechanism of spontaneous symmetry breaking (e. g. Taylor, 1976).
If the effective potential V(¢.,) of the Higgs scalars ¢ (V is a
function of the classical, i.e. not operator valued, fields ¢.,) has a
minimum at ¢.; =00, than the vacuum expectation values is non-
zero: {0|¢|0) =v. The field theory is most simple with shifted fields
v=¢ —v, which behave properly, i.e. annihilate the vacuum
0[y|0>=0. The Lagrangian as function of v, which remains
renormalizable after the symmetry breaking, shows that the gauge
fields corresponding to the broken symmetries [remember the
gauge fields are 4, = Ajt,, with z, the (n? —1) generators of the Lie

group G(=SU (n)) describing the symmetry] have become massive,
cf. My of Weinberg-Salam. No massless scalars appear, the
Goldstone theorem being invalidated by the existence of long-
range gauge interactions. Let us give the simplest example possible
G=U(1) (e.g. O’Raifeartaigh, 1979): we have a complex scalar
field ¢ = ¢, +i¢,, one gauge field 4, (G=¢€'¢p has one generator)
with field strength F,,=0,4,—0,4,, the gauge covariant de-
rivative D,¢p=0,¢+igAd,¢ with coupling constant g and the
Lagrange density (from which the equations of motion for 4, and
¢ follow by functional derivation)

L= —}F,,F*~|D,¢[* —V(¢),
V(g)=—p|¢]*+Alaf",

which is invariant under the U(1) gauge transformations with Jocal
parameter A(x) in inifinitesimal form

(22)

4> 0, (2b)

A,,(x)—»Au(x)+§ 0,4(x)

¢ (x)>(1 —id(x))P(x).

Rewriting L in fields v = ¢ — ¢ around the asymmetric ground state
of the potential |§|* = u/2 A leads to massive gauge fields (the second
term of L giving 3g°|§|*42) with mass® =g>u/2 and after a gauge
rotation we have T

1
T4

"'Linteraction (V1 >An)' (3)

Thus after spontaneous symmetry breaking we have a gauge
invariant theory with massive vector fields 4, and no massless
scalars v, (the Higgs miracle). The precise form of L;pieraction il EQ.
(3) is crucial to keep gauge invariance, necessary for renormaliza-
bility. Note that we do have a massive scalar v, and for realistic G
similar ones will turn out to be essential for the baryon number
generation in the early Universe.

Presently it is thought that Nature uses the spontaneous
breaking of

1 1
—L=g P43 8 o= A2+= D+ 2wk

M
Gunified __U> SU (3)colour X {SU (2) X U(i)}electroweak

M
l’ SU (3)colour X U(l)electromagnetic

(at low energies the 8 gluons and photon are still massless) at a
hierarchy of energies My ~ 10*° GeV and My,5~ 10> GeV (see Ellis,
1980). Finite temperature effects change the potential of Eq. (2b):
V(T, o) = — 2% + Ad% +cT?¢%, c is a constant (Weinberg,
1974). The non-zero minimum disappears at a critical temperature
T.=c *?u. These symmetry restorations at high temperature
resemble phase transitions (for a review see Linde, 1979), but for a
small range around 7, the perturbation expansion used, giving the
cT*¢% term, breaks down.

The symmetry breaking will lead to a different energy density of
the vacuum before and after the transition at T,(dg~ T¥). The
presently observed vanishing of the cosmological constant A and
the relation A =8 Mz, imply o, (T=0)<1072 gem ™3 ~ (1072
eV)*. Thus the gravitating vacuum energy density is g, ~ T2 and g,
~0 before and after the transition, respectively (Kolb and
Wolfram, 1980a), which can considerably change the expansion of
the Universe (cf. Fig. 1). We will consider the baryon number
generation as compared to that of the standard Big Bang model
(.e. a~1/Toct?).
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Fig. 1. Sketch of the history of the Universe during a first order
phase transition: a is the scalefactor and T the equilibrium
temperature (for adiabatic expansion Toca™!). Included repre-
sentative forms of the effective potential ¥, whose minima are
possible vacuum state (see text). Twice baryon number (B) non-
conserving reactions could have generated a baryon-anti baryon
asymmetry, but in the symmetric vacuum state there will be no net

B generation during the 4B1 period. The observed B should thus be

created after the reheating (7x~ T,), which must be smooth in
order to preserve a homogeneous Helium synthesis (see text)

When the Universe cools to T< T, a phase transition will take
place from the symmetric vacuum ¢ ¢» =0 (expectation values for a
Gibbs ensemble with temperatur 7) to the broken state {¢)
=v(T). If the transition occurs smoothly at T, due to the onset of
instability of the symmetric state in V'(7, ¢.1), we speak of a second
order phase transition (2PT): v(T)~ {1 —T?/T?}'*v(T=0). The
expansion rate of the Universe H? = (8nG/3) (0, +m*NT*/30) will
hardly be changed by the 2 PT": the energy density is dominated by
the particles (o~ NT*» g,~ T?). But even in this unspectacular
case (2PT) the standard calculations of Sect. 1 (Kolb and
Wolfram, 1980b) are not correct for 7> T, [Screening corrections
to the cross-sections (¢ ~a?/T? instead of ~a?/M%) appear to be
quite unimportant for the final ng, Harvey et al. (1981)]. The same
Boltzmann equations can be applied to the cosmological context
but with starting conditions of thermal equilibrium at T=T,
instead of at T=oc0 (or Tpy).

To illustrate the effects this modification, we consider a simple
model (Kolb and Wolfram, 1980b) and solve the differential
equations, describing the baryon number changing processes, for a
range of initial conditions (details can be found in Appendix A). In
Fig. 2 the evolution of the ratio Yz=np/n, of the net baryon
number density to the photon number density is plotted : Y3 (x; xo)
gives Yy at temperature 7= My/x under the initial condition of
thermal equilibrium at x,=Mx/T,. Thus Yp(x,; x,)=0 and
Y5(o0; x,) is the final baryon to photon ratio for 7—0, neglecting
a factor O (10™?) from later annihilation heating (e.g. eTe™ —y).

Figure 2 shows how the baryon production peaks around x=1
(T=My), followed by substantial damping (quantitative details
depend on several parameters, as discussed in Appendix A).
Starting at x,+0 lowers the maximally attainable Y3, but relaxes
to nearly the same final value, due to a balance of production and

247

T
a =140
M, = 10°°GeV
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x10°8

—
[o2]
T

A
0 1 2 3x=M_x
T

Fig. 2. The generation of the baryon number to photon ratio
Y5(x;x,), where x=My/T and My the mass of the B-violating
boson, is calculated for a simple model, with CP violation
parameter ¢. Earlier calculations (Kolb and Wolfram, 1980b) use
symmetric starting conditions at x, =0. Finite temperature effects
lead to phase transitions (PT), which give the boson a mass Mx only
for. T<T,~My/g. The Yp(x;x,) evolution is calculated for
realistic starting values after a second order PT (x, ~g ~%) or after
the smooth reheating ending the period of supercooling of a first
order PT (x,~1). The final Y values are given in Fig. 3

damping at large x. Thus it is clear that the standard calculations, as
discussed in Sect. 1, hold true in the case of a 2 PT (xo = Mx/T,~g
~%), to high precision (final deviations <0.01 % in the model of
Fig. 2).

In the case of a first order phase transition (1 PT) the transition
of the symmetric metastable state to the energetically favourable
broken state is blocked by a barrier, either (i) from a mass? term in
V: T?c¢% with ¢ a constant depending on g2 or A, or (ii) from
temperature independent quantum corrections to the tree potential
if <g*. The Universe cools below 7, with the vacuum remaining
in the symmetric state (hence called a false vacuum) and its constant
energy density o, ~ T dominates over that of the particles (~ NT*,
Tocl1/a). This leads to an effective cosmological constant A
=8nGg,~8nT}/M3, which results in exponential expansion
(accexp t/r, 1=(87/3) "> Mp,/T?) with rapid supercooling
(Tca™ < T,). This is illustrated in Fig. 1.

There are several alternatives to end the period of supercooling.
If the false vacuum remains metastable (confined by a barrier)
down to T'=0, the Universe can only have reached the presently
observed broken state by nucleation of bubbles of true vacuum,
which by expansion (velocity~c¢) conquer the false vacuum
(Coleman, 1977, Callan and Coleman, 1977). There are two types
of nucleation: 1. Thermal nucleation rates have a maximum just
below T, and either the bubble density gets high enough and they
quickly fill the Universe (little supercooling) or else these few
bubbles cannot catch up with the rest of the Universe which
expands too rapidly, being continuously accelerated (Sato, 1981;
Guth and Weinberg, 1981). 2. Nucleation by barrier penetration (a
non-perturbative effect, cf. Coleman, 1979) has a constant rate per
space volume. Obviously barrier penetration effects are small and a
large supercooling results. This originally was the motivation for
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Fig. 3. Final baryon-number to photon ratio Yy(co,x,) for
realistic starting conditions (xo~1) as compared to x,=0:
f=Yg(o0, %)/ Y5(c0,0). In this case Yz(00,0)=1.43 1078

t
considering 1 PT’s, where the stretched horizons (dy=a(t) |
0

dt’'ja(t") ~t€'") may reduce the monopole density, one per dy(fena)’
typically (Einhorn et al., 1980; Guth and Tye, 1980; see below). If
the tunneling nucleation rate is small, leading to a cooling to
T<T, it is not clear how at a certain temperature the whole
Universe can have made the transition to the true vacuum (cf.
Guth, 1981): although at every fixed point the probability that a
transition false—true has taken place approaches unity, the
ongoing exponential expansion in the false vacuum region pro-
hibits a complete vaccum conversion. But the isotropy of the
cosmic background radiation excludes the presence of bubble walls
in the presently observable Universe (Zel’dovich et al., 1974). If the
1 PT ends with huge bubbles, of galaxy size, say, filling the
Universe two further problems arise: 1. Thermalisation of the
energy in the bubble walls before He production, which is to give
~259; everywhere, seems impossible (bubble sizes>available
travel time of one light-second ; see Fig. 1) and 2. It is not clear that
the reheating is instantaneous and that ~ 7, will be attained ; this
could jeopardize the standard baryon number creation results of
Sect. 1 (see below).

Another way to end the period of supercooling (evading the
above problems) is that the false vacuum becomes unstable at T;
< T,. This may happen if the barrier vanishes [in the U(1) Higgs
model if 3g*/16 %> < A <g* (Linde, 1979); in G=SU(5) region d of
Guth and Weinberg (1981)]. At ~ T} the whole of the Universe still
in the symmetric state will shift to the broken one, with a diverging
nucleation rate when the confining barrier vanishes. The latent
heat (0,(> T1) —0,(< T;) ~ T#) relased in the many small bubbles
from the last “flash” of nucleation probably will be thermalised,
quickly reheating the Universe to just below T.

Which scenario the Universe follows (2 PT; 1 PT thermal or
tunneling nucleation, or 7; shift) depends on the yet unknown
coupling constants in the GUT Lagrangian. Daniel and Vayonakis
(1981) find for SU(5) a weak 1 PT typically. If the Higgs potential
has scalars with bare masses vanishing (Vi = A7 /4!), quantum
corrections from the gauge bosons still may give symmetry
breaking, for U(1): one loop V¥'=(3g*/641%)¢% (In (¢ /{P>?)
—1/2) and 4 =(33/87%)g* (Coleman and Weinberg, 1973). There
are two strong arguments to expect radiatively broken SU(5): 1.
this might explain the hierarchy problems My < My < Mp,, and 2.
this SU(5) GUT with massless scalars and 3 generations of (3 + 10)
fermions (as observed) might be the remnant of the N =8 extended

supergravity theory (references in Hut and Klinkhamer, 1981). The
phase transition for the radiatively broken SU(5) GUT is strongly
1 PT, and supercooling goes to ~1 GeV when the nucleation rate
equals the expansion rate (Billoire and Tamvakis, 1981; Daniel,
1981). Recently it was realised that non-perturbative effects may
reduce the period of supercooling, destabilising the vacuum
perhaps at T=0 (10° GeV) (Tamvakis and Vayonakis, 1981).

Let us mention another possible origin for a general shift of the
vacuum (Hut and Klinkhamer, 1981). Until now local fields on a
flat background were used, but global space-time effects probably
are important at low enough temperatures and might induce a shift
to the broken state at Ty ~T2/Tp, ~10'* GeV [for radiatively
broken SU(5)]. Basically thermal radiation at this temperature will
have wavelengths of the order of the event horizon Dy~ Tp, /T2,
thus invalidating the usual flat space-time description of the barrier
that should stabilize the symmetric state.

Now we consider the baryon number generation after the
reheating in a strong 1 PT. We assume that the supercooling ends
at T, by destabilisation of the false vacuum. For definiteness we
will consider the radiatively broken SU(5) theory. Unfortunately
nothing is known about the thermalisation involving bubble-
bubble and bubble-particle interactions. We estimate the typical
bubble size, nucleated when the barrier became vanishingly small,
to be of order v ™! ~ T, ! and we assume the thermalisation to take
place in the same time scale. In the cosmological context this means
instantaneous (< H ~*(T,)~N~'*T, T, %) and smooth [ < effec-

“tive horizen after T ~ Hlgara(Tr)] reheating.

The Universe passes twice through temperature regimes where
baryon number violating reactions are important (Fig. 1). At the
first occasion, however, the Universe cools below 7, in the
symmetric state, in which the gauge bosons are still massless and
the Higgs bosons have a mass (defined by 6*V/5¢.0¢s) of order my
~gT (Linde, 1979). The crucial ingredient of baryon number
generation, i.e. deviation from thermal equilibrium when the
Universe cools below the boson mass (cf. Kolb and Wolfram,
1980b), is thus missing since myx =0, cf. Toussaint et al. (1979).
Another important modification is that any truly primordial
baryon number from the quantum gravity epoch will be even more
strongly diminished than in the standard scenario. Both gauge
boson X (inverse) decays and X exchanging 2 —2 reactions will now
be in equilibrium (rates I > H) for 10'® GeV z T> T}, for example
(I'/H), _3 ~o&ur(Te /T) (cf. Ellis et al., 1980b). Hence any primor-
dial baryon asymmetry is damped by a factor ~exp
{ —a&urN T, /T;} [cf. Kolb and Wolfram, 1980b, Eq. (4.2)].
Thus for T; <1072 T, the damping is huge ($1074°). The latent
heat released at the transition reduces this primordial ng/s even
more by an extra factor ~(7/T.).

With no surviving baryon number it is all the more important
to have sufficient reheating after the period of supercooling.
Comparing the number of degrees of freedom (Einhorn and Sato,
1980) before the transition at 7; (V;) and after reheating to Tk (Ng)
we find

Tr=T.{30/(Ngn®) + (N:/Ng) (T1/T)*}'*~0.4 T,

for {SU(3) x SU(2) x U(1)}r, 6 quark flavours and one 5 of SU(5)
Higgs giving one Weinberg-Salam doublet, N =106.75. Note that
if the SU(5) theory is a remnant of SU(8)/E(7) superunification the
many superheavies (~Mp,) will not count in estimating Ty,
because of densities ocexp (—M/T;) from the period of equilib-
rium unified interactions as discussed above.

Now we will discuss the baryon asymmetry generated for
T < Tk. First we assume that the thermalisation process for the small
(T:Y) bubbles produces no asymmetry itself. Again, earlier

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1982A%26A...106..245H&amp;db_key=AST

FTI982A&A © ZI06. ZZ45H

P. Hut and F. R. Klinkhamer: Baryon Number Creation and Phase Transitions in the Early Universe

10F ' ' N
«10® a = 1/40

gl My =10°GevV |
€ = 10’6

o]
T

0 1 1
2 ! 3

X—

Fig. 4. The generation of the final baryon-antibaryon asymmetry
for a first order phase transition, if the thermalisation of the small
bubbles of true vacuum at the end of the supercooling epoch itself
gives a net baryon number Y3'*™**(x,=2)=+10"". For com-
parison the curves for Yz(x,=0)=0 (dotted) and Yz(x,=2)=0
(Fig. 2) are given

calculations have to be modified only by taking more realistic
initial conditions in solving the same rate equations. For the simple
model of Kolb and Wolfram (1980b), we can extend the previous
discussion of 2 PT’s, and use Fig. 2 in case of smooth reheating
after the supercooling, with starting values xy~ My/0.4T,~1. In
Fig. 3 the dependence of the finally generated baryonnumber
Yp(c0; Xo) on the reheating temperature 7 = My/x, is plotted in
units of Yp(co; 0). Nearly the same baryon number is produced in
the range x, =0~ 5, followed by a sharp drop around x,=7. Thus
we conclude that details of the initial conditions are unimportant
for this mode as long as smooth reheating takes place to T =+ My,
which holds true for all realistic unification models. But the X
considered here was taken to be a gauge boson (My~gTc~ 10'3
GeV) and the light Higgs bosons (for radiatively broken GUTs:
My ~a?My) will give the major contribution to Yyz(co) from
delayed decay at temperatures lower than Tr ~0.4T,. This Higgs
contribution will be larger because 1. the CP violating diagrams are
of lower order than for the gauge boson X, and 2. dilution of the
baryon number density from the delayed Higgs decay will be less
(otegs < o3 see Sect. 1).

Finally the assumption of baryon number conserving thermali-
sation processes after the reheating can be dropped: in Fig. 4 it is
shown that a sizeable asymmetry Yg(xo; xo)=+10"7 will be
damped out for moderate x,-values (in Fig. 4 we chose x,=2).

3. Discussion

We have presented a consistent scenario of baryon number
generation in the early Universe, taking into account the effects of

249

phase transitions of gauge symmetries. Previous analytical es-
timates and numerical calculations are invalid at 7> T,. After a
second order phase transition the final ng/s turns out to be the same
since the final result depends mainly on processes operative at
T<My. A strongly first order phase transition will drastically
change the behaviour of the Universe, leading to a period of
accelerated expansion. But even in this case, after reheating
following by thermalization, the gauge bosons will produce
roughly the same baryon number density as in the standard zero
temperature calculations! For a simple model, quantitative details
are presented in the Appendix A. But the major contribution to the
final ng/s will come from the simple delayed decay of the lighter
Higgs bosons, which have larger CP violating amplitudes i.e.
ghiees 5 ~1gGauee) and less dilution.

To complete our discussion of the realistic baryon number
creation we discuss two further problems: 1. The generation of
density inhomogeneities leading to the formation of the present
structure, e.g. galaxies. In Appendix 2 we argue against an origin
for the required inhomogeneities from 1 P7”s only; most plausibly
the origin lies in the quantum gravity epoch. 2. Directly related to
phase transitions and vacuum structure is the problem of mo-
nopole creation in the early Universe.

These monopoles are classical finite energy solutions of the
Yang-Mills equations of motion with boundary solutions_ of
¢(0,p,r=o00) that minimize V(¢$) with a non-trivial mapping of S,
(i.e. the sphere at infinity) on the remaining symmetry G/H, if H is
the little group of the V' minima (for a review see Actor, 1979). For
the ’t Hooft-Polyakov monopole [G=SU(2), H= U(1) which gives

the monopole-like long distance force, V(¢) = —% m2¢? +% ¢* for
triplet ¢,, a=1,2,3] the asymptotic value at r—>o0 ¢,=F,{mi~'?
+ (const/gr) exp (—2'?mr)} ~F;mi~' (note the mixing of space
and group indices) is not continuously deformable to ¢, =nmAi "/
with the group space vector n, fixed at r— co. Recently multimo-
nopole, i.e. static, localized, non-singular, finite energy, solutions
of the classical SU(2) theory with Higgs triplet (A,m—0, m?/A = D?
fixed) in 4-dimensional Minkowski space have been found (for
roads to quantization see Jackiw, 1977). These are axisymmetric
solutions with topological charge » (i.e. the homotopy class of the
mapping S, —G/H, which is linked to the magnetic charge g,, =n/e)
equal to 2 (Ward, 1981) and generally n>1 (Prasad, 1981; Prasad
and Rossi, 1980). Even more generally the existence of multi
monopole solutions of arbitrary charge and separations has been
proved (Jaffe and Taubes, 1980). The axial n>2 solutions, being
self-dual, obviously have E(n) =nE (1) =n(4n/g?) gD [note that for
m?, A= 0t Hooft found the same E(1) up to a constant 1 < C(4/g?)
<1.787]. If this (for n equal, centered charges) also holds for the
most general multi-monopole solutions this seems to imply no
interactions; hopefully the attraction between two differently
charged monopoles remains (cf. Manton, 1977), so that the
annihilation calculated by Preskill (1979) is correct, although not
even sufficient yet (see below).

If after the phase transition the distribution of ¢ directions in
group space is “random” one expects typically p monopoles per
volume /3, where p ~0.1 a combinatorial factor and / the ¢ direction
correlation length, which will be /<2 ct from -causality.
Because M., ~a" ! My and #(T,) is very small, this leads to an
enormous mass density, invalidating the standard result “He
~259%. Before proceeding we remark that the “if”” above is not at
all trivial and that a correct gauge invariant (cf. Jackiw, 1980)
calculation of the eventual monopole creation at a phase transition
G—G' x U(1), with G and G’ simple groups, has not been done yet.
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If we stick to the naive “if” the trick of a 1 PT is to have a larger / at
symmetry breaking than in the standard model (Einhorn et al.,
1980; Guth and Tye, 1980). There are two possible estimates of the
lipr: @) [y pr as the stretched up particle horizon from the period of
supercooling (7, — T,4), and b) first as the field correlation length
E~(2/g)|T* —TZ%4 "', but then with limited growth d¢/dt
<1+¢/ja~1+¢/r (Einhorn and Sato, 1981). In Sect. 2 we
discussed the two alternatives for the transition.

1. Ending by the filling with bubbles if the barrier between false
and true vacuum remains. For all bubbles nucleated at 7, (each
with independent mean ¢ directions) one might use estimate a) and
then T.,q<10'? GeV and of course a lower T.,q if there are also
smaller bubbles, but anyway estimate b) requires 7T,,q < 10% GeV.

2. If the barrier disappears at 7; we carinot use a), because there
will be a very great number of small bubbles, but again b) requires
T..q<10® GeV. Of course the numberical values (Einhorn and
Sato, 1981) of these limits are quite uncertain.

Thus the apparent monopole problem might be alleviated by a
strongly first order phase transition ending with smooth reheating,
which also guarantees the successes of the Friedmann model of the
Universe: baryon number creation and Helium-synthesis.

Note

Soft CP breaking, i.e. complex phases arising in spontaneous
symmetry breaking, has been evoked to get an overall B=0
(Senjanovic and Stecker, 1980). To counter the standard objections
(e.g. Ellis et al., 1980b) of annihilation and separation these
authors invoke a period of exponential expansion to stretch the
very small domains, each with ng/s ~ +1071° where the sign of the
breaking is correlated, to at least galaxy cluster sizes (Sato, 1981b).
Apart from the unnaturalness of requiring non-zero expectation
values of some Higgses for all energies [otherwise our Universe
would contain domain walls, Zel’dovich et al. (1974) and Vilenkin
(1981)] and assuming supercooling to occur, we note that for the
required supercooling to 7=0 (100 eV) very small renormalised
Higgs masses are needed whereas for a Coleman-Weinberg
potential (bare mass zero) the cooling goes only (!) to O (1 GeV)
(Billoire and Tamvakis, 1981), or even less low because of non-
perturbative effects. As discussed in the Sect. 2 the reheating has to
be very smooth. Two further arguments might be that with the
larger Higgs sector needed 1. 50,k perhaps is too large (Ellis and
Gaillard, 1979) and 2. the calculated proton lifetime and SU(2)
— U(1) mixing angle sin 0y go down and up, respectively, for more
5’s of Higgs. It is clear that we disfavour Senjanovic and Stecker’s
(1980) suggestion and, of course, Occam’s razor on the obser-
vations (Steigman, 1976) suggests a clean shaven Universe: ng/s ~
+1071° everywhere.

Appendix A : A Model for Baryon Number Creation

All calculations, illustrating baryon number generation after phase
transitions, are done for the simple model introduced by Kolb and
Wolfram (1980b). First we will summarize the model and the
reaction rate equations. After that we will discuss the modifi-
cations if we take phase transitions into account.

The model consists of two types of particles: nearly massless
particles b and b carrying baryon numbers B=% and B= —3%
respectively, and massive bosons X and X mediating baryon-
number violating reactions. The decay amplitudes M of these

massive bosons are parametrized as
|M(X—bb)>=(1+m5 | M,
M (X—BB)? = (1 —n)k [ M,
|M(X—=bb)* =1+ )% [Mof*,
|M (X—=bb)* =(1 =) |Mof,

with | Mo|* of the order of a small coupling constant o.. Because of
unitarity and CPT invariance only two free parameters 7, 7 are left,
where 5 —# = O («) measures the amount of CP breaking. Thus a
state initially containing an equal number of X and X (n% =n%) will
decay, in the absence of back reactions, to a system with a net
baryon number ng= (1 —77)% (n% +#1%). For simplicity all particles
are given only one spin degree of freedom, and obey Maxwell-
Boltzmann distributions. Because in the expanding Universe all
densities drop quickly, a convenient type of variable is

(A1)

Y,=ny/n,,

the relative number density of particle A(=b,b,X or X) with
respect to photons. Finally an “effective Planck mass” Mp is
defined as.

Mp=(n/8)2 G 2P N"V2~75(N)" 12 10'8 GeV,

where G is the gravitational constant and N is the number of
massless particle species (which is temperature dependent).

_The reaction-rate equations gouverning the time evolution of
ny, M3, Ny, ng can be simplified by the choice of a dimensionless
“time” parameter x = Myx/T, for which

dy, x dY,
dx _Mxxp dt ’

where xp= My/Mp is a constant. Assuming the b, b to undergo
many baryon-number conserving reactions (yb— yb) with the other
particles in the Universe, » and 5 must have exactly opposite
chemical potentials, leaving only one degree of freedom for

Ys=Y,—Y;

since Y, + Y3=2. Defining

Y: =3(Yx+ Y3)

the rate equations read [Kolb and Wolfram, 1980b, Eq. (3.1.2)]:

T 4w [( Y. - Yi“)+<u> Yy Y’i"]
dx 2
ar- _ —A(x) [Y_ —<—’7+”> YBYi'I] (A2)
dx 2
dy, _ _
d—xB=A(X) [{(n—n) (Y=Y +O+n) Y-}
n
_ qu v ’ N
2 YB{ & +<Fx> {v{c’(bb—bb)
+a’(b_b'—>bb)}>}:| .
Here A (x) determines the overall reaction rate and is given by
_x T
A(x)—xp i,

The relative number density of X, X in thermal equilibrium is given
by

Yo (1) =4xKy ()
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Fig. 5. Y5 (x; xo=0) for different branching ratios of X, X decays
(see Appendix A). For (n+7%)/2=1 there is a nearly total sup-
pression of the B damping processes

where K, (x) is the modified Bessel function (using the notation of
Gradshteyn and Ryzhik, 1965).
Finally
K, (x) 1 K (x)
K0T Kk

and in the low-energy approximation for the cross sections
¢’ (bb—bb) and ¢’ (bb—bb)

Ty =

(oo >~18mx ’
X
or
by P2 1K)
o T R KRG

For a discussion of the approximations made to derive Eqs. (A2),
see Kolb and Wolfram (1980b).

In order to integrate the three coupled rate Egs. (A2), we need
initial conditions and numerical values of the parameters a, #, 7,
and xp. In all calculations presented in Figs. 2-5 we use a=1/40,
My=10" GeV, and N=100, leading to xp=0.00131. For the
combination ¢=# —%, measuring the amount of CP violation, we
use ¢ =107, These four values, which are reasonable for GUTs as
discussed in Sect. 1, are the same as used by Kolb and Wolfram

(1980b). However we disagree with their statement that the
calculations are insensitive to the value of #+7%. As can be seen
from the X, X decay amplitudes (A1), y~%~1 would imply a
strong preference for the decay modes X—bb and X—bb, and
therefore decays and inverse decays of X, X would be inefficient in
the damping of a net baryon number. On the other hand, n~%~0
would imply a maximal damping of any net baryon number. Since
n—n=e=10"% n~n and we expect the finally produced baryon
number density to increase monotonically with the absolute value
|n+7). In Fig. 5 are plotted a few sample calculations, showing this
effect very clearly. Initial conditions used thermal equilibrium at
very early times: Y, =1and Y_ = Yz=0at x,=0. As expected, for
moderate values of n+# between 0 and 1, say, the calculations are
insensitive to the precise value. Only just below n+#=2 are half
the decay channels of X, X nearly blocked, damping becomes less
effective and much more baryon number will be produced. (For
+7%=2 the maximum Yj is reached at x=12 as Y3=7.05 107"
relaxing for x—co to Yz—7.04 1077)

In all other calculations, except those of Fig. 5, we used n+7
=0. This implies equal decay amplitudes for X—»bb and X—bb, as
well as for X—bb and X—bb. Therefore X can be taken to be its
own antiparticle X, which implies Y_=0. Indeed the second rate
Eq. (A2) guarantees Y_(x)=0if Y_(x,)=0, for n+#=0. We are
left with only two equations for Y, and Y. Of course in realistic
GUTs X has an electric charge (Nanopoulos and Weinberg, 1979)
and cannot be its own antiparticle, but in the simple model under
consideration Fig. 5 shows how a sizeable mixing between X, X
decay channels produces comparable results.

From the last Eq. (A2) it can be seen that baryon number
generation is proportional to the deviation from equilibrium of the
X-paricles, Y, — Y44 Choosing this as a new variable

Y, =Y, - Y

we have, with n+7%=0, the following two rate equations:

dy,
dx %xz K, (x)
K
b { & f‘; Y, () +3er'K, () YB(X)} a3
dY, K
e {ex e E"; Y2 () — K, (3) Yy (x)
_288a X"4Yy (x)}.

In the first equation it is clear how the first RHS terms determines
the production of Y, independent of already existing Y, and Y5,
as a function of temperature only (T=My/x). The second term
destroys the deviation from equilibrium of the X’s, and is therefore
proportional to a/x, or aG~'/* (G is the gravitational constant): the
magnitude of the deviation is governed by a competition between
particle reaction rates and Universe expansion. The third term is
typically ten orders of magnitude smaller than the second one in
our calculations (¢=10"°; Yz <¢). Therefore the rate equation for
Y, is nearly completely Yp-independent, and Y,(x; x,) is fixed by
specifying the initial condition Y,(x,; x,) independent of Y.
The rate equation for Yz shows a production term oc Y, with
the same reaction vs. expansion factor a/xp, but also the small CP
violation parameter ¢. The next two terms oc Y determine the
damping of Y, by means of all baryon number changing
processes, independent of ¢, which already indicates that Yp . <e.
The first of these two terms describes inverse decays of X,

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1982A%26A...106..245H&amp;db_key=AST

FTI982A&A © ZI06. ZZ45H

252

X (bb— X, etc.), and drops off quickly for high x (K; (x)ocx ™ 2e™*
for x> 1). The last term is the Fermi approximation for 2—2
scattering processes (bb—bb, etc.), which is the dominating, but
still rather unimportant, term for x220. For high energies this
term is unimportant, since the large contribution to 2—2 scattering
by the exchange of on-shell intermediate X’s is already included in
the previous term (see Kolb and Wolfram, 1980b, Sect. 2.3.2).
Therefore we just replaced x™* by 1 for x<1, since a detailed
treatment of the 2—2 processes would be unnecessary in this
regime.

To investigate the effects of phase transitions on baryon
number creation, we solved Eq. (A3) for various initial conditions.
Starting from thermal equilibrium, Y,(xy)= Yz(x,)=0, Fig. 2
shows Yg(x; x,) for the values x,=0, 1, 2, 3. Figure 3 shows how
Yp(c0;x0) drops quickly for x,=7. Finally we investigate the
effects of an initial baryon number density, as a possible result of
the thermalisation after a 1 PT: we choose at the starting value x,
=2, Y,(2)=0, and Yz(2)= +10"". From Fig. 4 it is clear that
already at x=3 the two curves nearly coincide with a third one,
starting from thermal equilibrium (Y3 (2)=0). Note how the Y
curve starting at Y= + 1077 drops to a minimum. The short rise is
a direct effect of the steep increase of Y, starting from Y, =0 at x,
=2, and reaching its maximum value around x=24.

Appendix B : Galaxy Formation

Several authors (e.g. Guth and Tye, 1980) have suggested that
strong first order phase transitions (1 PT) might generate the
required small density perturbations that later, after growth by
their selfgravity, give the observed structure: galaxies to (super)
clusters (~10'2-10'® M, ; cf. Peebles, 1980). This optimism was
based on the fact that 1 PT have two valuable ingredients:

1. During the period of supercooling (from #, to Z.,4) the
exponential expansion of the Universe (a~a(t.) exp (t —1.)/1))

tend
greatly enlarges the particle horizon dif"=a(tens) | dr'/a(t’)
te

~1 exp (fena —1.)/7) so that after the instantaneous reheating to 7,
at 2.4 the stretched up horizon di ¥ can be much larger (roughly by
a factor T,/T.,q) than in the standard scenario d§*™*=21t,, where 1
~Tp, T % and t,~ N™'2 Tp, T 2. This might (partially) resolve the
standard problem of the generation of perturbations on a galaxy
scale for which 1> the causally connected region d§*"d,

2. Nucleation of true vacuum might very well lead to density
differences [note that for bubbles nucleated by barrier penetration
all the released latent energy of the false vacuum is put in the
acceleration of the bubble walls; Coleman (1977)].

Our pessimism is based on the following points:

a) To profit from the stretching some bubbles must have been
nucleated before the transition (7> T.,4). But on the other hand
the corresponding strong (?) inhomogeneities cannot be on scales
>(a(t)/a(l s)) 1 s if we want to preserve the homogeneous He
production which requires a sufficient thermalisation (causal
process) of the bubble wall inhomogeneities. How does this arise
naturally, i.e. what determines the precise parameters in the
Lagrangian, which give the required T.,4/7, and the nucleation
rates?

b) What is the form of the wall-particle and the wall-wall
interactions? How does thermalisation take place? What is the
precise nature of the inhomogeneities formed after thermalisation ?
Which kind of density enhancements arise from an effective
pressure of moving walls? Also gravitational collapse must be

avoided, or at least for masses >10'> g which cannot have
evaporated by now.

¢) Pending the problems mentioned above, let us consider the
optimal case: (69/Q);..,~ 1 0N a size Apypbie ~ {@(fena)/a(1 s)} 1 s or
~1Mg of baryons. Thermalisation of the false vacuum will
produce a homogeneous energy density outside the rare bubbles of
true vacuum, which remain nearly empty. Denoting the mean
distance between these cavities by L, the smeared out density
contrast in a volume L3 is §0/0 ~ (Avuspie/L)°. On larger scales,
containing N cavities, we have

R )'bubble 3 -1/2
defe~\—7— | N7

Contrary to the usual exponent —7/6, which arises if density
fluctuations are made by reshuffling particles, i.e. with energy-
momentum conservation (Zel’dovich, 1965), we have here a really
statistical exponent —1/2, since the nucleation centers are distri-
buted at random (excluded, of course, the interior regions of
existing bubbles). We then expect the large scale inhomogeneities
to grow as d =dp/poct, so that to arrive at the required &y, (galaxy)
~1073 the bubble density must be very low at 7.,4; which can
easily be provided by a small thermal nucleation rate at ~ T, (Guth
and Weinberg, 1981). The scenario would be: very few thermal
bubbles; nearly the whole Universe smoothly shifting to the real
vacuum at 7; (<$10% GeV?); the cavities remaining after the shift

(B1)

_from the few thermal bubbles giving a §oc N~ */* spectrum. There

might thus be a positive ring, because a priori large enough
Onor (galaxy) could be made.

We conclude that, pending new information on GUTs,
strongly first order phase transitions do not provide naturally
the required density perturbations for galaxy formation. We are
already happy that the homogeneous 4B and “He production
survives phase transition complications. In conclusion we would
like to mention an argument in favour of a quantum gravity origin
of the density perturbations (cf. Klinkhamer, 1981). The only
continuous density spectrum which avoids large metric per-
turbations on any scale (pro Friedmann, contra primordial black
holes) is of the Zel’dovich type; (80/0)norizon =CoOnstant <1. The
corresponding small constant metric perturbations (cf. Peebles,
1980) are suggestive of a (quantum) gravitational origin. After the
epoch of baryon number generation the resulting density per-
turbations will be of the adiabatic type. If isothermal perturbations
are demanded by observations these could be generated from large
scale shear at T~ My (Bond et al.,, 1981), but the (quantum)
gravitational origin of this shear again is an open question.
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