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Slow and dense granular flows often exhibit narrow shear bands, making them ill suited for a continuum
description. However, smooth granular flows have been shown to occur in specific geometries such as linear
shear in the absence of gravity, slow inclined plane flows and, recently, flows in split-bottom Couette geom-
etries. The wide shear regions in these systems should be amenable to a continuum description, and the
theoretical challenge lies in finding constitutive relations between the internal stresses and the flow field. We
propose a set of testable constitutive assumptions, including rate independence, and investigate the additional
restrictions on the constitutive relations imposed by the flow geometries. The wide shear layers in the highly
symmetric linear shear and inclined plane flows are consistent with the simple constitutive assumption that, in
analogy with solid friction, the effective-friction coefficient (ratio between shear and normal stresses) is a
constant. However, this standard picture of granular flows is shown to be inconsistent with flows in the less
symmetric split-bottom geometry—here the effective friction coefficient must vary throughout the shear zone,
or else the shear zone localizes. We suggest that a subtle dependence of the effective-friction coefficient on the
orientation of the sliding layers with respect to the bulk force is crucial for the understanding of slow granular

flows.

DOI: 10.1103/PhysRevE.73.031302

I. INTRODUCTION

Granular flows show a very wide variety of behaviors,
and while the microscopic dynamics of dry cohesionless
grains is simple and well understood, there is no general
theory describing their emergent macroscopic properties.
Flowing grains can roughly be classified into three regimes
by the relative importance of inertial effects [1]. For strong
external driving the grains form a gaseous state. Here particle
interactions are dominated by binary collisions, and this re-
gime is well captured by modified kinetic theories [2-5]. On
lowering the driving strength the flow becomes denser, with
collisions becoming correlated and often involving several
particles at once. In this regime inertia is still important, but
kinetic theories become increasingly difficult to justify and
apply [6]. On further lowering the driving strength, the
granular media enter the quasi-static regime where inertial
effects are negligible. The grains form enduring contacts,
leading to highly complex contact and force networks. The
modeling of these flows is still in its infancy, and there is no
general approach which, for given geometry and grain prop-
erties, predicts the ensuing flow fields.

Most slow granular flows cannot be considered smooth.
Their flow fields vary strongly on the grain scale. For ex-
ample, in many experimental realizations one observes shear
localization where the flow of the material is concentrated
into a very narrow shear band [7-10]. In such situations the
flow can be modeled as two solid blocks sliding past each
other. If the shear stress, 7, is simply proportional to the
normal pressure, P, then these materials are referred to as
ideal cohesionless Coulomb materials. Many formulations of
granular flow focus immediately on this narrow shear band
regime [8,10].
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However, there are a number of systems that display
smooth velocity fields and wide shear zones. These should be
amenable to a continuum description. Among these is the
planar-shear cell without gravity, which has been examined
numerically in Refs. [11-16] [Fig. 1(a)]. Another example is
slow flow down inclined planes, which in simulations of
three-dimensional (3D) systems appear to reach a quasistatic
state [17] [Fig. 1(b)]. Though conceptually simple, both of
these situations are hard to realize experimentally. In recent
experiments, using a modified Taylor-Couette cell with split
bottom [Fig. 1(c)], robust and wide shear zones were ob-
tained in the quasistatic, dense regime [18-20]. While we do
not expect there to be a “universal” continuum theory of

FIG. 1. Geometries in which smooth, quasistatic grain flows
occur. The velocity field is sketched with arrows. (a) Linear shear in
absence of gravity. (b) Inclined plane flow close to the critical in-
clination angle. (c) Taylor-Couette flow with split bottom. (d) Lin-
ear shear over a split bottom.
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granular flow, these observations strongly suggest that there
is a continuum theory with its own domain of validity, that
should capture this smooth quasistatic granular flow regime.

Our approach is to test whether a straightforward con-
tinnum model of these smooth flow fields, based on a mini-
mum of readily testable physical assumptions, can be made
consistent with the numerical and experimental data avail-
able for smooth quasistatic flows. In addition to mass, linear-
and angular-momentum conservation, we need to find addi-
tional relations between the six components of the stress ten-
sor o;; and the state of the system characterized by such
quantities as strain history, packing fraction, etc. Such con-
stitutive equations are particularly simple for Newtonian flu-
ids (leading to the Navier-Stokes equation) and elastic solids
(leading to the equations of linear elasticity). The yielding
behavior of granular media illustrates that the constitutive
equations must here take on a more complicated form.
Granular media are athermal and dissipative—hence, when
no external energy is supplied, grains jam into a rigid, solid-
like state which can sustain a finite load before yielding [21].
Grains are made to flow by supplying an external (shear)
stress to overcome this yielding threshold. As a result, for
very slow and dense granular flows, the shear stresses are
finite and do not approach zero. This complicates matters
considerably.

Our approach has two important ingredients, the details of
which can be found in Sec. II. First, we are guided by the
well-known fact that dense grain flows exhibit rate indepen-
dence [11]. For the velocity fields this means that, to good
approximation, the entire velocity profile scales identically
with the external driving: When the driving speed is doubled,
the whole velocity field doubles. The stresses are also ap-
proximately rate independent, meaning that when the speed
is doubled, the stresses stay the same. This makes the rela-
tion between the stresses and the flow field rather special,
and even if we could determine the full stress field, we could
never hope to get the full velocity profile. The approach we
take relates the stresses to certain aspects of the geometry of
the flow. This results in statements regarding material sheets
in the flow, within which the particles on average only per-
form a collective rigid body motion with respect to each
other. A trivial instance of such sheets are the layers of con-
stant velocity present in the linear setups in Figs. 1(a) and
1(b), and illustrated in Fig. 3. In order to say something
about the actual velocities of such planes one would have to
appeal to a subdominant dependence on shear rate.

Second, when the grains are flowing, they experience
large fluctuations [22]. Hence, we assume that if in a certain
plane the strain rate is zero, then there will be no residual
shear stress in this plane—if there was a shear stress, there
would be a shear flow. Hence, all shear stresses are dynami-
cally sustained, and there are no elastic shear stresses. Thus,
we will not attempt to model a mixture of solid and flowing
behavior as done in Ref. [23]. This implies that the principal
strain and stress directions are the same (see Sec. II C).

In Sec. IIT we apply this framework to the four geometries
depicted in Fig. 1. In the linear geometries [Figs. 1(a) and
1(b)], symmetry considerations directly give that the princi-
pal directions are constant throughout the system, and thus
the equations are automatically closed. This gives the stan-
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dard Mohr-Coulomb relation 7=uP, with the effective-
friction coefficient necessarily constant throughout the
sample. For the less symmetric geometries [Figs. 1(c) and
1(d)] the local orientation of the above material sheets will
vary throughout the cell. This allows us to separate the effect
of constitutive assumptions regarding the rates in the system
and the geometry of the flow (see Sec. II B for further de-
tails). If we maintain that the effective friction coefficient is
constant throughout the sample, we find that the shear zones
have infinitesimal width. The standard approach of a con-
stant effective-friction coefficient between shearing planes
fails (see Sec. III B 1, and especially Fig. 6). In fact, we then
completely recover the prediction regarding the location of
the shear zone that was derived on the basis of torque mini-
mization by Unger et al. in [24].

To capture the experimentally observed widening of the
shear zone in the bulk, the effective-friction coefficient has to
vary throughout the shear zone. We argue that this can only
be done through a dependence of the effective-friction coef-
ficient on the orientation of the shearing surface with respect
to any bulk force (here gravity). The possible origin of such
an angle dependence is discussed in Sec. IV.

I1. QUASISTATIC GRANULAR FLOWS

At the heart of the present development lies the peculiar
fact that in order for a granular matter to support a shearing
state, no matter how slow, a finite shear stress is needed. This
is reminiscent of solid friction, but in stark contrast with the
situation in Newtonian fluids. This feature is clearly visible
in the experimental results reported in [11,25-27].

A. Explicit rate independence

The strain-rate tensor D=(Vu+(Vy)")/2 plays a central
role in ordinary fluid mechanics [28]. The use of only the
symmetric part of the deformation-rate tensor Vu ensures
that no stresses are induced by pure local rotations of the
material (principle of material objectivity). In the theory of
simple fluids one assumes that the knowledge of the com-
plete history of D, for any material point, will give the
stresses at that point. In the case that there are no memory
effects this means that the stress tensor can be expressed as
an isotropic tensor function of the strain rate tensor. For such
functions, the first representation theorem (Rivlin-Ericksen
theorem [29]) states that the most general constitutive equa-
tion can be written as

a=ayl + a\D + a,D?, (1)
with «;=a;(Ip, I, II},), and the invariants
Ip=tD, I,=tD? Il,=detD.

As mentioned above, the granular flows that we want to de-
scribe are such that we have finite shear stresses even as the
shear rate approaches zero. Thus, we can split the stress ten-
sor, g, into a rate-independent part, gy, and a rate-dependent
part, gy,

g=00+0y, (2)
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in such a way that g, is not proportional to the identity
operator (i.e., it contains shear stresses, and is hence not
simply a hydrostatic pressure), and g; vanishes as the strain
rates approaches zero. The condition on ¢ directly tells us
that in the zero shear rate limit «; and/or &, must be singular.

Theoretically there exist a flow regime in which g, alone
sets certain properties of the flow. We will refer to this re-
gime as quasistatic (the precise experimental definition is
given in Sec. II E). The information that can be extracted
from the rate-independent part of the stress tensor will in
general be of the type specifying, e.g., constant velocity sur-
faces. Due to rate independence, questions regarding the
magnitude of the velocity field cannot be answered by con-
sidering this limit alone, and neither can questions regarding
the stability of any wide shear zones.

We further assume that there are only local interactions in
the bulk (principle of local action) [30]. The implicit assump-
tion in our approach is that our continuum description is
valid, upon coarse graining over some small but finite length
scale.

As for the history dependence, the systems we consider
are such that the flow direction is also a symmetry direction.
For such system in steady shearing states, any material point
will always have the same surrounding flow field. Thus D
does not change (up to a rotation) along the evolution paths
of the material elements, and memory effects are washed out.

The strain-rate tensor is symmetric, and is hence com-
pletely specified by six parameters. We can choose these pa-
rameters as, e.g., the principal strain rates, and the orientation
of the principal directions (specified by three angles). Using
this parametrizations of the strain-rate tensor enables us to
isolate the rate dependence from the orientational depen-
dence. We denote the principal strain rates with 7;, and the
three angles defining the principal directions by 6, The
angles are to be taken with respect to some suitably chosen
local reference direction (e.g., the gravitational field). Then,
the general form of the stress tensor is

2'022'0(3’1,7’2’ 73’01’62’ 03’ )’ (3)

where the dots indicate a possible dependence on parameters
not directly related to the shear. Rate independence of the
stress tensor implies invariance under the rescaling v — bv,
and consequently invariance under D—bD (&vy,—by,).
Therefore the stresses can only depend on the ratios of the
principal-strain rates, and not the strain rates themselves.
Hence,

Q'ozgo(%/’)’s”)’z/?’y 01,65, 0, ...). (4)

To proceed with a general theory one would need to include
the full dependence on the principal-strain-rate ratios. The
flows we will consider are of a limited type, which enables
us to study the influence of the angles 6; without specifying
the dependence on the principal-strain-rate ratios. We now
proceed by clarifying his point.

B. Shear-free sheets

The systems we wish to consider are all such that, on the
scale of the coarse graining, one can think of them as con-
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sisting of material sheets, with no internal shear, shearing
past each other. We will here make this more precise and
derive some important consequences. In Sec. Il E we argue
that the density in any flowing region is essentially constant,
and thus mass conservation ensures that the flow is diver-
gence free. This will be assumed already here.

Consider a system for which it is possible to find a refer-
ence frame such that the velocity field is time independent
(e.g., in the center of mass frame). We define a flow sheet as
a surface in the flow, such that if a material point starts out
on the surface, it stays on the surface throughout the time
evolution of the system. If there are no strains within the
sheet, we will refer to it as shear-free sheet (SFS). That is to
say that the restriction of the strain-rate tensor to the sheet
vanishes. The flows treated later are such that the whole
shearing region can be divided into a collection of SFSs (the
SESs form a foliation of space occupied by the shear band).
In any orthogonal and normalized basis field, with the two
first basis vectors tangential to the SFS, the component form
of the strain tensor is

0 0 d
D=0 0 4] (5)
d dy 0

Here we have used the fact that the total flow is assumed to
be divergence free, V-v=tr D=0. Hence, the principal-strain
rates are y,=0 and y, ;=% \s"d%+d§. The major advantage of
considering these flows is now obvious: The ratio between
the principal-strain rates remain constant throughout the sys-
tem (even though d; and d, are free to vary). Thus we can
drop this dependence in stress tensor, giving

go=0ao(0; ...). (6)

The strain-rate ratios will be dropped from now on, and the
ability to do so is crucial for the rest of the development.
This enables us to probe the angle dependence alone. By a
simple rotation in the SFS, the component form of the strain-
rate tensor can be recast as

)
(D)sks = . y=Nd + 5 (7)

oS O O

0
0
Y

o w o

We will refer to the basis that realizes this component form
of the strain-rate tensor as the SFS basis, {¢;,e,,e3}. Visco-
metric flows [28] have this form of the strain-rate tensor, but
since we will put much emphasis on the physical picture
offered by the SFS, we will continue to refer to these flows
as SFS flows. This simple form tells us that the shear be-
tween planes is always directed along ¢,. Hence, for these
flows we have a picture consistent with the SFSs sliding past
each other (see Fig. 2). For later reference the principal-
strain basis (the basis spanned by the eigenvectors of D)
{p1,p2,p3} is easily seen to be given as
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FIG. 2. Pictorial view of the partitioning of space into a set of
SES. Also illustrated is a specific instance of the SFS basis, and the
corresponding principal-strain basis.

_ ~
pi=e, Pa3=(er ¥ e3)/\2, (®)

in terms of the SFS basis (see Fig. 2). We now proceed to
argue for a specific form of the stress tensor in these two
bases.

C. Stress relaxation

We claim that in the principal-strain basis the stress tensor
takes the form

Pl 0 0
(gp=| 0 P> 0 |, P'=Pi(6,...). 9)
0 0 P

To justify this we argue that force fluctuations are rapid in
shearing flows. At any instance, two neighboring fluid ele-
ments, positioned relative to each other along any of the
principal-strain directions, perform only a collective rigid
body, and a relative stretching movement. Since these mate-
rial points are not shearing, no shear forces should be gener-
ated between them. If any such forces are present as the
material points enter this no-shear configuration, we assume
that they relax fast enough to be ignored. The assumption
that the principal directions of strain and stress are aligned is
also central to the flow rules for many of the existing con-
tinuum models of granular flow (see Ref. [1] and references
therein). In the SFS basis the stress tensor takes the form

P00\ P=P
(Q'O)SFs: 0 P 7 =%(P2+P3) (10)
0 7 P 7=3P-P,

which again makes the connection to solid friction between
the SFSs. So, the introduction of the SFS enables us to con-
struct a physically relevant analogy with solid friction,
which, as will be shown below, yields testable predictions.
This is crucial for what remains.

D. The continuity equation

Mass conservation, and the fact that we assume the pack-
ing fraction to be constant throughout the shearing region,
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implies that the velocity field is divergence free. The linear-
momentum continuity equation, in conjunction with angular-
momentum continuity (and the requirement that there is no
torque body couple), ensures that the stress tensor is sym-
metric, g=g'. This is something we have already implicitly
assumed above. The linear momentum continuity equation
reads

dipy) +V-U=F, (11)
dt - =

where F is the body force, and the momentum-flux tensor is
defined as [I=pvv+g. As we are interested in quasistatic
flows, we will neglect the O(|Jv|?) term in the definition of the
momentum-flux tensor. We will further only be interested in
steady flows, and under these conditions the continuity equa-
tion for linear momentum takes the form of a force balance

equation
V.g=F. (12)

The number of additional equations needed to close such a
system is dependent on the symmetries present, and will be
addressed for the four geometries considered below. We now
turn to dimensional analysis to determine what the relevant
dimensionless parameters are.

E. Dimensional analysis and additional assumptions

Obvious local parameters for the flow are the volume
fraction ¢, the material density p,, the different local
stresses in the SFS basis, the particle diameter a, and the
shear rate . There is a further possibility that the local bulk
force influences the shear stress differently depending on
how it is oriented with respect to the SFSs. If this is the case
we must retain a dependence of the stress tensor on the ori-
entation of the principal-strain basis with respect to the bulk
force. This is encoded in the angles 6;, and since there is a
one-to-one correspondence between the principal-strain basis
and the SFS basis we can take these angle to be defined with
respect to the latter instead of the former. We can now form
the dimensionless quantities

¢, = 17P,

as the shear rate is taken to zero. Since the grains are hard we
assume the packing fraction to be independent of the pres-
sure ratios, as well as the angles. Hence, we take the packing
fraction to be constant through the quasistatic regime, and
we drop it from the development. Experimental and numeri-
cal justifications for this are referred to in Sec. IV. The only
dimensionless quantity that can be constructed with the
strain rate is

V=P,/P, 01,02,03, (13)

ya
I=——. (14)
VP/py,

It was shown in Ref. [11] that [ is the essential parameter
determining how the material flows. Quasistatic flow is to be
expected for I of order 1073 or less.

As an aside we mention that for a general / in a SFS
system (we assume y>0 for simplicity) we can write
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g

g1=g-gy=AP' [+ AxD/y) +AP(D/3)*,  (15)

where the second equality defines the coefficients AP’, AP,
and A7 through (1). It is also clear that the coefficients all
must vanish for vanishing shear rates. For a SFS system only
one of the fundamental invariants is nonzero,

I,=0, I,=17, Ml,=0, (16)
and we have
AP'(y) 0 0
a=| 0 APy Ay |. (17)

0 Ay AP(Y)

Hence we conclude that the general form of the stress tensor
is preserved even for finite shear rates. These predictions
should all be possible to check by simulating these systems.
The above forms should also be useful when considering the
stability of these flows, and the velocity field on the SFSs.
Neither are investigated further in the present paper. Instead
we continue to focus on the SFES in the quasistatic regime.

Returning to the rate independent case, and in analogy
with solid friction, we make the additional assumption that
the in-plane pressures of SFSs do not affect the friction be-
tween the SFSs. Thus we assume w and v to be independent.
That is, the equation of state, relating all the dimensionless
parameters, splits into two separate equations

Iu‘=M(91)’ V=V(0i)7 (18)

where the actual forms depend on the material. We therefore
have four independent quantities, say P, 6,, 6,, and 65, over
a three-dimensional space.

Alternatively, if we had the full velocity field of some
suitable system, say through numerical simulations, we could
calculate the principal-strain basis and check that the stress
tensor has the appropriate form (9). If this turns out to be
true, we can gain information about the setup-dependent
functions u and v by comparing the stresses.

III. FLOWS WITH WIDE SHEAR ZONES

The four systems we consider (see Fig. 1) all display wide
shear zones and are also easily identified as SFS flows. We
start by considering two systems with a high degree of sym-
metry, and then move on to the rather nontrivial split-bottom
Couette geometries.
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FIG. 3. The plane shear cell,
and the inclined plane geometry,
with the SES as well as the SFS
bases indicated.

A. Planar shear, and inclined plane geometries

The first two geometries, to which we apply the above,
are those of the linear shear cell without a gravitational field,
and the inclined plane in a gravitational field (see Fig. 3).
Due to the symmetry present in both geometries, we can
directly identify the SFS as being parallel to the boundaries.
Hence, e; is always perpendicular to these. The only shear
present between the planes is in the direction of the velocity,
S0 e, points in the flow direction, and e;=¢, Ae3. The strain-
rate tensor has the expected form (7) with y=dv/dx>. In the
considered geometries the principal-strain directions are con-
stant throughout the sample, and thus the angles 6; are also
constant.

The plane-shear geometry is trivial in that all the elements
of the SFS basis constitute a bulk symmetry direction.
Hence, all relevant parameters must be constant throughout
the bulk. Symmetry alone has already fixed the SFS planes,
and appealing to subdominant dependence on I, we conclude
that the shear rate is constant. This gives a linear velocity
profile under the assumption that the boundaries do not break
the symmetry by inducing localization of the shear zone.

In the inclined-plane geometry the e; direction is no
longer a bulk symmetry direction, and thus / is not constant
along e¢;. Hence we have a more complicated velocity pro-
file. From equation (12), or by simple force balance argu-
ments between the SFSs, we have u=tan 6 (where 0 is in-
troduced in Fig. 3). Since the requirement on the effective-
friction coefficient to be constant is geometrical in origin, it
holds true to all orders in /. Including a subdominant depen-
dence on I in the effective-friction coefficient, u=u(0,I)
=tan 6, thus tells us that / is constant throughout the sample.
This gives the well-known Bagnold profile [11,17,34].

Further, in this system the numerical results of Ref. [17]
(the small inclination setups in three dimensions) show a
linear relation between the pressures. It is also seen that the
pressures o0,, and o33 are very close to equal, while oy,
differs substantially from the others. In the above treatment
we have 0,,=033=P, in agreement with the numerical find-
ings.

In both of the above cases we have argued that the actual
velocity profiles are set by the subdominant dependence on
the shear rate. If true, we would expect strong fluctuations of
the velocity around the average profile, something observed
in both systems described above [11,35].

B. Modified Couette geometry

In both of the linear geometries considered above, pre-
dicting the shape of shear zones in terms of SFSs is trivial
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since symmetry guarantees that the SFSs are parallel with the
boundaries. Balancing the stresses is hence also trivial due to
the special form of the stress tensor in the SES basis. We now
tackle the modified Couette geometry. Compared with the
examples considered so far, this system has lost the symme-
try in the ¢, direction (along the SFS perpendicular to the
shear; see Fig. 1). The remaining symmetry in the e, direc-
tion is either rotational, as in the case of the modified Cou-
ette system [Fig. 1(c)], or translational as in the linear system
[Fig. 1(d)]. Though the loss of symmetry makes the treat-
ment much more involved, it will lead to the conclusion that
a constant effective-friction coefficient is not consistent with
slow granular flows in general—we will find that the appro-
priate shape of SFS that describes the expected wide shear
zones does not occur when we have a constant effective fric-
tion coefficient. We suggest that a dependence of the friction
on the local angles, as indicated in Eq. (18), is crucial to
understand such slow granular flows.

1. Rotational symmetry along the shearing direction

The system depicted in Fig. 1(c) consists of a cylindrical
container filled with a granular material, and with a split-
bottom plate. The inner part of the container is rotated at an
angular velocity (), long enough for a steady state to be
reached. The key experimental finding regards the spread of
a wide shear band from the bottom slit up through the bulk to
the surface. Naturally most data was collected for the veloc-
ity profiles at the top surface, as a function of the total height
of the sample H.

It was found in Refs. [18,19] that the center position of
the shear zone, R., and its width, W, satisfy simple scaling
relations as function of the layer height, H, the radial posi-
tion of the bottom slit, R, and the grain diameter, a. To good
accuracy

1 —RJ/R,= (H/R)?,

W o 3413 (19)

Though the experiments naturally focused on the velocity
profiles at the top surface, there is also evidence that inside
the bulk, away from the surface, the width of the shear zone
scales with the height above the bottom z as W(z) o< z®, with
a somewhere between 0.2 and 0.4. [19,20,36].

In the natural cylindrical coordinate system, with the nor-
malized basis {e,.e,,e.}, we have v=ve,, and thus

0 dw O
’
(D)ey1 = 2 dow 0 dol|, w=vlr (20)
0 dow O

Z

Due to the symmetry of the problem, the surfaces of constant
angular velocity are identified as the SFSs. By choosing the
SFS basis

PHYSICAL REVIEW E 73, 031302 (2006)

— SFS

O R

FIG. 4. Forces acting on a small element of material sandwiched
between two shear-free sheets (indicated).

6= ——(G0e, + e, 1)
Vel o

we arrive at the right form of the strain-rate tensor (7), with
)’/=r|Yw|/ 2. Due to the complicated geometry we need to
work with the full momentum-continuity equations (12) in
order to proceed. We denote the derivative along the ¢é;:th
direction as d/dx":=¢é;-V. In Fig. 4 we have sketched a local
cuboidal element of material contained between two SFSs
and illustrate the forces a stress tensor of the form Eq. (10)
would give rise to.

We introduce the angle 6 as the angle that ¢; makes with
the 7 axis, k;=d6/dx" as the curvature of the integral curves
of ¢, (constant-w curves), and k;=d6/dx> as the curvature of
the integral curves of ¢5. Taking care of the fact that the SFS
basis forms the normalized basis vectors of a curved coordi-
nate system, and using the machinery of tensor algebra, we
can write Eq. (12) in the SFS basis as

!

dP , .
ot (P = P")(k3—sin 0/r) = - pg cos 0,
X

dr
] +(ky=2cos Olr)T=0,
-
dP
F+(P—P’)K1=—pg sin 6. (22)
by

In the modified Couette setup depicted in Fig. 1(c), we
only need to specify 6 to fix the SFS basis. Hence the rela-
tions between stress components and angles become of the
form

r=uw(O)P, P’ =v(f)P. (23)

The full equations (22) coupled to Eq. (23) are too com-
plicated for a full analytical treatment. We therefore will start
from the simple assumption that the normal stress ratio v is
equal to 1 (i.e., P'=P), and that w is constant, i.e., indepen-
dent of 6. Then we are left with the equations

dp

E:—pgcos 0,
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dP
— + (k=2 cos O/r)P =0,
dx

ar in 6 (24)

— =—pgsin 6.

P P8
The curvature 3 has dropped out, and the first and last equa-
tions can be integrated to give a hydrostatic pressure profile
P=pg(H-z). Upon substituting this into the second equation
we conclude that the curvature of the constant-w curves sat-
isfies,

2cos 6§ sin @
+—.
H-7

Ky = (25)

To connect this formalism to the actual shapes of the SFS, let
r(z) be the curves of constant w. Using that dr/dz=tan 6 it
follows that

r'(z) 1

O rer T i or
_ r”(Z)
- {1 +[rr(z)]2}3/2’

Hence using (25) and (26) we see that the curves of constant
angular velocity must satisfy

K (26)

ro=sren( 2+ 22)
r H-z
This is a second-order differential equation which can be
solved numerically when supplemented with two boundary
conditions. This turns out to be exactly the same differential
equation one arrives at through minimizing the functional

H
f[r(')]=f dz(H = )1+ [ (). (28)
0

As was shown by Unger and co-workers [24], this functional
can be seen to describe the torque needed to shear an ideal
cohesionless Coulomb material under hydrostatic pressure
which has its infinitesimal shear zone at r(z). Minimizing
this torque, a definite prediction for r(z) was obtained which
qualitatively captures the shear zone location as measured
experimentally. We refer to Refs. [19,20,24] for further dis-
cussion.

However, this approach cannot result in shear zones with
a width of the form seen in experiments, W(z)*z% with
0.2<a<0.5. To see this, one only has to consider the pro-
files close to the bottom. We now assume that a general level
curve has the form [37]

r1(z) = ro(z) + Az +hooot,, (29)

where r((z) is the center curve, and A some constant speci-
fying the specific level curve under consideration. Upon sub-
stituting this into Eq. (27), and considering the lowest order
in z, we conclude that « equals O or 1. This contradicts the
experimental findings.
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SFS, constant velocity surfaces

FIG. 5. Schematic cross section of the linear modified Couette
geometry with the expected form of the SFSs indicated.

From this we conclude that our assumptions that » and u
are constant are not consistent with the wide shear zones
observed in the modified Couette geometry.

This curved geometry is, however, too complicated to
study the precise role of more general v and w. We will
therefore turn our attention to the closely related linear split-
bottom shear cell, which can be obtained by letting the slit
radius diverge, and where the rotational symmetry in the e,
direction is replaced by a simpler translational symmetry.

2. Translation symmetry along the shearing direction

The scaling forms (19) relate the shear zones width W,
and location R, to the particle size a, height H, and radius of
curvature of the slit R,. Taking the limit R, — o enables us to
estimate what flow profiles can be expected in the linear
setup shown in Fig. 1(d), even though no experimental or
numerical data is available for such a system at present [38].
The width is independent of R, while the shift between R,
and R, should vanish in this limit. We therefore expect quali-
tatively the same widening of the shear zone as in the Cou-
ette geometry [Fig. 1(c)], with the shear zones center remain-
ing straight above the linear slit (consistent with the
reflection symmetry of such a linear geometry), as indicated
in Fig. 5.

The equations for linear momentum conservation simplify

to
dP' )
F+(p_p )K3=— pg cos 0,
X
e
§+K1T=O,
dp
F.,_(p_P’)Kl:—pgsin 6. (30)
X

Let us for the moment assume that u is a constant, and
test whether this assumption is consistent with the flow pro-
files sketched in Fig. 5. For constant-friction coefficient, the
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(@) (c)

dIlpP|L® dI‘,uPlLG)

®d$‘NP|R

® da' uPlg

(4

dz3P’| 7

\dxlpl 2
dx*dx3pg

FIG. 6. Illustration of the simple force balance arguments which
shows that a constant u is incompatible with an upward bending
edge of the shear zone. For details, see text.

dei P,

d171P|R

dx*dz3pg dzP

last two equations above can be combined to give
P’ Kk, =pg sin 6. (31)

For profiles that bend upward when going through the bulk
(see Fig. 5), k; and 6 are of opposite signs. Hence, to satisfy
Eq. (31), P’ has to be negative, which is impossible in co-
hesionless granular materials.

Thus we have two possible scenarios: If the effective fric-
tion coefficient is constant, then the system cannot support a
wide shear zone, and the shear must localize. Considering
that the cylindrical geometry exhibits a width of the shear
zone that is apparently independent of the position of the
bottom slit, it seems more likely, though, to have the upward
bending profiles also in the linear geometry. Hence, the ef-
fective friction coefficient must decrease as we move away
from the center, along the integral lines of e5. This is a strong
statement since it does not rely on assuming any specific
form for v, the ratio between the normal pressures: Even
with normal stress differences we cannot get a qualitatively
correct description assuming the effective-friction coefficient
to be constant throughout the bulk.

The same conclusion can be reached by considering force
balance on a cuboid element of material contained between
two SFSs as illustrated in Figs. 6(a) and 6(b), and employing
the special form of the stress tensor in the SFS basis (10). We
start from the fact that the total shear forces dx'dx’uP acting
on the left and right edges of the cuboid need to balance.
Now if w is a constant this implies that the normal forces on
left and right of the cuboid equal: dx'dx’P|,= dx'dx’P|g
[Fig. 6(a)]. The only additional forces acting on the cuboid
are gravity (dx'dx*dx’pg) and the normal forces on top and
bottom of the cuboid dx?dx*P’|; 5 [Fig. 6(b)]. Due to the
upward bending of the SFSs, the sum of these three terms
clearly has a substantial component towards the right—hence
it is impossible to balance forces in the e; direction in this
case. For “outward” bending SFS this problems does not
occur as illustrated in Figs. 6(c) and 6(d).

In our case, the only way to attain force balance is if the
normal force acting on the right face of the cuboid is larger
than the force acting from the left: dx'dx*P’'|,
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< dx'dx*P’|g. Since the shear forces still have to balance,
this is only possible when w is not a constant—in fact u has
to reach its maximum along vertical SFSs and then gradually
decrease as we move outward towards increasingly slanted
SESs (along the e; direction).

The next step is thus to include a 6 dependence in the
effective-friction coefficient and see if this is sufficient to be
able to obtain shear zones of finite width. For simplicity, we
keep v(f)=1. As before, two of the momentum continuity
equations can be solved and yield a hydrostatic pressure pro-
file, P=pg(H-z). The third momentum continuity equation
becomes

dinu(#) db sinéd
3 tToOT :
dx dx' H-z

(32)

To get an analytically tractable problem we now consider a
region close to the central level curve r(z)=0. Since odd
powers of 6 can be excluded due to the §— —6 symmetry, we
assume that we can expand the friction coefficient as

u(e)=uo(1—%q02)+0(a“). (33)

Sufficiently close to the central level curve 6 is small, and we
can, to lowest order, rewrite the derivatives d/dx!' and d/dx’
as 6d,+0d, and -4, respectively. Hence the momentum con-
servation equation (32) can be rewritten, to lowest order, as

a0 90 0
(I1+¢)0—+—_—=——+hot (34)
or oz -z
This differential equation can be solved by the method of
characteristics, resulting in
r/H

~ (1+¢)(1 - z/H)In(1 — z/H)

0(r,z) = +h.ot.  (35)
Close to the bottom where z/H<<1, we expect the constant-
w lines to satisfy r(z)ocz® with an exponent a somewhere
between 0.2 and 0.5 [19]. In this limit, (35) can be integrated
using the fact that for any level curve we have r'(z)
=tan 6[r(z),z]. This results in

1/(1+q)

r(z) =z , ZH,0<1. (36)

The result of numerically integrating the full form given in
Eq. (35) is shown in Fig. 7. The only sensible profiles are
achieved for ¢ >0. This is in agreement with the arguments
sketched in Fig. 7, indicating that upward bending constant-
o lines are possible only if u decreases with increasing |6].
Hence, the highest effective-friction coefficient is achieved
when the direction of gravity lies in the tangent plane of the
shearing surfaces [39].

IV. DISCUSSION AND CONCLUSION

To address the question of whether continuum models can
be made consistent with experimental and numerical obser-
vations of wide shear zones in slow granular flows, we have
made a number of assumptions, which we will briefly reca-
pitulate here. Trivially, we assume that the flow profile is
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0.2

r/H

0.0
0.0 04  H 0.8

FIG. 7. Plots of the constant-w lines as calculated numerically in
the small € approximations (33) for g=1.5, giving an exponent «
=1/(14+¢)=0.4 close to the bottom. The inserted graph depicts the
same curves on a log-log scale, and with the 0.4 power indicated by
the dashed line.

smooth on a coarse-grained scale. Furthermore we assume
local action (see Sec. II) and material objectivity (see Sec.
1), and focus on steady states for which the shearing direc-
tion is a symmetry direction of the system—this washes out
memory effects (see Sec. II). The considered flows are suf-
ficiently symmetric, and time independent, so that they can
be described by time-independent shear-free sheets. All these
assumptions appear rather inconspicuous.

But there are a number of less obvious assumptions which
deserve more attention, and for which a numerical test would
be extremely useful. The first of these is the absence of elas-
tic shear stresses in the flowing zone, due to rapid (on a
macroscopic time scale) relaxation of force fluctuations (see
Sec. I C). Clearly, in a large system, far away from the shear
zone, elastic stresses should play a role, but here we only
consider the actual flowing region. It is an open question
when and where such elastic stresses start to play a role.
Second, we assume that the packing fraction is constant
throughout the flowing region. Recent magnetic resonance
imaging (MRI) measurements of the packing density suggest
an approximately constant dilated region in the flowing zone
[40]. Nevertheless, far away from the shear zone the density
is observed to be different from this region. Finally we have
excluded a possible dependence of the effective-friction co-
efficient on the pressure ratio, v, within the SFS (see Sec.
ITE). This assumption lacks a strong physical argument but
is made to keep the problem tractable, and should be an
important issue to check numerically.

Using the assumptions recapitulated above, our method is
based on separating out those parameters of the strain-rate
tensor that are explicitly rate dependent. This enables us to
build a explicitly rate-independent theory, and we have
shown that it is able to predict some of the features of the
stresses seen in numerical simulations of the inclined plane
geometry, as well as capturing the widening of the shear
zone in the modified Couette geometry.

Through the introduction of shear-free sheets we have
also clarified when a direct interpretation along the lines of
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solid friction can be made, and further indicated how far
such an analogy can be stretched. Due to that the flow could
be considered as consisting of SFSs, no special assumptions
had to be made regarding the effect of a variation in the
principal-strain rate ratios throughout the sample. It was fur-
ther shown that in order to account for the expected shape of
the shear zones, the proportionality constants between the
different pressures (e.g., the effective-friction coefficient)
must retain a dependence on the local orientation of the flow
(i.e., the orientation of the principal-strain basis) relative to
the local body force—the only other probable alternative is
that the shear zone is not wide. We speculate that the origin
of such angle dependence is due to the competition between
the organizational tendencies of the flow and the gravita-
tional pull. The flow tends to increase the number of grain
contacts in compressional directions, while decreasing the
number in expanding directions. At the same time, the gravi-
tational pull leads to an increased number of vertical, op-
posed to horizontal, connections (rattlers always fall down).
Unfortunately, however, not enough is known about such
angle dependence of the contact network in order to confirm
our speculations. We suggest that this angle dependence as
an important issue for future research.

Due to the explicit rate independence of the approach, it
cannot give the complete velocity profile. In order to deter-
mine the complete profile one needs to include the subdomi-
nant rate dependence in the stress tensor. This is straightfor-
ward for some simple geometries and should be possible in
general. Unfortunately it turns out to be nontrivial even for
the relatively simple modified Couette geometry.

Nevertheless, the intriguing fact that the experimental
shear profiles in this geometry fitted an error function so well
provides an important benchmark for understanding quasi-
static flow. As we have discussed in Sec. III B 2, a linear
version of this experiment may provide important additional
information.

The present approach poses a set of well-defined ques-
tions regarding the packing fraction in the shear zone, the
linear relationship between pressures, the simple form of the
stress tensor in the SFS basis, and the dependence of the
proportionality stress ratios u and v, on the orientation of the
shear planes with respect to gravity. These are simple basic
issues which are open to investigation by numerical simula-
tions, and possibly even by experiments. Clarifying these
issues appears crucial for further development of a theory
along these lines.
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