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Chapter 10

ENTANGLEMENT PRODUCTION
IN A CHAOTIC QUANTUM DOT

C.W.J. Beenakker, M. Kindermann
Instituut-Loientz, Umversiteit Leiden PO Box 9506 2300 RA Leiden The Netherlands

CM. Marcus, A. Yacoby*
Department ofPhysics, Harvaid Umversity, Cambudge, MA 02138, USA

Abstract It has lecently been shown theoietically that elastic scattenng in the Fermi sea
pioduces quantum mechanically entangled states The mechamsm is similai to
entanglement by a beam sphttei in optics, but a key distmction is that the electromc
mechamsm woiks even if the somce is m local theimal equilibimm An expeii-
mental leahzation was pioposed usmg tunnelmg between two edge channels in
a stiong magnetic field Heie we investigate a low magnetic iield alternative,
usmg multiple scattenng in a quantum dot Two pairs of smgle-channel pomt
contacts define a pau of qubits If the scattenng is chaotic, a umveisal statistical
descnption of the entanglement production (quantified by the concurrence) is
possible The mean concunence tuins out to be almost mdependent on whethei
time leveisal symmetry is bioken 01 not We show how the concunence can
be extracted fiom a Bell inequahty usmg low-frequency noise measurements,
without requmng the tunnelmg assumption of earhei woik

Keywords: entanglement, Bell inequahty, quantum chaos, quantum dot

1. Introduction
The usual methods for entanglement production rely on mteractions be-

tween the particles and the resultmg nonlinearities of their dynamics. A text
book example fiom optics is parametnc down-conversion, which produces a

* Visitmg fiom Department oi Condensed Mattei Physics, Weizmann Institute oi Science Rehovot 76100,
Isiael

167

/ V Leiner et al (eds ), Fundamental Ptoblems ofMesoscopic Physics, 167-177
© 2004 Kluwer Academic Publifhei s Pnnted in the Netheilands



168 FUNDAMENTAL PROBLEMS OF MESOSCOPIC PHYSICS

polarization-entangled Bell pair at frequency ω out of a single photon at fre-
quency 2ω [1]. In Condensed matter the schemes proposed to entangle electrons
make use of the Coulomb interaction or the superconducting pairing interaction
[2].

Photons can be entangled by means of linear optics, using a beam Splitter, but
not if the photon source is in a state of thermal equilibrium [3-5]. Remarkably
enough, this optical "no-go theorem" does not carry over to electrons: It was
discovered recently [6] that single-particle elastic scattering can create entan-
glement in an electron reservoir even if it is in local thermal equilibrium. The
existence of a Fermi sea permits for electrons what is disallowed for photons.
The possibility to entangle electrons without interactions opens up a ränge of
applications in solid-state quantum information processing [7-10].

Any two-channel conductor containing a localized scatterer can be used to
entangle the outgoing states to the left and right of the scatterer. The particular
implementation described in Ref. [6] uses tunneling between edge channels in
the integer quantum Hall effect. In this contribution we analyze an alternative
implementation, using scattering between point contacts in a quantum dot.
We then need to go beyond the tunneling assumption of Ref. [6], since the
transmission eigenvalues Τι,Τζ through the quantum dot need not be ^C 1.

The multiple scattering in the quantum dot allows for a statistical treatment of
the entanglement production, using the methods of quantum chaos and random-
matrix theory [11-13]. The interplay of quantum chaos and quantum entan-
glement has been studied extensively in recent years [14-20], in the context
of entanglement production by interactions. The interaction-free mechanism
studied here is a new development.

The geometry considered is shown in Fig. 10. l. A quantum dot is connected
at the left and at the right to an electron reservoir. The connection is via point
contacts connected to single-channel leads. (Spin degeneracy of the channels
is disregarded for simplicity.) There are two leads at the left (Ll, L2) and two
leads at the right (Rl, R2). A current is passed through the quantum dot in
response to a voltage difference V between the two reservoir s. We consider the
entanglement between the left and right channels in the energy ränge eV above
the Fermi energy Ep.

The degree of entanglement is measured through the violation of a Bell
inequality [21] for correlators of current fluctuations [22, 23]. Violation of the
Bell inequality requires mixing of the two outgoing channels at each end of the
quantum dot (described by 2 χ 2 unitary matrices U L and U R). In order not
to modify the degree of entanglement, this inter-channel scattering should be
local, meaning that it should not lead to backscattering into the quantum dot.1

This might be done by making the barrier that separates lead L l from L2 (and
Rl from R2) partially transparent and tunable by a gate [23] (cf. Fig. 10.1,
shaded rectangles).
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Figure 10 l Sketch of the quantum dot entanglei descnbed m the text An electron leavmg

the quantum dot at the left or right repiesents a qubit, because it can be m one of two states· it is

either m the upper channel (L1,R1) 01 m the lower channel (L2,R2). An example of a maximally

entangled Bell pau is the superposition (|L1, Rl) + |L2, R2))/\/2.

2. Relation between entanglement and transmission
eigenvalues

The incoming state,

Π αL,l"X,2l (10.1)
Er<£<Er+eV

factorizes into two occupied channels at the left and two empty channels at

the right, so it is not entangled. Here aL 4(ε) is the creation operator for an

incoming excitation at energy ε in channel ι at the left and |0) represents the
Fermi sea at zero temperature (all states below Ep filled, all states above Ep

empty). There is a corresponding set of creation operators a^R τ at the right. We

collect the creation operators in a vector α t = (at ,, at 0, at, -,, at, 0). With
A ^ i/, -L ' .L/,Ζ ' -ΓΪ , λ. ' ί\,.Ζ, '

this notation we can write the incoming state in the form

|φιη) = α1" ·σ •at 0), σ =
(ί/2)σν Ο

Ο Ο
(10.2)

where the product over energies is implicit.
Multiple scattering in the quantum dot entangles the outgoing state in the

two left channels with that in the two right channels. The vector of creation
operators tf for outgoing states is related to that of the incoming states by a
unitary 4 x 4 scattering matrix: b~S-a^b^-S = a[. Therefore the outgoing
state has the form

(10.3)
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There are two methods to quantity the degree of entanglement of the outgoing
state:

A. One can use the entanglement of formation f of the füll state |Φ01ιΐ}·
The entanglement of formation of a pure state is defined by [24]

^ = -TrL/9LlogpL, pL-Tr-ß|*out)(*out|, (10.4)

with Tr£, or Tr/j the trace over the degrees of freedom at the left or
right. (The logarithm has base 2.) The entanglement of formation of the
outgoing state is given in terms of the transmission eigenvalues by [6]

+ (l - ̂  - T2) log(l - Ti)(l - T2)]. (10.5)

For TI = T2 = 1/2 the rate of entanglement production is maximal,
equal to 2eV/h (bits per second).

B. Alternatively, one can project |\EOut) onto a state |Φόυί) with a single
excitation at the left and at the right, and use the concurrence C of this
pair of qubits äs the measure of entanglement. The (normalized) projected
state is

with number operator ηχ^ = bx tbx % (for X — L, R). The concurrence
[25] is a dimensionless number between 0 (no entanglement) and l (a
fully entangled Bell pair).2 The transmission formula for the concurrence
is[6]

2[Γ1(1-Γ1)Γ2(1-Τ2)]1/2

Τι + T2 - 2ϊιΤ2 ' ^ ' ;

Füll entanglement is reached when T\ = T2, regardless of the value of
the transmission.

Notice that in both methods A and B the degree of entanglement depends
only on the transmission eigenvalues TI, T2, and not on the eigenvectors of the
transmission matrix. Eqs. (10.6) and (10.7) hold irrespective of whether time-
reversal symmetry (TRS) is broken by a magnetic field or not. In Ref. [6] the
expressions were simplified by specializing to the tunneling regime TI , T2 <C 1.
Here we will not make this tunneling assumption.

In what follows we will concentrate on the concurrence C of the projected
state |Φόιιί)> smce tnat is the quantity which is measured by correlating current
fluctuations. The entanglement of formation T of the füll state |Φ0υί) contains
also contributions involving a different number of excitations at the left and at
the right. Such contributions are not measurable with detectors that conserve
particle number [26].
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3. Statistics of the concurrence

The statistics of C is determined by the statistics of the transmission eigenval-
ues. For chaotic scattering their distribution is given by random-matrix theory
[H],

P(Ti,T2) = cß\Ti - Tsl^TiTa)-1^/2, (10.8)

with normalization constants ci = 3/4, ci = 6. We obtain the following values
for the mean and variance of the concurrence in the case β = l (preserved TRS)
and β = 2 (broken TRS):

0.3863 if ß = l,
0.3875 if β = 2,

°·0782 if ß = *' (10 10)
0.0565 if β = 2. ( }

The effect of broken TRS on the average concurrence is unusually small,
less than 1%. In contrast, the conductance G = (e2//i)Triit oc TI + T2

increases by 25% upon breaking TRS. The main effect of breaking TRS is to
reduce the sample-to-sample fluctuations in the concurrence, by about 15% in
the root-mean-square value.

4. Relation between Bell parameter and concurrence

The Bell parameter 8 is defined by [22, 23]

B = max [E(UL, UR] + E(U'L, UR) + E(UL, U'R) - E(U'L, U'R}] ,
(10.11)

where the maximization is over the 2 x 2 unitary matrices UL, U R, C/£, U'R that
mix the channels at the left and right end of the System. For given UL, UR the
correlator E has the expression

p= , , , , n

· ^ · )

Here δίχ,,ί = IL,I — (lL,i) is the low-frequency current fluctuation in the out-
going channel i at the left3 and &IRJ is the same quantity for outgoing channel
j at the right. The average {· · · ) in this equation is over a long detection time
for a fixed sample. (We will consider ensemble averages later.)

In the tunneling regime Τι,Τ-2 <C l there is a one-to-one relation £ —
2 V l + C2 between the Bell parameter 8 and the concurrence C. Here we can
not make the tunneling assumption. The Bell parameter (10.11) can then be
larger than expected from the concurrence. The relation is [6]

S = 2 V l + /i2C2, (10.13)

<ιαι4)
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The amplification factor κ > l approaches unity if either TI PS T2 or TI , T2 <C
1.

Since £ gives the amplified concurrence κ€ rather than the bare concurrence
C, it is of interest to compare the moments of κ€ with those of C. By averaging
with distribution (10.8) we find the mean and variance in a chaotic quantum
dot:

_ Γ 0.7247 if ß = l,
(KC} ~ 0.8393 if 0 = 2, (1°-15)

if ß = l j f lO 16Ϊ.f ^ = 2 (10.16)

The amplification by κ amounts to about a factor of two on average.

5. Relation between noise correlator and concurrence

For a different perspective on the relation between noise and entanglement,
we write the correlator (10.12) of current fluctuations in a form that exposes
the contribution from the concurrence.

Low-frequency correlators can be calculated with the help of the formula
[27]

lim (δΐ^(ω)δΐ^(ω')) = -(6

3ν/1ι)2πδ(ω + a/)|(ri%f. (10.17)
ω,ω'—+0

The reflection and transmission matrices r, t are to be evaluated at the Fermi
energy. We decompose these matrices in eigenvectors and eigenvalues,

Ο λ ττ . ττ ί VT\ Ο λ ττ

Γ =- Ν7ο, t = UR

 v =- [/ο,
υ νJ- — ̂ 2 V υ

(10.18)
with 2 x 2 unitary matrices UL, U R, UQ. The matrix r contains the reflection
amplitudes from left to left and the matrix t contains the transmission amplitudes
from left to right.4

Substitution into Eq. (10.12) gives

E = (1-2\UL,U

 2)(l~2|[/Ä,11|
2)+4/iCRe[7L!ll[/^11?7£)12^12. (10.19)

We see that the entire dependence of the correlator E on the transmission
eigenvalues is through the product nC of concurrence and amplification factor.
This is the same quantity that enters in the Bell parameter (10.13). The correlator
E is less useful for the detection of entanglement than the Bell parameter £ ,
because it depends also on the matrices of eigenvectors UL, UR — which the
Bell parameter does not.

In a chaotic quantum dot the two matrices UL and UR are independently
distributed in the circular unitary ensemble (a socalled "isotropic" distribu-
tion [11]). Averages over these matrices can be done conveniently in the
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Figure 10 2. The quantum dot of Fig. 10.1 has been replaced by a disordered wire (dotted
rectangle). Although the distribution of transmission eigenvalues is different, the relation (10.23)
between noise correlator and concurrence still applies. This relation only relies on the isotropy
of the eigenvector distribution.

parametrization

U -(·U - 6

7 £ ( 0 , τ τ / 2 ) , α,^,ν>6(0,2π). (10.21)

The Isotropie distribution implies that all four angles 7, α, φ, ψ are independent.
The distribution of a, φ, ψ is uniform while the distribution of 7 is P (7) oc
sin 27.

With this parametrization Eq. (10.19) takes the form

E = α382Ύι^82ΎΗ + κθ8ίτι2ΎΣ,5ίΐί2Ίη£θ3(Φι,~-'Ψι^ — φΗ + ψρι)· (10.22)

Upon averaging over the angles we find

0, (E2) = + (K

2C2). (10.23)

The significance of this equation is that it applies generally to 2 χ 2 transmission
matrices with an isotropic distribution of eigenvectors, even if the distribution
of eigenvalues differs from Eq. (10.8). For example, it applies to the disordered
conductor shown in Fig. 10.2.

6. Bell inequality without tunneling assumption

The Bell parameter E is no longer directly related to the concurrence C if
the transmission probabilities are not small compared to unity [6] : The rela-
tion (10.13) between £ and C contains a spurious amplification factor κ > l,
which approaches unity in the tunneling regime. The same amplification factor
appears in the correlator (10.19). In this section we show how one can avoid
the amplification factor, by calculating the violation of the Bell inequality with-
out making the tunneling assumption. The same problem was studied, from a
different perspective, in Ref. [9].
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As described in Ref. [22], the Bell inequality is formulated in terms of the
correlator K%J of the number of outgoing electrons detected in a time r in
channel i at the left and channel j at the right:

Kt3 = r~2 Γ dt Γ dt' {/Li, (t)/ß,, (t'))
Jo Jo

du ^α>). (10.24)

Here CV, (ω) is the frequency dependent correlator of current fluctuations,

/

oo
ώβ*ω£{5/^(ί)<5/^(0)}. (10.25)

•oo

In the tunneling limit it is possible to neglect the product of averages (!L,I) (!RJ )
and retain only the second term in Eq. (10.24), proportional to the current
correlator Cv . Both terms are needed if one is not in the tunneling limit.

We assume that V is small enough that the energy dependence of the scat-
tering matrix may be neglected in the ränge (Ep, E p + eV}. (That requires
eV small compared to the mean level spacing of the quantum dot.) Then the
frequency dependence of (7y (ω) is given simply by5

\ if \hw/eV\<l,
jf

For short detection times τ <C h/eV one may take the limit

Γ00 , 2sin2(W/2l , , Γ°° dw , N eV

In view of Eq. (10.17), the zero-frequency limit of the current correlator
(10.25) is given by

Cl3(0) = -(e3V/h)\(rJ)tJ\
2. (10.28)

The mean outgoing currents are given by (/L,I) = (e2V//i)(rr^)M and (/κ,7) =
(e2F//i)(i^)JJ. Substitution into Eq. (10.24) gives the short-detection-time
limit

= (eV//i)2[(rrt) l t(iit)w-|(rit)„|2]. (10.29)

We now define the correlator E in terms of the short-time KtJ,

(10.30)
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Notice that this definition of E corresponds to definition (10. 12) of E if K^ is
replaced by C^(0). Substitution of Eq. (10.29) leads to

E = -(l- 2\UL,n
(10.31)

where we have used the parametrization (10.18). Apart from an overall mi-
nus sign, Eq. (10.31) is the same äs Eq. (10.19) — but without the factor κ
multiplying the concurrence.

The maximal violation £ of the Bell inequality is defmed in the same way äs
in Eq. (10.1 1), with E replaced by E. The result

E = 2^1 + C2 (10.32)

is the same äs Eq. (10.13) — but now without the factor κ.
Since short-time detection experiments are very difficult in the solid state,

the usefulness of Eq. (10.32) is that it allows one to determine the concurrence
using only low-frequency measurements. It generalizes the result of Ref. [23]
to Systems that are not in the tunneling regime and solves a problem posed in
Ref. [6] (footnote 24).

7. Conclusion

We have investigated theoretically the production and detection of entangle-
ment by single-electron chaotic scattering. Much is similar to the tunneling
regime studied earlier [6], but there are some interesting new aspects:

• The degree of entanglement, quantified by the concurrence C, is sam-
ple specific. The sample-to-sample fluctuations become smaller if time-
reversal symmetry is broken, while the average concurrence is almost
unchanged.

• The low-frequency current correlator CV, and the Bell parameter S con-
structed from it give the concurrence times an amplification factor κ. In
the tunneling regime κ — > 1. One also has κ = l if the two transmission
eigenvalues T\ , T^ are equal. The factor κ can become arbitrarily large if
TI — > l and T^ — » 0 (or vice versa). On average, the amplification factor
in an ensemble of chaotic quantum dots is about a factor of two.

• The bare concurrence, without the amplification factor, is obtained by
adding to the low-frequency current correlator the product of average
currents times h/eV.

• The concurrence gives the maximal violation of the Bell inequality for
detection times τ short compared to the coherence time h/eV . In Ref.
[22] the opposite limit τ ^> h/eV was taken, which is appropriate in the
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tunneling regime, but does not allow to violate the Bell inequality outside
ofthat regime. A similar conclusion was reached in Ref. [9].

From an experimental point of view, the missing building block in Fig. 10. l
is the local mixer at the left and right end of the quantum dot. These mixers
are needed to isolate the contribution to the noise correlator that is due to the
concurrence. Inoptics, a simple rotation of thepolarizersuffices. The electronic
analogue is a major challenge.
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Notes
1 The mixers have no effect on the mcommg state, because both incommg channels are either filled or

empty at any given energy
2 The concurrence C of the qubit pair is related to the entanglement of formation T' of the projected

state \Ψ'0111} byF' = -xlogx - (l - x) log(l - x) withx = \ + ±Vl - C2

3 The total current m channel ι at the left (mcommg minus outgomg) is e2V/h — IL,I

4 In the presence of TRS one has UQ = Uf, but this consüamt is irrelevant because anyway UQ drops
outofEq (1017)

5 The cross-correlator C,, (ω) vamshes for \Ηω\ > eV because we are correlatmg only the outgomg
currents, the correlator of mcommg plus outgomg currents contams also a voltage-mdependent term oc | FILJ\,
cf Ref [28]
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