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1. Introduction

Anyone working with predictive models knows the 

slightly uneasy feeling that comes with looking at 

the brightly or pastel-coloured zones where the 

probability of encountering archaeological remains 

is considered to be ‘high’, ‘medium’ or ‘low’. How 

can we be so sure that the low probability zones are 

really not interesting? And where do we draw the line 

between interesting and not interesting? 

Concern over whether predictions can hold 

in the face of elusive social behaviour, complex 

geomorphological processes, research biases and 

data quality has created a painful awareness of the 

many sources of uncertainty inherent in the models. 

While we can use the available archaeological data 

to draw boundaries between high, medium and 

low probability, this does not tell us whether the 

predictions are reliable, as long as we can’t specify 

the bias and error in the data set used. And even if we 

rely on expert judgement for ‘correcting’ or adjusting 

predictions, we can expect experts to be uncertain as 

well, and to disagree among themselves.

Within the research project ‘Strategic research 

into, and development of best practice for, predictive 

modelling on behalf of Dutch cultural resource 

management’ (van Leusen and Kamermans 2005) we 

have investigated what methods are best suited for 

dealing with uncertainty in predictive modelling. For 

this, we have looked into two relatively new methods 

for developing predictive models, Bayesian inference 

and Dempster-Shafer theory. The study region 

chosen was the Rijssen-Wierden area (Fig. 1), where 

one of the fi rst predictive models in the Netherlands 

was made (Ankum and Groenewoudt 1990). A more 

detailed account of the case study will be published in 

van Leusen et al. (2009).
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2. Bayesian inference

2.1. Introduction

Bayesian inference differs from classical statistics 

in allowing the explicit incorporation of subjective 

prior beliefs into statistical analysis (see e.g. Buck 

et al. 1996). This makes it an interesting method for 

predictive modelling using expert (prior) opinions. A 

Bayesian statistical analysis produces an assessment 

of the uncertainty of the calculated probabilities 

in the form of standard deviations and credibility 

intervals. It also provides a simple framework for 

incorpor at ing new data into the model. Bayesian 

inference, while conceptually straightforward, 

has only observed widespread application after 

the advent of powerful computing methods. In 

archaeology, Bayesian inference is predominantly 

used in 14C-dating for cali bration purposes. In 

predictive modelling, the number of published appli-

cations is limited to two case 

studies (van Dalen 1999; Verhagen 

2006). In addition two other 

papers (Orton 2000; Nicholson et 

al. 2000) consider survey sampling 

strategies and the probability that 

archaeological sites are missed 

in a survey project, given prior 

knowledge of site density, such as 

might be gained from a Bayesian 

predictive model.

Fig. 1. Location of the Rijssen-Wierden study 

area in the Netherlands.

2.2. Application

A Bayesian model was produced for settlement in the 

study area, showing how conditional probabilities 

combine with observations to yield posterior prob-

abilities, with an associated measure of uncertainty. 

To obtain prior probabilities, the experts were asked 

to rate each of the six ‘environmental factors’ used in 

the 1990 model for their relative odds of containing 

archaeological sites.

Expert 2’s odds with regard to the factor soil 

texture are given in Table 1. These relative odds 

are converted into absolute probabilities (‘prior 

proportions’), summing to 1. Since the expert supplied 

information on all possible combinations of texture 

classes, we can make four separate calculations of 

these prior proportions (the four rows in the right-

hand part of the table), which do not necessarily 

agree. According to the expert, texture class 2 should 

attract between 17 and 53% of the sites, with a mean 

of 29% and a coeffi cient of variance of 56%. In other 

words, this expert is rather uncertain about some 

of the odds. The calculated mean provides our best 

estimate of his true position.

Identical calculations were made for each of 

the six factors, and for each expert separately. This 

information was combined to arrive at an assessment 

of the mean expert opinion and its variance, and the 

consequent ‘data equivalent’. This expresses our 

reliance on the experts’ opinions in terms of the 

number of actual site observations that would be 

needed to provide the same amount of information 

about site distributions.

Table 2 contains the three experts’ prior pro-

portions for the factor soil texture, with the corres-

ponding means and standard deviations. The experts 

are in general agreement about the proportion of 

sites to be found in each of the soil texture classes, 

if these were equally represented in the study 

0 1 2 3 0 1 2 3 sum

0 1 0,5 0,25 0,1 0,059 0,118 0,235 0,588 1

1 2 1 0,25 0,5 0,067 0,133 0,533 0,267 1

2 4 4 1 0,33 0,056 0,056 0,222 0,667 1

3 10 2 3 1 0,052 0,259 0,172 0,517 1

MEAN 0,058 0,141 0,291 0,510 1

CV % 10,9% 60,2% 56,4% 34,0%

Table 1. Expert 2’s assessment of relative odds for the factor ‘soil texture’ (left), 

converted into probabilities (right), with means and variances (bottom). 

CV = coeffi cient of variance.
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area. From this, Dirichlet prior vectors and data 

equivalents need to be calculated to arrive at the fi nal 

probability calculations (the Dirichlet-distribution 

is the conjugate distribution of the multinomial 

distribution, and the appropriate statistical model 

for dealing with categorical data like soil classes). 

Various approaches can be used for this (Table 3, 

methods A–C). In method A each expert is assumed 

to be worth one observation, and their combined 

data equivalent is 3. However, a better approach is to 

fi nd the data equivalent that gives the same standard 

deviations as the experts’ priors, and this is done 

using methods B1 and B2. Where the experts agree 

(that is, the standard deviation of their opinions 

is low) a high data equivalent results; where they 

disagree a low one results. This is desirable, since 

we do not value highly the opinion of experts who 

disagree among themselves, whereas we place more 

trust in experts who fi nd themselves in agreement. 

The value α
0
 is the apparent data equivalent derived 

from the mean and standard deviation of the experts’ 

opinions for each class. Method B1 uses the mean of 

these α
0
 values to arrive at the data equivalent for the 

factor, whilst method B2 takes a more conservative 

approach and uses the minimum of the α
0
 values. 

So, for the factor soil texture, the experts’ priors are 

calculated to be worth 17 (method B2) or 39 (method 

B1) observations. We chose to use a data equivalent of 

30, as a round fi gure close to the mean conservative 

value and typical of the range of values obtained.

This also means that, since we used 80 actual sites 

for the case study, the experts’ opinion represents 

about a quarter of the weight (30 out of 110) for the 

fi nal prediction.

Using this calculated ‘weight of expert opinion’, 

shown as method C in Table 3, the relative prob abil-

ity of fi nding a site in each of the six ‘environmental 

factors’ was calculated (Fig. 2). This map summarises 

the experts’ views on the relative density of sites in the 

landscape. When this is confronted with predictions 

based on site observations, a number of discrepancies 

are revealed. We can observe areas where sites are 

present despite their predicted absence, and areas 

where sites are absent despite their predicted high 

density. This is partly as it should be: site discovery 

is infl uenced by visibility factors and construction 

work, so areas with a high site potential that have 

not been available for research will not have any site 

observations. Conversely, if a high proportion of sites 

is found in areas where experts predict they should 

not be, this must be taken as an indication that either 

the experts or the base maps, or both, are wrong.

When we now add the site data to the experts’ 

prior predictions, and re-run the model, the posterior 

densities result (Fig. 3). The differences between the 

prior and posterior densities are shown in Fig. 4. 

Incorporating the data has increased the predicted 

site probability for most of the blue areas in Fig. 2 

(turning them yellow in Fig. 3), and generalized 

somewhat the predictions of zones of relatively high 

site density (red colours).

The case study demonstrates how quantitative 

predictive models can be generated on the basis of 

expert opinion alone, and how a mechanism exists 

that adapts these models whenever new data become 

available. Moreover, this approach allows one to 

manipulate the weight of expert opinion as opposed 

to the data: in cases where we have poor data but 

experts we trust, we can assign a high weight to 

experts’ opinions; in cases where we have good data 

but little expertise we can assign a low weight. Happily, 

we do not need to be completely subjective in our 

rating of the quality of our experts: the variation in 

the expert’s opinions itself provides a measurement 

of uncertainty, which can also be expressed as a map 

(Fig. 5). After again including the observed sites in 

the model, the uncertainties are shown to change 

(Fig. 6); the difference is depicted in Fig. 7.

0 1 2 3 sum

expert 1 0,027 0,051 0,217 0,704 1

expert 2 0,058 0,141 0,291 0,510 1

expert 3 0,150 0,050 0,30 0,500 1

MEAN 0,079 0,081 0,269 0,571 1

STDEV 0,064 0,052 0,046 0,115

Table 2. Experts’ prior proportions for the factor ‘soil 

texture’, with means and standard deviations.

0 1 2 3 data equivalent

method A 0,24 0,24 0,81 1,71 3.0

α
0

16,8 26,1 94,0 17,4

method B1 3,0 3,1 10,4 22,1 38,6

method B2 1,3 1,4 4,5 9,6 16,8

method C 2,4 2,4 8,1 17,1 30.0

Table 3. Calculation of the experts’ data equivalent, using 

Dirichlet prior vectors. Method A uses a prior “data 

equivalent” of 3; Method B1 uses the mean α
0
 from the 

variance of expert opinions; Method B2 uses the minimum 
α

0
 from the variance of expert opinions; and Method C uses 

a prior “data equivalent” of 30.
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3. Dempster-Shafer Theory

3.1. Introduction

The Dempster-Shafer Theory of evidence (DST) was 

developed by Dempster (1967) and Shafer (1976), and 

takes a somewhat different approach to statistical 

modelling. It uses the concept of belief, which is 

comparable to, but not the same as probability. Belief 

refers to the fact that we do not have to believe all 

the available evidence: we can make statements of 

uncertainty regarding our data. The specifi cation 

of uncertainty is crucial to the application of DST. 

Unlike Bayesian inference, DST does not work with 

Fig. 2. Relative site density according to experts’ prior 

probabilities. A cell with a value of 0.12 is twice as likely to 

contain a site as a cell with a value of 0.06.

Fig. 3. Posterior site densities after adding site observations 

to the model.

Fig. 4. The difference between fi gures 2 and 3. Predicted site 

densities have increased (brown) or decreased (green) when 

site observations were included into the model.

Fig. 5. Uncertainty in the relative densities of sites as 

modelled by the experts; pink indicates areas of greatest 

uncertainty. These correspond to the areas of highest 

density in Fig. 2.
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an explicit formulation of prior knowledge. Rather, 

it takes the existing data set and evaluates it for 

its ‘weight of evidence’. The reasons for believing 

the evidence or not may be of a statistical nature 

(a lack of signifi cance of the observed patterns, for 

example), or they may be based on expert judgement 

(like knowing from experience that forested areas 

have not been surveyed in the past). DST modelling 

offers a framework to incorporate these statements 

of uncertainty. It calculates a measure called 

plausibility, which is the probability that would be 

obtained if we trust all our evidence. The difference 

between plausibility and belief is called the belief 

interval, and shows us the uncertainties in the model. 

Finally, the weight of confl ict map identifi es places 

where evidences contradict. Different beliefs for 

different parameters can easily be combined using 

Dempsters’ rule of combination.

DST modelling is incorporated in Idrisi and 

GRASS GIS, and is used for a number of GIS 

applications outside archaeology. In archaeological 

predictive modelling, it has been applied in case 

studies by Ejstrud (2003; 2005). It is better 

incorporated in GIS and predictive modelling than 

Bayesian inference. There are clear similarities 

between DST and (Bayesian) probability theory, as 

both provide an abstract framework for reasoning 

using uncertain information. The practical difference 

is that in a DST model belief values do not have to 

be proper mathematical probabilities, and much 

simpler quantifi cations, such as ratings, may also 

work (Lalmas 1997).

3.2. Application

In contrast to the Bayesian case study, the DST-

modelling did not use the ‘old’ environmental factors 

for building the model. The predictive model was built 

only from data that represents “basic measurements” 

(e.g. elevation, hydrology) or that has been derived 

automatically using formalized standard procedures 

(e.g. slope, aspect, visibility). Some of the original 

factor maps were produced using weighted overlays 

and classifi cations that are highly correlated with 

the base maps, and this may have introduced an 

unwanted overweight of certain variables. Because of 

this, the available “raw” sources of evidence were fi rst 

analysed for their signifi cance for site distribution, 

and only the most relevant ones selected for building 

the model.

In DST-modelling, the fi rst step to be taken 

then is the establishment of what is called the basic 

probability number (BPN) or probability mass of 

each class in a single map. The BPN expresses the 

strength of belief in the truth of a hypothesis for a 

single source of evidence. These BPNs are calculated 

for two different hypotheses, the {site} and {no site} 

hypothesis. A calculation of BPNs for all selected 

sources of evidence supplied ten different “belief maps” 

for the {site} and {no site} hypotheses respectively. It 

Fig. 6. Uncertainty in the relative densities of sites after the 

data is included.

Fig. 7. The difference between fi gures 5 and 6. Uncertainty 

has decreased in some areas (green) but increased in others 

(brown).
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is important to keep in mind that the belief outcomes 

for {site} are not necessarily the inverse of {no site}, 

as DST-modelling also includes a third hypothesis of 

uncertainty. If there is insuffi cient support for either 

the {site} or {no site} hypotheses, some of the basic 

probability mass of these hypotheses is transferred to 

the uncertainty or {site, no site} hypothesis. This was 

done in either one of the following cases:

The probability P that the observed difference in  –

proportion between sample (sites) and population 

(entire region) for an evidence category C could 

also be produced by chance is > 0. In this case, 

P is subtracted from the mass for either {site} 

or {no site} and transferred to the {site, no site} 

hypothesis for this particular category.

The chi-square test shows that the overall  –

frequencies of categories in the sample could also 

have been produced by chance with probability P. 

In this case, P is subtracted from the probabilities 

for either {site} or {no site} and transferred to the 

{site, no site} hypothesis for all categories.

One or more bias maps are supplied. These  –

specify the degree to which it is believed that 

observed differences are biased towards the {no 

site} hypothesis, for example when land use has 

infl uenced archaeological discovery rates. For 

each bias map, the following is done: (a) calculate 

the percentage of cells BP of each category C that 

are covered by a bias value larger than 0; (b) 

calculate the mean value BM of the bias in cells 

of category C. For each category C, BM * BP is 

subtracted from the mass assigned to {no site} 

and shifted to the {site, no site} hypothesis.

One or more attributes of the site vector point  –

map are specifi ed to represent the degree to 

which these points are biased towards the {site} 

hypothesis (e.g.: would the presence of a few 

ceramic sherds be counted as evidence for a site 

or not?). Calculations are similar to the previous 

situation. The more biased sites are present on a 

certain category of an evidence maps, the more 

mass will be subtracted from the {site} hypothesis 

and shifted to the {site, no site} hypothesis.

In summary, a high amount of basic probability 

mass is shifted to the uncertainty hypothesis for 

category C, if (a) many cells of category C fall into 

biased areas and (b) these cells have a high bias 

on average and/or many sites on category C are 

(strongly) biased. We can then simply combine 

any number of evidences and their belief mass 

distributions, including those parts assigned to 

individual uncertainty hypotheses (Figs 8 and 9).

Fig. 8. Map of belief in the {site}-hypothesis for Palaeolithic 
and Mesolithic sites. Principal lakes and rivers as well as 
positions of sites used in building the model are indicated 
as well.

Fig. 9. Map of belief in the {no site}-hypothesis for 
Palaeolithic and Mesolithic sites. Principal lakes and rivers 
as well as positions of sites used in building the model are 
indicated as well.



575

The bumpy road to incorporating uncertainty in predictive modelling

While the role of experts in setting up the model is 

restricted, they can play an important role in creating 

the bias maps. For example, a land use map could be 

rated by the archaeological experts involved for its 

contribution to survey bias. Obviously, agricultural 

land has a much higher probability of revealing 

archaeological sites during fi eld survey than forest or 

heather, but a statistical analysis of this effect would 

be very diffi cult (see also Verhagen 2007, 146–152). 

In this case, using expert ratings is an acceptable and 

much easier solution.

4. Conclusions

The results of the modelling exercises show that 

Bayesian inference and DST modelling are both 

capable of including and visualizing uncertainty in 

predictive modelling. Because the DST modelling in 

this case study used different environmental factors 

than the Bayesian modelling, we could not perform a 

direct comparison between the two. We can however 

assume that even with a comparable input, the results 

of the methods will be different, which brings with 

it the question what will be the best approach. The 

answer to that question should consider practical 

issues of versatility, robustness, computational 

performance and interpretability of model results 

more than mathematical accuracy, as the latter is 

adequate in both cases.

Given the preference of DST modelling for 

using existing data sets instead of formulating prior 

knowledge, we can assume that Bayesian modelling 

will be the most appropriate when few data are 

available. It will then show us where the experts 

are uncertain, and this could imply targeting those 

areas for future survey. Bayesian modelling however 

does not supply a clear mechanism for dealing with 

(supposedly) unreliable data, while the DST approach 

implements this by simply stating that these data can 

only partially be trusted, and hence will only have a 

limited effect on the modelling outcome.

Getting the required information for Bayesian 

modelling out of the experts can be somewhat of a 

struggle, as they are asked to quantify aspects which 

they are used to thinking about in qualitative mode. It 

should be stressed that the amount of disagreement 

displayed by multiple experts provides a relatively 

objective measure of uncertainty. This also introduces 

the question of the relative expertise of the experts, 

as we also need a mechanism to rate the accuracy of 

their opinions.

Predictive models should also be updatable with 

new factor maps, archaeological observations, and 

expertise. Additional archaeological observations 

in both approaches are simply used to update the 

model, but if a weight assigned by an expert changes, 

or a new type of expertise is added, then the whole 

model must be recalculated. Additional factor maps 

require new expertise to be generated, hence also 

lead to a full recalculation in both approaches. If 

factor maps are only changed (e.g. a fi ner resolution 

soil map becomes available), then the model can be 

simply updated.

For practical purposes, the results of the models 

will have to be translated into clear-cut zones. In a 

simple matrix (Fig. 10) the possible ‘states’ of the 

model can be shown, with 9 different combinations 

of predicted site density and uncertainty. For end 

users of the models, who have to decide on the 

associated policies, this means that the number of 

available choices increases from 3 to 9. A reduction 

to 4 categories might therefore be preferable, only 

distinguishing between high and low site density 

and uncertainty. After all, why do we still need the 

medium class? Usually, this is the zone where we 

‘park’ our uncertainties, so a binary model plus an 

uncertainty model should do the same trick. The end 

users then only need to specify how (un)certain they 

want the prediction to be.
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