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Reflection of light from a disordered medium backed by a phase-conjugating mirror
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This is a theoretical study of the mterplay of optical phase conjugation and multiple scattermg We calculate
the intensity of light reflected by a phase-conjugating mirror when it is placed behmd a disordered medium We
compare the results of a fully phase-coherent theory with those from the theory of radiative transfer Both
methods are equivalent if the dwell time rdwen of a photon in the disordered medium is much larger than the
inverse of the frequency shift 2Δω acquned at the phase conjugating mirror When T-dwe,iAwS l, m contrast,
phase coherence drastically affects the reflected intensity In particular, a mmimum in the dependence of the
reflectance on the disorder strength disappeais when Δω is reduced below l/rdwen The analogies and differ-
ences with Andreev reflection of electrons at the mterface between a normal metal and a superconductor are
discussed [810502947(97)06611-0]

PACS number(s) 42 65 Hw, 42 25 Bs, 42 68 Ay, 78 20 Ci

I. INTRODUCTION

Phase conjugation is the reversal of the sign of the phase
of a wave function A phase-conjugated wave retraces the
path of the original wave, thereby cancelmg all accumulated
phase shifts Phase conjugation was first discovered for elec-
tronic waves [1], and later for optical waves [2,3] For elec-
trons, phase conjugation takes place at the mterface between
a normal metal and a superconductor An electron at energy
E above the Fermi energy Er is reflected at the angle of
mcidence (retroreflected) äs a hole at energy E below EF, a
process known äs Andreev reflection [4] A phase-
conjugating mirroi for light consists of a cell contaimng a
liquid or crystal with a large nonlinear susceptibility,
pumped by two counterpropagating beams at frequency ω0

A wave mcident at frequency ω0 + Δ ω is then retroreflected
at frequency ω0— Δω, a process known äs iour-wave mixing
[5-7]

The mterplay of multiple scattermg by disorder and phase
conjugation has been studied extensively in the electromc
case, both expenmentally and theoretically (See Ref [8] for
a review) In the optical case the emphasis has been on
weakly disordered media, which do not strongly scatter the
waves [9] Complete wave-front reconstruction is possible
only if the distorted wave front remams approximately pla-
nar, smce perfect time reversal upon reflection holds only m
a narrow ränge of angles of mcidence for reahstic Systems
(For the hypothetical case of perfect time reversal at all
angles, see Ref [10]) McMichael, Ewbank, and Vachss [11]
measured the intensity of the reconstructed wave front for a
strongly mhomogeneous medium (small transmission prob-
abihty Γ0), and found that it was proportional to T2,—m
agreement with the theoretical prediction of Gu and Yeh
[12] If r0<tl, the intensity of the reconstructed wave is
much smaller than the total leflected intensity The total re-
flected intensity was not studied previously, perhaps because
it was believed that the diffusive Illumination resultmg from
a strongly mhomogeneous medium would render the effect
of phase conjugation msigmficant In this paper we show that
a strongly disordered medium backed by a phase-conjugating

mirror has unusual optical properties, different both from the
weakly disordered case and from the electiomc analog

We distinguish two regimes, dependmg on the relative
magnitude of the frequency shift 2Δω acquired at the phase-
conjugatmg mirror and the inverse of the dwell time Tdweu of
a photon m the disordered medium (For a medium of length
L and mean free path /, with light velocity c, one has
rdwell— L2/cl) In the coherent regime, Δω<^ l/rdweli, phase
conjugation leads to a constructive mterference of multiply
scattered light in the disordered medium In the mcoherent
regime, AwS>l/r d w e l l, mterference effects are insignificant
In both regimes we compute the reflectances R+ and R ,
defined äs the reflected power at frequency ω0 ± Δ ω divided
by the mcident power at frequency ω0 + Δ ω Α distmguish-
ing feature of the two regimes is that (in a certam parameter
ränge) the reflectance R _ decreases monotonically äs a func-
tion of L/l m the coherent regime, while in the mcoherent
regime it first decreases and then increases

The outline of this paper is äs follows After having for-
mulated the problem in See II, we discuss m See III its
solution usmg the Boltzmann equation, ignormg phase co-
herence This is the theory of radiative transfer [13,14] A
simple result is obtamed if we neglect angular correlations
between the scattermg m the disordered medium and at the
phase-conjugating mirror We compare this approximation
with an exact solution of the Boltzmann equation In See IV
the phase-coheient problem is addressed, analytically usmg
random-matnx theory, and numencally usmg the method of
lecursive Green functions Results of this section were
bnefly presented m Ref [15] We conclude m See V with a
companson with the electromc analog of this problem

II. FORMULATION OF THE PROBLEM

We study the system shown m Fig l It consists of a
disordered medium (length L, mean free path /), backed at
one end by a phase-conjugating mirror The other end is
illummated diffusively at frequency ω+ = ω0+Δω, where
ω0 is the pump frequency of the mirror We are mterested m
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FIG l Schematic drawmg of the disordered medium backed by
a phase conjugatmg mirror (PCM) Light mcident at frequency
ω0 + Δω is reflected at the two frequencies ω 0 ±Δω

the amount of hght reflected at frequency ω+ and
<u„ = W0 — Δω

Το reduce the problem to the scattermg of a scalar wave,
we choose a two-dimensional geometry The scatterers con-
sist of dielectnc rods in the z direction, randomly placed m
the x-y plane The electric field points m the z direction and
varies m the x-y plane only Two-dimensional scatterers are
somewhat artificial, but can be realized expenmentally [16]
We beheve that our results apply quahtatively to a three-
dimensional geometry äs well, because the landomization of
the polanzation by the disorder i enders the vector character
of the hght msignificant

The z component of the electric field at the frequencies
ω+ and ω_ is given by

(21)

The phase-conjugatmg mirror (at x = 0) couples the two fre-
quencies via the wave equation [5,17,18]

γ W o / - Γ ω0 \ε*_
(22)

The complex dimensionless couphng constant γ is zero for
x<0 and for x>Lc, with Lc the length of the nonlmear
medium forming the phase-conjugatmg mirror For
0<x<Lc it is proportional to the electric fields £,, £2 °f the
two pump beams and to the third-order nonlmear suscepti-
büity ^3
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FIG 2 Reflectance of the phase-coryugatmg rairror äs a func-
tion of the angle of incidence, computed from Eq (2 6) for two
choices of parameters

is a measure of the degeneracy of the mcident and the re-
flected wave, and can be chosen freely

In the absence of disorder, an incommg plane wave m the
direction (cos^>,sm</>) is retro-reflected m the direction
(-οο&φ, — 5ΐηφ), with a different frequency and amplitude
The scattermg matnx for retroreflection is given by [5,17-
20]

εΛΜ Ι °
8* \ια(φ)6>*

, (26a)

(26b)

(26c)

The crucial difference with Ref [10] is that the reflectance is
angle dependent and that the reflection matnx is non-
Hermitian This imphes that not all phases will be canceled
m the conjugation process In Fig 2 we have plotted the
reflectance a \ 2 äs a function of the angle of incidence φ for
a =17/4 and two values of £=075 and 09 The value
α=π/4 is chosen such that a=\ for normal incidence at
frequency WQ (i e, for </>=0, S=0) The two values of δ
have been chosen such that the angular average of the reflec-
tance,

(23)
ζε0

The Helmholtz operator 7i0 at frequency ω0 is given by

(24)

where s(x,y) is the relative dielectnc constant of the me-
dium We take ε = l except m the disordered region
— L<x<0, where ε= l + Se(x,y) The fluctuations δε lead
to scattermg with mean free path / We assume /c 0 /S>l,
where k0=WQ/c is the wave number of the hght (velocity
c) The vahdity of Eq (22) reqmres Δω/ω0<§1 and
| y\ = y0<g l The ratio of these two small parameteis

2Δω
(25)

A =
•π/2

(27)

is >1 for <?=075 and <1 for S=09 [The cos</> weight
factor in Eq (2 7) corresponds to diffusive Illumination ] In
most of the numencal examples throughout this paper we
will use these values of a and δ

III. PHASE-INCOHERENT SOLUTION

A. Radiative-transfer theory

Within the framework of radiative-transfer theory [13,14],
the staüonary distnbution Ι(χ,)>,φ)<χ\ε\2 of the hght inten-
sity, at frequency ω and wave vector (k cos</>,& sm</>), is gov-
erned by the ßoltzmann equation



4218 PAASSCHENS, de JONG, BROUWER, AND BEENAKKER 56

d
Hx

(3.1)

We neglect absorption and assume isotropic scattering in the
x-y plane, with mean free path /. The phase-conjugating mir-
ror couples the intensities 7± of light at the two frequencies
ω± = ω0±Δω. We assume that / is independent of fre-
quency. The symmetry of the System implies that
Ι(χ,γ,φ) — Ι(χ,\φ\). In this section we take <^ε[0,ττ]. For
each frequency the Boltzmann equation takes the form

(3.2a)

(3.2b)

θχ

l ξ™
/±0)=- αφ!±(χ,φ).

Equation (3.2) has to be supplemented by boundary con-
ditions at the two ends x=—L and χ = 0 of the disordered
medium. We consider a Situation that the System is illumi-
nated at x= — L with diffusive light at frequency ω+ , hence

for

) = 0 for

(3.3a)

(3.3b)

At χ = 0 the light is reflected by the phase-conjugating mir-
ror. The intensity is multiplied by

α(φ)\2 = (3.4)

according to Eq. (2.6). The reflection is accompanied by a
change in frequency ω±—>ω + , so that the boundary condi-
tion is

7±(0,<£) = α(φ)\2 Ι^(Ο,π-φ) for cos0<0. (3.5)

The flux j± associated with the intensity 7± is defmed by

·/;7± = αφ
o

(3.6)

and is independent of χ [ d j ± / d x = Q according to Eq. (3.2)].
The reflectance 7?_ is defmed äs the ratio of the outgoing
flux at frequency ω_ and the incoming flux at frequency

The total outgoing flux is ? + )70, where

(3.7)

(3.8)

is the ratio of the outgoing flux and the incoming flux at the
same frequency ω+ .

B. Neglect of angular correlations

A simple analytical treatment is possible if the angular
correlations between multiple reflections by the disorder and
the phase-conjugating mirror are neglected. Here we present
this simplified treatment, and in the next subsection we com-
pare with an exact numerical solution of the Boltzmann
equation.

We flrst consider the disordered region by itself. The
plane-wave transmission probability ί ( φ ) \ 2 is the ratio of
transmitted to incident flux when the incident light is a plane
wave in the direction (cos^,sin</>). The transmission prob-
ability T for diffusive Illumination is then given by

1Γ/2

(3.9)

such that T is the fraction of the flux incident from a diffu-
sive source which is transmitted through the disordered re-
gion. This probability has been calculated in Ref. [21] from
the Boltzmann equation (3.2). The result is

T=(\ +7 ηϊ / τ τ / Ί " 1 Π 101JL y Ι. ι £* //J_j/ n ί j ·, \,J'. A V / y

where 77 is a numerical coefficient which depends weakly on
L/l. In the ballistic limit (L/l—>0) 77 has the value ir2/8 and
in the diffusive limit (L/7—>°°) ?7=1. In this subsection (but
not in the next) we take 77= l for all L/l for simplicity.

We use Eq. (3.10) to obtain the reflectance R± for the
case that the disordered medium is backed by a phase-
conjugating mirror with reflectance

αφ (3.11)

Since Γ and A are angular averages, we are neglecting an-
gular correlations. The light that comes out at frequency ω_
has been reflected an odd number of times at the mirror. The
light that has been reflected once has traversed the medium
twice, which leads to a contribution T2A to R~ . Light that
has been reflected three times by the mirror contributes
Γ2Α3(1 — Τ)2, since it has been reflected two times by the
medium (each time with probability l - T). Summing all
contributions, one finds

7?_ = Γ2Α + 7"2A3(l - Γ)2+ Γ 2Α 5(l - Γ)4-

Γ2Α

1-(1-Γ)2Α2 '
(3.12a)

Light that comes out at frequency ω+ has been reflected an
even number of times at the mirror. Zero reflections by the
mirror contributes l - T to 7? + , two reflections contributes
T2A2(l-T), and four reflections Γ2Α4(1-Γ)3. Summing
the series, one finds

R+=l-T+
Γ2(1-Γ)Λ2

(3.12b)

The geometric series leading to Eq. (3.12) diverges if
(l - Γ)A^ l. This indicates that there is only a stationary
solution to the Boltzmann equation if both the gain at the
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mirror and the scattering in the medium are sufficiently
weak. If A is increased at fixed a - ττ/4 by reducing S, the
reflectances R± diverge when δ=δε. (This divergence is
preempted by depletion of the pump beams in the phase-
conjugating mirror, which we do not describe.) In the ap-
proximation of this subsection, Sc is determined by

(l —Γ)Α = 1, or L/l=^TT(A — l )" 1 . In the ballistic limit,
T=\ and A<°° for any £>0. In the diffusive limit, Γ=0
and A = l for <5= 0.78. Hence, δ0 increases from 0 to 0.78 äs
L/1 increases from 0 to °°.

C. Exact solution of the Boltzmann equation

The Boltzmann equation (3.2) can be solved exactly,
without neglect of angular correlations, by adapting the
method of Ref. [21] to an angle-dependent boundary condi-
tion. We first rewrite Eq. (3.2) äs

d

Tx

l

l
), (3.13)

and then integrale once over x, using the boundary condi-
tions (3.3) and (3.5). The result is

dx'

< «>^ for cos</>>0, (3.14a)

Ι+(χ,φ)=-
o dx'

( l cos</>

Ι-(Ο,ττ-φ)

for cosc6<0, (3.14b)

dx'

-£/ COSc6

for , (3.14c)

for cosc/><0. (3.14d)

Substitution of Eqs. (3.14c) and (3.14a) into, respectively,
Eqs. (3.14b) and (3.14d) yields

ο dx'

cosc

-o dx' ,.,, , ,_
X ! -, π e* "l™ φ\ I-(

for cosc6<0, (3.15a)

o dx'

cosc

for cosci<0. (3.15b)

Finally, Integration over φ leads to two coupled integral
equations for the average intensities,

/+(*) =

(3.16a)

= άχ'Μ^χ,χ')! „ ( χ 1 )
-L

0

C
-L

(3.16b)

We have defined the following kernels and source terms:

•π/2 αφ
MI(X,X')=

= —lK0(\x-x'\ll·), (3.17a)

M2(x,x')=-C-f^ e^">» «**\α(φ)\*,

(3.17b)

(3.17c)

(3.17d)

where K0 is a Bessel function.
Equation (3.16) is the analog for the present problem in-

volving two coupled frequencies of the Schwarzschild-Milne
equation in the theory of radiative transfer [13,14]. We have
solved it numerically by discretizing with respect to χ so that
the integral equation becomes a matrix equation. From the

average intensities I±(x) one finds the intensities Ι ± ( χ , φ )
using Eqs. (3.14) and (3.15). The reflectances R± then fol-
low from Eqs. (3.6)-(3.8). For numerical stability we have
imposed a cutoff on the rapidly oscillating function α(φ) at

grazing incidence, by setting α(φ) = 0 for 0.497 π< φ< \π.



4220 PAASSCHENS, de JONG, BROUWER, AND BEENAKKER 56

1.2

1.0

Ϊ0.6

0.4

0.2

0.0

(a) L/l = l -S = 0.75
-6 = 0.90

-l -0.8 -0.6 -0.4 -0.2 0
x/L

-l -0.8 -0.6 -0.4 -0.2 0
x/L

FIG. 3. Intensity profiles in the disordered medium, computed
from the exact numerical solution of the Boltzmann equation, for
α =77/4 and two values of δ. (a) is for a nearly ballistic System
(L/1=1), (b) is for a diffusive System (L//= 15).

In Figs. 3 and 4 we show results for I ±(x) and R± for
a = 77/4 and 5=0.75 and 0.9. For 5=0.75 there is an effec-
tive gain at the mirror (A> 1), while for 5=0.9 there is an
effective loss (A < l). For an ordinary mirror one can show

that Γ±(0) = ̂ /0. Instead, we find that Γ_(0)> Γ+(0)>ΐ/0

for 5=0.75, indicating gain, and Γ_(0)< Γ+(0)< j/0 for
5=0.9, indicating loss. In each case the density profiles are
approxiraately linear in the bulk, with some bending near the
boundaries at jc= — L and x = 0. For 5=0.75, both R_ and
R+ diverge when L/1 = 28, while for 5=0.9 no such diver-

0.5
0.4 -\ δ = 0.75

0.5l·

5 10 20
L/l

FIG. 4. Reflectance Λ _ äs a function of L / l , computed from the
exact solution of the Boltzmann equation for a— π/4 and 5=0.75
(dashed curve), <5=090 (solid curve). The dotted curves are the
approximate result (3.12a), in which angular correlations are ne-
glected. The inset shows the exact reflectances R± for 5=0.75,
over a broader ränge of L/l (logarithmic scale). For 5=0.75 the
reflectances diverge at L/l = 28. No divergence occurs for 5=0.90.

~ Exact calculation
·· No angular correlation

0.78

100

FIG. 5. A stationary solution to the Boltzmann equation requires
δ> dc. The solid curve is the exact result for 5C (at fixed a= π/4,
äs function of L//), the dotted curve follows from Eq. (3.12), ob-
tained by neglecting angular correlations.

gence occurs. As discussed earlier, the divergence indicates
that for 5=0.75 and L/7 > 28 there is no stationary solution
to the Boltzmann equation. For fixed L/l and a, the diver-
gence of R ± occurs at a critical value 5C, such that a sta-
tionary solution requires 5> 5C. The dependence of 5C on
L/1 at fixed a=W4 is plotted in Fig. 5.

In Figs. 4 and 5 we also compare the exact numerical
solution of the Boltzmann equation of this subsection with
the approximate analytical solution (3.12) of the preceding
subsection. As one can see, the agreement with the exact
results is quite good.

IV. PHASE-COHERENT SOLUTION

A. Scattering matrices

We now turn to a phase-coherent description of the scat-
tering problem. To define finite-dimensional scattering ma-
trices we embed the disordered medium in a waveguide
(width W), containing Ν± = 1ηί(ω±Ψ/απ)^>1 propagating
modes at frequency ω± . A basis of scattering states consists
of the complex fields

mry

W

mry\

~W~)

Here «= 1,2,... ,N± is the mode index and the superscript
> (<) indicates a wave moving to the right (left), with
frequency ω ± = ω0 ± Δ ω and wave number

k+ n=(a>i/c2 — «27r2/W2) I / 2. (4.2)

The normalization in Eq. (4.1) has been chosen such that
each wave carries the same flux.

With respect to the basis (4.1), incoming and outgoing
waves are decomposed äs

£ — / jj F -f~ / jj f? (4 ^ft l^^j M -f. fi*—' 4- 11 ' ^üpj *̂ — n — n * V ·"·-'**·/
«= l ' ' n = I

JV+ W_

r-out_ y Ε·< ι y p< M ou-i
ß — ̂ /j U + ,„£·+ „^ j^j υ~,η^-η· \^.3Ό)

n=l ' n=\



56 REFLECTION OF LIGHT FROM A DISORDERED 4221

The complex coefficients are combmed mto two vectors

U = ( u + l , U + 2 , ,U+ N ,U* ! , Μ Ϊ 2 , ,U*_N}T,

The reflection matnx r relates u to v,

v=ru,

•4a)

(44b)

(45)

The dimension of r is (N++N_~)X(N++N^), the subma-
tnces r+ ± have dimensions N+ XN± For Δω<ίω0 we may
neglect the difference between N+ and 7V_ and replace both
by N=lat(k0W/Tr)

In the absence of disorder the reflection matnx is entirely
determmed by the phase-conjugatmg mirror,

0

iae'
(46a)

(4 6b)

The elements of the NX N diagonal matnx a are obtamed
from Eq (2 6) upon Substitution of φ by φη , being the angle
of mcidence associated with mode n (The difference in
angle between the two frequencies ω+ and ω_ can be ne-
glected if Δω<ϊω0 ) The angular average (2 1) of the reflec-
tance corresponds to the modal average

l .
A=—Tr aar

N
(47)

In the hmit N—>°° the two averages are identical
The disordered medium in front of the phase-conjugating

mirror does not couple ω+ and ω_ Its scattermg properties
at frequency ω are descnbed by two NX N transmission ma-
trices ί2)(ω) and ί12(ω) (transmission from left to nght and
from nght to left) plus two NX N reflection matrices Γπ(ω)
and Γ22(ω) (reflection from left to left and from right to
right) Taken together, these four matrices constitute a
2NX2N scattermg matnx

Γ,,(ω) ί12(ω)

t2 I(w) Γ 2 2(ω)/'
(4

which is unitary (because of flux conservation) and symmet-
ric (because of time-reversal mvanance) It is simple algebra
to express the scattermg matrix r of the entire System in
terms of the scattermg matrices rPCM and SdiSOlder of the
phase-conjugatmg mirror and the disordered region sepa-
rately The result is

Xa[l -Γ22(ω + )

r_

+ ), (4 9a)

t * ( w _ ) , (4 9b)

(49c)

(49d)

We seek the reflectances

l

~~N~+
rt —Trr+

(410)

averaged over the disoider We will do this analytically, us-
ing random-matnx theory [22], and numencally, usmg the
recursive Green tunction technique [23] We consider two
different regimes, dependmg on the relative magmtude of
Δω and l/Td w eu, where Tdweli~ L2lcl is the mean dwell time
of a photon m the disordered medium If rd w d lAw<Sl the
difference between Sdli,older(<w + ) and Sdls,order(ct;^) is insig-
nificant, because the phase shifts accumulated m a time rdwell

are approximately the same for frequencies ω+ and ω_ We
call this the coherent regime If rdwenA &)?>!, on the con-
trary, phase shifts at a> + and ω_ are essentially uncorrelated,
so that Sdlsorder(w + ) and Sdisorder(co_) are mdependent We
call this the incoherent regime

B. Random-matrix theory

Without loss of generality the reflection and transmission
matnces of the disordered region can be decomposed äs [22]

Here U± and V± are NX N unitary matrices (we take
N+ = N-=N in this subsection) and T± is a diagonal matnx
with the transmission eigenvalues r± „ e[0,l] on the diago-
nal The subscnpt ± refers to the two frequencies ω+ and
ω_ In this so-called "polar decomposition" the reflec-
tances R± take the form

l _ _
R =-TrT_il( l-Vl-T + Ω Τ Λ/1-Τ_ Ω)

N

/?+=-Tr(l-T+)+-TrT+a'Vl-T_

- V l - T + ίϊ^/Ι-Τ- Ω)

(412a)

Χ Λ / Ι - Τ - a*Vi-T + r 'a 1 Vi-T_ a
i

- -TrT + Vl-T+ ( l - a T V l - T _
N

l
χ a1" V i - τ _ a* - -ΤΓ τ+ V i-T + a r Vi-T_

xa( i-Vi-T + a r Vi-T_ ii)"1, (4i2b)
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il=UlalL· (4.12c)

To compute the averages (R±) analytically in the large-N
limit we make the isotropy approximation [22] that the ma-
trices U± and V± are uniformly distributed over the unitary
group U(N). This approximation corresponds to the neglect
of angular correlations in the radiative-transfer theory (See.
III B). For ταννβ11Δω<ξ! we may identify U+ = U_ and
V+ = V_ . For rd w ei|Aw8»l we may assume that U+ , U_ ,
V+ , and V_ are all independent. In each case the Integration
/i/u/i U) over U(N) with N> l can be done using the large-
N expansion of Ref. [24]. The remaining average over r± „
can be done using the known density p(r) of the transmis-
sion eigen values in a disordered medium [22].

The calculation is easiest in the incoherent regime
(TdwellAwS> l ). The Integration over U(N) can be carried out
using the formula [24]

X(B 1 UB 2 VB 3 U---B ? )
t

(4.13)

To apply this formula we expand the inverse matrices in Eq.
(4.12) in a power series in U± and integrale term by term
over the independent matrices U+ and U_ . The result is, to
leading order in N,

which is the result (3.12) of radiative-transfer theory with
neglect of angular correlations. The conclusion is that in the
incoherent regime phase coherence has no effect on the re-
flectance of the System to leading order in N.

The Situation is entirely different in the coherent regime
(TdwellAo><§ 1). To see the difference it is instructive to first
consider the simplified model that the matrix amn = a0Smn is
proportional to the unit matrix (a scalar). Because U_ = U+

for TdweuAo><§ l , we then have ilmn = aQ8mn . There is there-
fore no average over U(N) to perform. We only have to
average over one set of transmission eigenvalues

This average amounts to the integrals

Kl2 ,,2

(4.17a)

l Π τ-ΚΙΜί-τ)

(4.17b)

The density p (r) for

N

is given by [22]

__2L

*=ΪΓ

(4.18)

The density has a cutoff for exponentially small r, which is
irrelevant for (R±) if α\Φ 1. Substitution of Eq. (4.18) into
Eq. (4.17) yields the average reflectances

_ d\]

7\_r+A
(4.14a)

R+=1-T++
T2+(1-T_)A

where we have defined the modal average

N
l l

(4.14b)

(4.15)

The modal average A was defined in Eq. (4.7). The quantities
T± still depend on the configuration of the scatterers, but the
fluctuations around the average (T±) are smaller by an order
l/N than the average itself. Moreover, the average (Γ±)
equals the transmission probability T from radiative-transfer
theory, Eq. (3.10), again up to corrections of order l/N. Re-
placing T± in Eq. (4.14) by T we obtain

T2A
2 2 '1-(1-Γ)2Α

Γ2(1-Γ)Α2

1-(1-Γ)2Α2 '

(4.16a)

(4.16b)

-ι- -artanha0, (4.19a)

>=l-2rRe- -artanha^, (4.19b)
,*2

where T is again the transmission probability (3.10) from
radiative-transfer theory. Both quantities have a smooth L
dependence, with (R~) decreasing monotonically «l/L. In
contrast, radiative-transfer theory predicts a nonmonotonic L
dependence for A > l, leading to a divergence at some L. For
A < l, radiative-transfer theory predicts a quadratic decrease
of (R^)<*l/L2, for large L. The conclusion is that, in the
coherent regime, phase coherence modifies the reflectance of
the phase-conjugating mirror to leading order in N.

The result (4.19) was obtained for the simplified model of
a scalar reflection matrix a. The true a in Eq. (4.6) is diago-
nal but not a scalar. This complicates the calculation because
il=u!_aU+ then needs to be averaged over U(N) even
though U_ = U+ . The calculation is outlined in the Appen-
dix. The complete result is a complicated function of L/l
(plotted in Fig. 6). For Lfl§>] the result takes the form of
Eq. (4.19), where now a0 is to be determined from the equa-
tion

(4.20)

In the limit N—>°° this becomes an integral equation for a0,
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0

FIG 6 Average reflectances (R + ) äs a function of Lll for
a= 7Γ/4 and 5=0 6, 0 9, in the coherent regime The füll curves die
the analytical results for N?> l , computed from Eq (A 18) The dot
ted curves are the large L/l limit given by Eqs (4 19) and (4 21)
Data points aie results from numencal simulations

αφ
<70

(421)

where α(φ} is given by Eq (2 6) As shown m Fig 6, the
large-L asymptote (4 19), (4 20) is close to the complete re-
sult for L£/ In the limit δ—>0 the solution to Eq (421) is
given by a0= l 284—0 0133;, for a= ττ/4 The correspond-
mg reflectances (for La/) are {/?_) = 61 1//L, and
{# + )=!+57 7//L

To make contact with the work on wave-front reconstruc-
üon [11,12], we consider also the case of plane-wave—rather
than diffusive—Illumination A plane wave incident at fie-
quency ω+ m mode n is reflected mto modes m =1,2, ,N
at frequency ω± with probabihty (|(r± +)m„|2} The calcula-
üon of this probabihty proceeds similarly äs the calculation
of R _ (See Ref [25] for the analogous calculation m the
case öl Andreev reflection ) Usmg Eqs (4 9)-(4 12) we can
wnte

Ο=

(4 22a)

(4 22b)

For the coherent regime, we may agam identify
V+ = V__ = V The Integration over U(N) can be performed
usmg [24]

N — l

1

N —N

(423)

We then find

-R
Ν3-Ν < ? u

(424)

In the limit of large N we can write
Σ,^,Ο,,Ο^ΗΛΓ'ΤΓΟΙ2 In the same way äs before, for
L^l, this trace can be expressed m terms of ÖQ, where a0

can be found from Eq (46) 7V~'Tr O=T artanha0 The
result for the averages is then

= r2|artanha0

m Φη

(4 25 a)

(4 25b)

The incident plane wave is reconstructed with an intensity
°cT2, in agreement with Refs [11,12] In the coherent re-
gime, off-diagonal (m Φ n) and diagonal (ra = n) reflection
probabihties differ by a large factor of order NT

In the mcoherent regime, the matnces V+ and V_ are
mdependent Integration over U(N) results in mtegrals of the
form fd\ VnkV*'u~N~l8lk Then the olf-diagonal and di-
agonal reflection probabihties are both given by

(\(r- + )mn\
2)=N~l(R-), (426)

so there is no peak m the reflected intensity at the angle of
mcidence This holds for every N and L

For both the mcoherent and the coherent regime we find
for the reflection without frequency shift (ω + —>ω + ) the
probabihty

! + <?„
(427)

Here we see a much smaller backscattermg peak, where the
diagonal reflection probabihty is only twice äs large äs the
off-diagonal reflection probabihty [26] This factor is mde-
pendent of the phase conjugating mirror, and exists entirely
because of time-reversal symmetry [27]

C. Numerical simulations

To test the analytical pi edictions of random-matnx theory
we have carned out numencal simulations The Helmholtz
equation,

(-V2-ec4/c2)£=0, (428)

is discretized on a square lattice (lattice constant d, length L,
width W) Disorder is introduced by letting the relative di-
electnc constant ε fluctuate from site to site between l ± δε
Usmg the method of recursive Green functions [23] we com-
pule the scattenng matnx Sdlsorder(w) of the disordered me-
dium at frequencies ω+ and ω_ The reflection matnx rPCM

of the phase-conjugatmg mirror is calculated by discretizing
Eq (2 2) From Sdlsorder(co±) and rPCM we obtain the reflec-
tion matnx r of the entire System, and hence the leflectances
(410)

We took W=5ld, δε = 0 5, a= π/4, and varied δ and L
For the coherent case we took ω+ = ω_ = 1 252c/d, and for
the mcoherent case ω+=\252οΙά, ω _ = 1 \66cld These
Parameters correspond to N+ = 22, / _ , = 15 5d at frequency
ω+ The mean free path is determmed usmg Eq (3 10),
which holds up to small corrections of order TV" 1 In the
mcoherent case we have 7V„ = 20, / _ = 20 \d This leads to
Δω = 00436/ί/ and a dwell time for Lll = 3 of



4224 PAASSCHENS, de JONG, BROUWER, AND BEENAKKER 56

1.5

0 1 2 3 4 5 6

FIG 7 Average reflectances (R±) äs a function of L// for
a= τι/4 and S=0 6, 0 9, in the incoherent regime The curves are
the analytical results for /Vä>l , computed from Eq (3 12) Data
pomts are results from numencal simulations (Statistical error bars
are shown when they are larger than the size of the marker)

rd w e i l—L/cZ™ 15CW/6 Hence we have rdwellAw —6 5, which
should be well in the incoherent regime For companson
with random-matnx theory, we take the large-,/V limit and
use the value /+ for /

The numencal results are shown m Figs 6 (coherent re-
gime) and 7 (incoherent regime), for δ=0 6 and 09 As we
can see, the agreement with the analytical theory is quite
satisfactory The rapid nse of {R ±} in the incoherent regime
for the smallest δ is accompamed by large Statistical fluctua-
tions, which make an accurate companson more difficult
Still, the stnkmg differences between the coherent and inco-
herent regimes predicted by the random-matnx theory are
confirmed by the simulations

We have also studied the backscattenng peak for plane-
wave Illumination We considered a square sample
( W = L = 251i?) with a = π/4, <S=09 We calculated the re-
flection piobabilities | (r_ + )mn

 2 for normal mcidence
(n— 1) in both the coherent and the incoherent regimes The
numencal results for a smgle reahzation of the disoider are
shown m Fig 8 The arrow denotes the analytical ensemble
average (4 25) of the backscattenng peak in the large-TV
limit, which is consistent with the numencal data Notice the
absence of a backscattenng peak in the incoherent legime

(H

— ο

0.005

0.004

0.003

0.002

0.001

0.001 -

δ = 0.9

coherent regime

100

FIG 8 Histograms for the modal distnbution |(r_ + )m l

 2 of the
reflection probability with frequency shift for normal mcidence
The results aie for a smgle realization of the disorder at
W=L = 25\d (L//=162), α=π/4 and 5=09 The arrow mdi
cates the theoretical value (|(r„ + ) n j 2 ) irom Eq (425), represent-
mg the ensemble average m the large-TV limit

V. COMPARISON WITH ANDREEV REFLECTION

We have studied the reflection of light by a disordered
dielectric medium in front of a phase-conjugatmg mirror
This problem has an electromc analog [17,18] The elec-
tromc disoidered System consists of a metal, in which elec-
tron or hole excitations are scattered elastically by randomly
placed impunties Retroreflection at the phase-conjugating
mirror is analogous to Andreev reflection at the Interface
with a superconductor The Fermi energy EF plays the role
of the pump frequency ω0, while the excitation energy E
corresponds to the frequency shift Δ ω In spite of these simi-
lanties, the optical effects found in this paper have no elec-
tromc analog It is mstructive to see where the analogy
breaks down

To this end we compare the wave equation (2 2) with the
Bogohubov-de Gennes equation [28]

H

-H \v
= E (51)

which determmes the electron and hole wave functions u and
v The Hamiltoman

H =
,

— V2+V-EF2m
(52)

contams the elecüostatic potential V(r), which plays the role
of the dielectric constant [More precisely, λ.ο(ε — 1) corre-
sponds to — (2m/h ) V ] The role of the nonlinear suscepti-
bility is played here by the pair potential Δ (r), which is only
nonzero in the superconductor, where H equals A0e "^
Comparing Eqs (51) and (5 2) for the electromc case with
the optical equations (2 2) and (2 4) one notices many simi-
lanties, and some differences which amount to a redefimtion
of quantities There is, however, one essential difference the
matrix operator in Eq (5 1) is Hermitian, while that in Eq
(2 2) is not, because ot an extra minus sign m one of the
off-diagonal elements This minus sign is the ongin of the
difference between Andreev reflection and optical phase con-
jugation

In the optical case a disordered medium becomes trans-
parent (7?_=1) [9,10] for umt leflectance at the phase-
conjugating mirror (a = l) This does not happen m the elec-
tromc case, where R- is reduced by disorder even for ideal
Andreev reflection The leflection matrix of the normal-
metal-superconductor (NS) Interface, obtamed from Eq
(5 1) for V=0, Ε<^Δ0^ΕΓ, is given by [1]

0

-ie'* 0
(53)

Companson with Eq (4 6) foi rPCM shows that Andreev re-
flection is independent of the angle of mcidence, the matrix a
m Eq (4 6) is replaced by the umt matrix m Eq (5 3) This is
a substantial simphfication of the electromc problem, com-
pared with the optical analog The matrix rNS is unitary, m
contrast to rPCM, so that the appearance of gam or loss at the
phase-conjugatmg mirror has no electiomc counterpart The
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reflectance R_=1—R+ is a monotonically decreasing func-
tion of L/l in the electronic case [8], both in the coherent
regime,

/r1 if £<sÄ/Tdwel landLS:/, (5.4)

and in the incoherent regime,

if dwell · (5-5)

The result (5.5) is what one obtains from Eq. (3.12) for
the case A = l of unit reflectance at the interface. [The trans-
mittance T= (l + 2L/irl) ~' of the disordered medium is the
same for electrons and photons.] The result (5.4), however, is
not what one would expect from the optical analog. Indeed,
Eq. (4.17) with a0= l would give R_ = \ for all L in the case
of unit reflectance at the phase-conjugating mirror. The rea-
son that the analogy with Andreev reflection breaks down is
the difference of a minus sign in the wave equations (2.2)
and (5.1), which reappears in the reflection matrices (4.6)
and (5.3) for phase conjugation, and ultimately in the reflec-
tances in the coherent regime:

l ttT

Φ l for electrons, (5.6a)

= l for photons if a= l.

(5.6b)

Here t and r are the transmission and reflection matrices of
the disordered medium, which satisfy tt^ + rr1^ = l.

In conclusion, we have shown that the presence of a
phase-conjugating mirror behind a random medium drasti-
cally changes the total reflected intensity, even when the me-
dium is so disordered that wave-front reconstruction is inef-
fective. On increasing the frequency difference Δ ω between
the incident radiation and the pump beams, a minimum in the
disorder dependence of the reflected intensity appears. In a
certain parameter ränge, the disordered medium reflects less
radiation on reducing Δω. Experimental observation of this
"darkening" would be a striking demonstration of phase-
shift cancellations in a random medium.
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APPENDIX: CALCULATION OF THE REFLECTANCES
IN THE COHERENT REGIME

In See. IV we computed the average reflectances (R±) for
the incoherent regime. For the coherent regime we presented
only a derivation for scalar reflection matrix a. This appen-
dix contains the calculation of (R ±} for arbitrary (diagonal)
matrix a. Our calculation is based on the diagrammatic
method for Integration over the unitary group of Refs.
[29,24]. Integrals over the unitary group are needed for the
computation of (R±) because of the polar decomposition

(4.11) of the transmission and reflection matrices. We find it
convenient to use a slightly modified version of the diagram-
matic technique, in which we apply the diagrammatic rules
without making explicit use of the polar decomposition. We
first outline the calculation of (R±) in which the diagram-
matic method is used for the Integration of the matrices U
and V in Eq. (4.1 1), and then discuss the modification of the
diagrammatic method.

We Start the calculation of (R±) with the elimination of
the reflection matrix Γπ(ω0) and the transmission matrices
ί12(ω0) and ί2ι(ω0) from the reflectances R+ and R_ [cf.
Eqs. (4.9) and (4.10)], in favor of the matrix Γ=Γ22(ω0). The
result is

+ )= -Tr[s'(a,a)-s(l,a)-s(a,l) + s'(

(Ala)

{/?_)=-Tr{s(a,a)-s'(l,a)-s'(a,l) + s(l,l)

(Alb)

where we defined

s'(x,y) = -rar*a) 'ryy*r*(l -a*ra*r*) 'x*),
(A2a)

s(x,y) = (x(l -rar*a) 'a 'yy*a '*(! -a*ra*r*) 'x*),
(A2b)

To perform the average over r, one may use the polar de-
composition [cf. Eq. (4.11)]

r= «UVl-TUT, (A3)

where U is a unitary matrix and T is the diagonal matrix
containing the W transmission eigenvalues TJ on the diago-
nal. The matrix U is a member of the circular unitary en-
semble (CUE), i.e., it is uniformly distributed in the unitary
group. The transmission eigenvalues TJ have density [22]

p ( τ ) = (2N/Tr)lm g(\lr- l - i 0,s), (A4a)

)], s = 2Llirl. (A4b)

To integrale the matrix U over the unitary group, the ma-
trices s, s', and h are first expanded äs a power series in U.
The Integration of U is then done using the general expres-
sion for the average of a polynomial function of U [30],

l . (A5)(

Here the summation is over all permutations P and P ' of the
numbers l, . . . , « . The numbers c, , . . . ,ck denote the cycle
structure of the permutation P~1P'. (The permutation
P~1P' can be uniquely written äs a product of disjoint cy-
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clic permutations of lengths c\, . . . ,ck, with « = E^L1c j t .)
To compute (R±) in the limit of large N, it is sufficient to
know the coefficients Vc c to leading order in ./V. These
are given m Refs. [29,24], together with a diagrammatic
method which enables one to restrict the summation over P
and P' to those permutations P and P' of which the contri-
bution to (R±) is of maximal order in N.

Although the computation of (R±) is straightforward
now, the actual calculation is rather cumbersome. We find it
convenient to modify the approach of Refs. [29,24] so that it
can be applied directly to the average over the matrix r,
without making explicit use of the polar decomposition (A3).
This is possible because the general structure (A5) already
follows from the invariance of the distribution of U under
transformations

u->vuv, (A6)

where V is an arbitrary unitary matrix. The fact that U itself
is unitary is necessary to compute the value of the coeffi-
cients Vc c , but it is not relevant for the general struc-
ture (A5). Smce the matrix r is both unitary and Symmetrie,
its distribution is invariant under transformations

(A7)

that respect the symmetry of r. The same group of transfor-
mations leaves invariant the circular orthogonal ensemble
(COE), consistmg of uniformly distributed unitary and sym-
metric matrices. A diagrammatic technique for averages over
the COE is presented in Ref. [24]. As before, the general
structure of the average of a polynomial of a matrix from the
COE is entirely determined by the invariance under the
transformations (A7), and therefore applies to the reflection
matrix r äs well. It reads [24,31]

r ...r r* ...r* \
al°2 αϊη~ΐ"2π ala2 a2m-\a2m'

In

(A8)

where now the summation is over permutations P of the
numbers l , . . . ,2n. We may write P äs

P=\ Π σ·, Π
;=ι

(A9)

where the permutations σ} and σ, ι operate on the numbers
2j— l and 2j, and the permutation Pe (P0) permutes even
(odd) numbers only. The numbers c{, . . . ,ck in Eq. (A8) are
the cycle structure of the permutation P~1P0. The specific
values of the coefficients Vr

for an average of r are of

course different from those for the COE.
Now that we have identified the formal equivalence of an

average over the (nonunitary) Symmetrie reflection matrix r
and a unitary Symmetrie matrix from the COE, we can di-
rectly apply the diagrammatic rules of Refs. [29,24] to an
average over the matrix r, provided we know the coefficients
V, r for the ensemble of reflection matrices r of a dis-

h0(z)

FIG. 9. Diagrams for the calculation of h0(z).

ordered waveguide. To find these coefficients, we use the
fact that they factorize, to leading order in N,

k

VCl. .ct=II/Cl, (A10)

just äs they do for the COE. This follows directly from the
fact that, to leading order in N, the average {n/Tr(rr'*')'v}
factorizes into iT7(Tr(rrt)c.') [32]. It remains to find the co-
efficients y, . Hereto we consider the function

l-rr*z
(All)

We first compute h0(z) from the diagrammatic technique,
with a priori unknown coefficients Vc. We then compare
our result with a calculation of Tr h0(z) from the density of
transmission eigenvalues (A4). The relevant diagrams for the
diagrammatic calculation are shown in Fig. 9 (for a detailed
explanation of the diagrammatic notation of Fig. 9, we refer
to Ref. [24]). The result is a self-consistency equation for
h0(z) that involves the generating function F of the coeffi-
cients V, ,

zl

l-zF[Trho(z)] '

Vcx
2c~l

(A12)

(A13)

Here I is the NX N unit matrix. Direct computation of
Tr h0(z) from the density ρ(τ) of transmission eigenvalues
gives

(A14)
,

Trho(i) = l ατ

Together, Eqs. (A10)-(A14) determine the coefficients
V c c needed for the diagrammatic evaluation of (R±)·

In the limit of L— >«>, the density of transmission eigenvalues
tends to Νδ(τ). Hence h0(z) = z/(l -z2) and

The corresponding coefficients
= c Nl~2c(c

2~l2)
 are precisely those of the COE [24].

For finite L, the density p (τ) is no longer a δ function, and
hence the coefficients Vc deviate from those of the COE.

The fact that we can use the diagrammatic rules directly
for the average over r simplifies the calculation considerably.
A central role in the calculation is played by the function
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h(x) defined in Eq. (A2). The diagrams for the calculation of
h(x) are similar to those of Fig. 9, and the result is a self-
consistency equation for h(x),

REFLECTION OF LIGHT FROM A DISORDERED . . .

x* y* x*h(x)*yV"1

4227

= x(l-aF[Trh(a)])· (A15)

Notice the formal equivalence with Eq. (A 12). The function
F was defined in Eq. (A13). Using the diagrammatic tech-
nique for the computation of s and s', we find the linear
relations

s(x,y) = h(x)[a~'yy*a~'* + ΚΊτ s'(a,y)

+ L Trs(a,y)]h(x)*, (A16a)

s'(x,y) = h(x)[A: Tr s(a,y) + L Trs'(a,y)]h(x)*,
(A16b)

where we have defined

*=Σ
U=l

^ = Σ
'·,; = !

= Trh(a), (A17a)

hF(h}-h*F(hY

h2-h*2

(A17b)

h*F(h)-hF(hY

h2-h*2

(A17c)

The relevant diagrams leading to Eqs. (A16) and (A 17) are
shown in Fig. 10. They are similar to those of Ref. [29],
where the case of a chaotic cavity was considered, instead of
a disordered waveguide. Together, Eqs. (A15)-(A17) form a
closed set of equations, from which s(x,y), s'(x,y), and h(x)
can be calculated. The average reflectances (R±) are ob-
tained upon Substitution of s(x,y), s'(x,y), and h(x) into Eq.
(AI). The final result is expressed äs a function of
/z = Trh(a),

+ J2)K-2J(l-IL)

+ 2ReTr[l-aF(/z)]~ (A18a)

χ s(x,y) V

x s'(x,y) V

a s'(a,y) y

Γ ITT _ v T ' T + v T 'lA.i u.i 2i.

+ v„

I
I , ,Α Λ ι

Μδ^ Τ Τ.·.!= ν·Ι.

:ι

FIG. 10. Diagrams for the calculation of s(x,y) and s'(x,y).

1= Tra[l-aF(A)]-1[l-a*F(A)*;r1a*, (A19a)

1. (A19b)

These expressions simplify in the large-L// limit, when
ρ(τ) takes the form (4.18). Substitution in Eq. (A14) gives

Nz

1-2'

z artanhz\
i-—n—+CK1+5)2,

where we defined

(A20)

"·/κ W\ , ancj hence allows us to find F(z) from Eq. (A12). Expanding
(A18b) me exPressi°ns (A18) for (R±) and the self-consistency

equation (A15) to lowest order in (l + j)"1 we find the re-
sults (4.19) and (4.20), with the effective reflectance aQ — z·

[1] A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov.

Phys. JETP 19, 1228 (1964)]; 49, 655 (1965) [22, 455 (1966)].

[2] J. P. Woerdman, Opt. Commun. 2, 212 (1970).

[3] B. I. Stepanov, E. V. Ivakin, and A. S. Rubanov, Dokl. Akad.

Nauk USSR 196, 567 (1971) [ Sov. Phys. Dokl. 16, 46

(1971)].

[4] A. A. Abrikosov, Fundamentals of the Theory of Metals

(North-Holland, Amsterdam, 1988).

[5] Optical Phase Conjugation, edited by R. A. Fisher (Academic,

New York, 1983).

[6] B. Ya. Zel'dovich, N. F. Pilipetsktf, and V. V. Shkunov, Prin-

ciples of Phase Conjugation (Springer, Berlin, 1985).

[7] D. M. Pepper, Sei. Am. 254, 56 (1986).

[8] C. W. J. Beenakker, in Mesoscopic Quantum Physics, edited



4228 PAASSCHENS, de JONG, BROUWER, AND BEENAKKER 56

by E Akkermans, G Montambaux, J -L Pichard, and J Zinn-
Justm (North-Holland, Amsterdam, 1995)

[9] Yu N Barabanenkov, Yu A Kravtsov, V D Ozrm, and A I
Saichev, in Progress m Optics XXIX, edited by E Wolf
(North-Holland, Amsterdam, 1991)

[10] R Mittra and T M Habashy, J Opt Soc Am A l, 1103
(1984)

[11] I McMichael, M D Ewbank, and F Vachss, Opt Commun
119, 13 (1995)

[12] C Gu and P Yeh, Opt Commun 107, 353 (1994)
[13] S Chandrasekhar, Radiative Transfer (Dover, New York,

1960)
[14] A Ishimaru, Wave Propagation and Scattenng in Random

Media (Acadermc, New York, 1978)
[15] J C J Paasschens, P W Brouwer, and C W J Beenakker,

Europhys Lett 38, 651 (1997)
[16] I Freund, M Rosenbluh, R Berkovits, and M Kaveh, Phys

Rev Lett 61, 1214 (1988), M I Mishchenko, J M Dlugach,
and E G Yanovitskij, J Quant Spectrosc Radial Transf 47,
401 (1992)

[17] D Lenstra, m Huygens Prmciple 1690-1990, Theory and Ap-
plications, edited by H Blök, H A Ferweda, and H K
Kuiken (North-Holland, Amsterdam, 1990)

[18] H van Houten and C W J Beenakker, Physica B 175, 187
(1991)

[19] A Yanv and D M Pepper, Opt Lett l, 16 (1977)
[20] H F Arnoldus and T F George, J Mod Opt 36, 31 (1989)
[21] M J M de Jong, Phys Rev B 49, 7778 (1994)
[22] Two reviews of the random-matnx theory of phase-coherent

scattenng are A D Stone, P A Mello, K A Muttahb, and
J -L Pichard, in Mesoscopic Phenomena in Solids, edited by
B L Altshuler, P A Lee, and R A Webb (North-Holland,
Amsterdam, 1991), C W J Beenakker, Rev Mod Phys 69,
731 (1997)

[23] H U Baranger, D P DiVmcenzo, R A Jalabert, and A D
Stone, Phys Rev B 44, 10637 (1991)

[24] P W Brouwer and C W J Beenakker, J Math Phys (N Υ )
37, 4904 (1996)

[25] C W J Beenakker, J A Meisen, and P W Brouwer, Phys

Rev B 51, 13 883 (1995)
[26] P A Mello, E Akkermans, and B Shapiro, Phys Rev Lett

61, 459 (1988)
[27] G Bergmann, Phys Rep 107, l (1984)

[28] P G de Gennes, Superconductivity of Metals and Alloys (Ben-
jamin, New York, 1966)

[29] N Argaman and A Zee, Phys Rev B 54, 7406 (1996)
[30] S Samuel, J Math Phys (N Υ ) 21, 2695 (1980)

[31] P A Mello and T H Seligman, Nucl Phys A 344, 489
(1980)

[32] P A Mello and A D Stone, Phys Rev B 44, 3559 (1991)


