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Signatare of Wave Localization in the Time Dependence of a Reflected Pulse
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The average power spectrum of a pulse reflected by a disordered medium embedded in an 7V-mode

waveguide decays in time with a power law t~p. We show that the exponent p increases from ^ to

2 after N2 scattering times, due to the onset of localization. We compare two methods to arrive at
this result. The first method involves the analytic continuation to an imaginary absorption rate of a
static scattering problem. The second method involves the solution of a Fokker-Planck equation for
the frequency dependent reflection matrix, by means of a mapping onto a problem in non-Hermitian
quantum mechanics.

PACS numbers: 42.25.Dd, 42.25.Bs

The time-dependent amplitude of a wave pulse re-
flected by an inhomogeneous medium consists of rapid
oscillations with a slowly decaying envelope. The power
spectrum α(ω,ί) describes the decay with time t of the
envelope of the oscillations with frequency ω. It is a basic
dynamical observable in optics, acoustics, and seismology
[1]. In the seismological context, the attention has focused
on randomly layered media, which are a model for the
subsurface of the Earth. The fundamental result of White,
Sheng, Zhang, and Papanicolaou [2] for this problem is
that α(ω, t) decays äs t~2 for times long compared to the
scattering time TS at frequency ω. The dynamics on this
time scale is governed by localization, since the product of
TS and the wave velocity c equals the localization length
in one dimension. Although this result for the power
spectrum is more than a decade old, it has thus far resisted
an extension beyond one-dimensional scattering.

Work towards such an extension by Papanicolaou and
co-workers [3,4] has concentrated on locally layered
media, in which the scattering is one dimensional on short
length scales and three dimensional on long length scales.
This is most relevant for seismological applications. Re-
cent dynamical microwave experiments by Genack et al.
[5] have motivated us to look at this problem in a wave-
guide geometry, in which the scattering is fully three
dimensional—but restricted to a finite number N of
propagating waveguide modes. (The single-mode case
N = l is statistically equivalent to the one-dimensional
model of Ref. [2].) We find that the long-time decay of
the average power spectrum is a power law äs in the one-
dimensional case, but with two exponents: a decay °c f ~3/2

crosses over to a t~2 decay after a characteristic time
tc = N2rs. The corresponding characteristic length scale
VDic (with diffusion constant D) is the localization length
in an N-mode waveguide. The crossover is therefore
a dynamical Signatare of localization in the reflectance
of a random medium, distinct from the signature in the
transmittance (or conductance) considered previously in
the literature [6-8].

Let us first formulate the problem more precisely. We
consider the reflection of a scalar wave (frequency ω) from
a disordered region (length L, mean free path / = crs)
embedded in an W-mode waveguide (see Fig. l inset). We
assume that the length L is greater than the localization
length ξ = Nl, so that transmission through the disordered
region can be ignored. If in addition the absorption length
is greater than ξ, the reflection matrix r (ω) can be regarded
äs unitary. The matrix product

€(ω,8ω) = (1)

is unitary for unitary r, so that its eigenvalues are phase
factors exp(/<£,,).

The power spectrum for a pulse incident in mode n and
detected in mode m is related to C by

15 -

FIG. l. Density of the eigenphases for different values of the
dimensionless frequency difference Δ = ατ5δω. The solid
curves are computed from Eq. (24); the data points result from
a numerical solution of the wave equation on a two-dimensional
square lattice (a = w2/4, N = 20; the scattering time TS was
obtained independently from the localization length). The inset
shows the geometry of a random medium (shaded) embedded in
a waveguide.

3388 0031-9007/00/85(16)/3388(4)$15.00 © 2000 The American Physical Society



VOLUME 85, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 16 OCTOBER 2000

α ( ω , ί ) = f
J -0

= j_ Γ
N J-a

d8tel<aSt(rmn(t)rmn(t

2ττ
(2)

[We have normalized /αία(ω,ί) = L] The phase shifts
have the joint distribution function Ρ(φι,φ2,...,φΝ).
To calculate the average of TrC it suffices to know the
one-point function ρ(φι) — N /άφ2· · · f αφ^ Ρ(φ),
since (TrC) = / αφ ρ(φ*)ειφ . We present two different
methods of exact solution. The first method [9] (based
on analytic continuation) is simple but restricted to the
one-point function, while the second method [2] (based
on a Fokker-Planck equation) is more complicated but
gives the entire distribution function.

Analytic continuation to the imaginary frequency differ-
ence 8 ω = ί/τα relates exp(/</>„) to the reflection eigen-
value R n of an absorbing medium with absorption time τα.
The one-point functions are related by

-RßiV"1* Γκη

77 n=l J0

(3)

This is a quick and easy way to solve the problem, since
p (R) is known exactly äs a series of Laguerre polynomials
[10]. The method of analytic continuation is restricted to
the one-point function because averages of negative powers
of exp(i</>„) are not analytic in the reflection eigenvalues
[9]. For example, for the two-point function one would
need to know the average {exp(/<£„ — ίφη)) —» (RnR~l)
that diverges in the absorbing problem.

The calculation of the power spectrum from Eqs. (2)
and (3) is easiest in the absence of time-reversal symmetry,
because p (R) then has a particularly simple form [10]. We
obtain the power spectrum

dt
(4a)

N-l

where Pn is a Legendre polynomial and θ (t) is the unit
Step function. The coefficient a = 2, π2, 8/3 for dimen-
sionality d = 1,2, 3. In the single-mode case Eq. (4)
simplifies to

α(ω, t) = 4τ,(ω) [t + 4τ5(ω)Γ2θ(ή , (5)

which is the result of White et al. [2]. It decays äs t~2.
For N — * °° Eq. (4) simplifies to

α ( ω , ί ) = (6)

where /i is a modified Bessel function. The power spec-
trum now decays äs ?~3/2. For any finite N we find a
crossover from a = ^ατ5/2ττ f~3/2 for rs « t <K N2rs

to a = 2Narsr
2 for t » N2rs.

In the presence of time-reversal symmetry the exact
expression for α(ω, t) is more cumbersome but the asymp-
totics carries over with minor modifications. In particu-

lar, the large-7V limit (6) with its t 3/2 decay remains the
same, while the i~2 decay changes only in the prefactor:
a = (N + l)arst~

2 for i » N2rs.
We now turn to the second method of solution, based

on a Fokker-Planck equation for the entire distribution
function P (φ). The equation for N = l was derived
in Ref. [2]. The multimode generalization can be ob-
tained most directly by analytic continuation of the
Fokker-Planck equation for the probability distribution of
the reflection eigenvalues — which is known [10]. The
resulting Fokker-Planck equation for the phase shifts takes
a simple form in the variable z = lncot(<£/4) G (— °°, °°)
for φ G (0, 277-). It reads

•^ d ( dP dfl\y — — P — =°. (7a)

Ω (z) =

(7b)+ β Σ ln|sinhz f f l - sinhz„|.
n>m

We defined the dimensionless frequency increment Δ =
ατ5δω and abbreviated Cß = ^β(Ν — 1) + l. Theindex
β = 1(2) in the presence (absence) of time-reversal sym-
metry. We emphasize that, although the Fokker-Planck
equation can be obtained by analytic continuation, its solu-
tion cannot. Indeed, this would give the solution P <* en,
which fails because it is not normalizable.

We proceed äs in Ref. [11] by substituting P (z) =
Ψ (z) expfjiXz)], in order to transform the Fokker-Planck
equation (7) into the Schrödinger equation

V - — +
^1 öz2

uin
+ X £/(z„,zm) Ψ = 0,

πιΦη

/Δ 2

( T"
l

4 cosh2z

(8a)

(8b)
,. l . cosh2z + cosh2z'

U(z,z') = -rß(ß - 27— r-TTä·
2 (smhz - sinhz')

Here V0 = π/32(Λ^ - 1) (N - 2 + 6//3) + \. By re-
stricting ourselves to β = 2, the interaction term U
vanishes and Eq. (8) has the form of a one-dimensional
free-fermion problem. The general solution is given by
the Slater determinant

Y(z) = Det{^.(Zm)}^m=1> (9)

where φμ(ζ) is an eigenfunction with eigenvalue μ of the
single-particle equation

-Ψμ + νφμ = μψμ. (10)

The choice of the eigenfunctions is restricted by the con-
dition X^L [ μη = 0 that the total eigenvalue vanishes.

We are now faced with an impasse: The Schrödinger
equation (10) has a real spectrum consisting of bound states
in the potential well V (z). The bottom of the well is
positive for sufficiently l arge Δ, so that the real spectrum
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contains only positive μη's. How then are we to satisfy the
condition of zero sum of the eigenvalues? The way out of
this impasse is to allow for complex eigenvalues. The cor-
responding eigenfunctions will not be square integrable,
but that is not a problem äs long äs the probability distri-
bution P (i) remains normalizable. This is a new twist to
the active field of non-Hermitian quantum mechanics [12].

The differential equation (10) is known äs the confluent
Heun equation [13], but we have found no mention of the
complex spectrum in the mathematical physics literature—
perhaps because it was considered unphysical. The com-
plex spectrum is constructed by means of a complete set
of polynomials to order N — l,

N

j3 Ιγ\ — *̂ P (x /)m~'(jt + l\^~m (II)

m=l

The vector of coefficients g = {gi,g2,···, g N} is an eigen-
vector with eigenvalue μ of the N X N tridiagonal matrix
M, with nonzero elements

Mna = 2ίΔΛτ(η - -̂̂  | + 2| n

N2 - l

N l

(12)

M„,„ + i = n2, Mn+i,„ = (N - n)2.

Since the trace of M is zero, the condition £„ μη = 0 is
automatically satisfied.

The complex spectrum of Eq. (10) consists of the
eigenvalues μη with two linearly independent sets of
eigenfunctions,

Ψμ(ζ) = Vcoshz exp(— ^Λ^Δ sinhz) JZL^sinhz), (13a)

ψ'μ(ζ) = Vcoshz εχρ^ΝΔ sinhz)2?^(sinhz). (13b)

The functions Έμ are related to the polynomials ^Α.μ by

r°° -N!±x'
ff> t \ _ «g r \ Ι M ~ 2 f v — v'Wr'

"W μ( ' J0 (x - x')2 + 1^»(X X)dX ·

(14)

and Έμ form a biorthogonal set on theThe functions .
real axis. We choose the normalization such that

= 8nm. (15)

The solution φ1 of the first kind cannot be used be-
cause the resulting distribution P (z) is not normalizable. In
fact, since

P(z) "- \ I (sinhz„ — sinhzm) j^coshz,·
n<m i=l

X Det{S/t.(sinhzm)}Sr

flB=1,

or, in terms of the variable x = sinhz = cot(0/2),

= ! . (18)

This is the exact solution ofEq. (7)for/3 = 2. Correlation
functions of arbitrary order can be obtained from Eq. (18)
in terms of a series of the biorthogonal functions Ά.μ and
Έμ [14,15]. Forexample, thedensity of eigenphases ρ(φ)
is given by

Let us examine this solution more closely in various
limits. For N = l one has μ = Ο, ̂ Ά.μ(χ) = const, and
we reproduce the known single-mode result [2,16]

Ρ(φ) = —
7Γ

(20)

Here ζ = 4/τ ίδω(1 — e"^)^1 and Ei is the exponential-
integral function. For N > l the eigenvalues μη

remain real for ΔΝ2 «. 1. In this regime the integral
(14) is easily evaluated, because one can substitute
effectively [(* - x')2 + l]"1 -» ττδ(χ - χ1). Hence
Έμ(χ) = εκρ(-ΝΔχ)Ά.μ(χ)θ(χ). Using again Eq. (16),
we obtain

P(x) « (21)

This is the Laguerre ensemble of random-matrix theory.
The distribution is dominated by x = cot(</>/2) » l, so
that one can replace xn —> 2/φη and recover the result [17]
that the inverse time delays, l/r„ = Ιϊπΐδω->οδω/φη,
are distributed according to the Laguerre ensemble.
The condition ΔΝ2 <sz l for Laguerre statistics means
that the characteristic length LSW = ^JD/δω associated
with the frequency increment δω is greater than the
localization length ξ. We therefore refer to the regime of
validity of Eq. (21) äs the localized regime.

At the opposite extreme we have the ballistic regime
Lgü> <3< /, or Δ » 1. The integral (14) is now domi-
nated by x' <SC 1; hence Έμ(χ) * (x2 + l)""1 Ά~ι(χ).
Moreover, the off-diagonal elements of the matrix
M may be neglected so that the polynomials have a
simple structure: Ά·μα(χ) « (x + i)N~"(x - i)""1.
The corresponding functions Έ are given by 1}μα(χ) =

sin'v+1((^/2)exp[/</i(n — N — j)]· The resulting distri-

n=1 oc j~j (Xn — xm), (16) bution of the eigenphases in the ballistic regime is
n<m

one sees that the Substitution of φ1 into Eq. (9) yields
the solution P « e^ that we had rejected earlier. The
solution ψ11 of the second kind does give a normalizable
distribution,

Ρ(φ) — e (22)
n<m

which we recognize äs the circular ensemble of random-
matrix theory [18]. This is äs expected, since for large δω
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the matnx C is the product of two mdependent reflection
matnces r, each of which is uniformly distnbuted in the
unitary gioup The cncular ensemble is the correspondmg
distnbution of the eigenphases

The mtermediate regime / <SC LgM «: ξ, or N~2 «
Δ <iC l, is the diffusive one To study this legime we make
a WKB approximaüon of the Schiodmger equation (10)
This approximation lequires N2Δ » l and N » l, hence
it contams both the balhstic and the diffusive regimes
We obtain

(23)

where <;(μ) is a normahzation coefficient The "+" sign
m the exponent refers to ψ^, and the "—" sign to ψ!

The eigenvalues μη densely fill a curve C m the complex
plane We may subsütute Σμ/μ —* $c ρ(μ)/(μ)άμ,
wheie ρ(μ) = Ν [ 4 τ τ ΐ € 2 ( μ ) ] ~ ι is the eigenvalue density
For analytic /(μ), the integral along C depends only
on the end points μ± = N2(^ ± «Δ) of the curve
Fiom Eqs (13), (19), and (23) we obtain the eigen-
phase density

N
(24)

This result can be obtamed also from Eq (3) in the hmit
N —»· oo It is denved here for β = 2, but is actually β
mdependent (The /3-dependent corrections in the diffu-
sive regime are due to weak locahzation and are smaller
by a factor l/N ) One can check that ρ(φ) —> Ν/2ττ for
Δ >ϊ> l, äs expected in the balhstic regime In the opposite
regime Δ « l it simplifies to

Ρ(Φ) = 2Δ -
Δ2

(25)

with the additional restuction sm(<^>/2) > Δ/4 We have
plotted Eq (24) m Fig l for several values of Δ

In conclusion, we have presented a signature of local-
ization m the decay of the power spectrum of a pulse
reflected by a disordeied waveguide This result is an ap-
phcation of the distnbution of the correlator of the leflec-
tion matnx at two different frequencies, which we have
calculated foi an arbitiary number of modes 7V, scatter-
mg time TS, and fiequency diffeience δω With increas-
ing δω the distnbution crosses over from the Lagueire

ensemble in the locahzed legime (δω <SZ l/N2rs) to the
cucular ensemble in the balhstic regime (δ ω :» 1/Ty), via
an mtermediate "diffusive" legime The distnbution m this
mtermediate legime does not have the form of any of the
ensembles known from landom-matnx theory and deserves
fuither study

This work grew out of an initial mvestigation of
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