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Abstract

The resistance 1s computed of an NI NI, S junction, where N 1s the normal metal, S the superconductor, and I, the nsulator
or tunnel barrier (transmission probability per mode I';) The ballistic case 1s considered, as well as the case that the region
between the two barriers contains disorder (mean free path /, barrier separation L) Tt 1s found that the resistance at fixed
Iy shows a mummmum as a function of I'y, when I') = /212, provided / = I'sL The minimum 1s explamed n terms of the
appearance of transmission eigenvalues close to one, analogous to the “reflectionless tunneling” through a NIS junction with
a disordered normal region The theory 1s supported by numerical simulations

1. Introduction

Reflectionless tunneling 1s a novel quantum interference
effect which occurs when dissipative normal current 1s con-
verted mto dissipationless supercurrent at the mterface be-
tween a normal metal (N) and a superconductor (S) [1]
Experimentally, the effect 1s observed as a peak n the differ-
ential conductance around zero voltage or around zero mag-
netic field [2] Its name refers to the fact that, for full-phase
coherence, the Andreev-reflected quasiparticle can tunnel
through the potential barricr at the NS interface without
suffering reflections (The potential barrier can be the -
sulator (I) in an NIS junction, or the Schottky barrier 1n a
semiconductor—superconductor junction ) Application of a
voltage or magnetic field destroys the phase cohcrence be-
tween electrons and holes, and thus reduces the conductance
of the junction We now have a good theoretical understand-
ing of the effect, based on a combination of numerical [3, 4],
and analytical work [5-10] The basic requirement for re-
flectionless tunneling 1s that the normal region has a rests-
tance which 1s larger than the resistance of the interface
In that case the disorder 1s able to open a fraction of the
tunneling channels, 1¢ 1t induces the appearance of trans-
mission eigenvalues close to one [10] As a result of these
open channels, the resistance has a linear dependence on the
transparency of the interface, mnstead of the quadratic de-
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pendence expected for Andreev reflection [11] (which 1s a
two-particle process)

The purpose of this work 1s to present a study of reflec-
tionless tunneling 1 1ts simplest form, when the resistance
of the normal metal 1s due to a second tunnel barrier, 1n se-
ries with the barrier at the NS interface This allows an exact
calculation, which shows many of the features of the more
complicated case when the resistance of the normal region
1s due to disorder Furthermore, the double-barrier geome-
try provides an experimentally realizable model system, for
example, m tunneling from an STM into a superconductor
via a metal particle [12]

The outlime of this paper 1s as follows In Section 2 we
consider the problem of a NI} NI, S junction without disorder
We compute the resistance of the junction as a function of
the transmission probabilities per mode I'y and I'; of the two
barriers The resistance at fixed I'; shows a munimum as a
function of Iy when It &~ 2> =T The resistance
m the mmmum depends linearly on 1/, in contrast
to the quadratic dependence in the case of a single
barrier In Section 3 we apply a recent scaling the-
ory [9], to find the influence on the resistance min-
mum of disorder in the region between the barriers
(length L, mean free path /) The resistance mimmum
persists as long as [ 2 I'L In the diffusive regime
(I <L), our results agiee with a previous Green’s func-
tron calculation by Volkov et al [7] The analytical results
are supported by numerical stmulations, usingthe recursive
Green’s function technique [13] We conclude 1n Section 4
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2. NINIS junction without disorder

We consider a NIiNI;S junction, where N is the normal
metal, S is the superconductor, and I, the insulator or tunnel
barrier (see inset of Fig. 1). The transmission probability per
mode of [, is denoted by I'.. For simplicity, we neglect the
mode dependence of I',. In this section, we assume ballistic
motion between the barriers. (The effect of disorder in the
normal region is considered in Section 3.) A straightforward
calculation yields the transmission probabilities 7, of the
two barriers in series,

T, =(a+bcosg) ", 2.1)
where
2-I -1,
S I B B 22
a + Tl (2.2a)
2(1 — )21 — 1y)'2
b= 2.2b
T , (2.2b)

and ¢, is the phase accumulated between the barriers by
mode n =1,2,...,N (with N the number of propagating
modes at the Fermi level). If we substitute I', = 1/cosh’a,
(o, = 0), the coefficients a and b can be rewritien as

a= % + % cosh 2a; cosh 2a5 , (2.32)

b = § sinh 2a; sinh 205 . (2.3b)

Since the transmission matrix ¢ is diagonal, the transmis-
sion probabilities 7, are identical to the eigenvalues of .
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Fig. 1. Dependence of the resistances Ry and Rys of ballistic
NININ and NINIS structures, respectively, on barrier transparency
I'y, while transparancy I'; = 0.1 is kept fixed [computed from
Eqs.(2.6) and (2.7)]. The inset shows the NINIS structure consid-
ered.

We use the general relationship between the conductance
Gns = Gums of the NINIS junction and the transmission
eigenvalues of the normal region [14],

4e* X T;
Gns =~ 30— :
Sl Gony @4

n=1

which is the analogue of the Landauer formula,
2 2 N
@:%2% (2.5)
n=l

for the conductance Gy = Guiniw in the normal state. We
assume that L > Ar (Ar is the Fermi wavelength) and NT', > 1,
so that the conductance is not dominated by a single reso-
nance. In this case, the phases ¢, are distributed uniformly
in the interval (0,2n) and we may replace the summations
in Egs. (2.4) and (2.5) by integrals over ¢: X0, () —
(N/2m) fozn d¢ f(¢). The result is

4e*N cosh 20, cosh 2a
Gns = eh 1 2 37 2.6)
(cosh2 204 + cosh? 20 — 1)
2
Gy = 4ehN (cosh 26 + cosh 205)" . 2.7)

These expressions are symmetric in the indices 1 and 2; it
does not matter which of the two barriers is closest to the
superconductor.

In the same way we can compute the entire distribution
of the transmission eigenvalues, p(7) = ¥,8(T — T,,) —
(Nj2m) [ dep 8(T — T($)). Substituting  T($) = (a +
bcos¢)~! from Eq. (2.1), we find

o(T) = :—T (B*T* — (aT —1%) " (2.8)

for(a+b)"' < T < (a—b)"".

In Fig. | we plot the resistance Rnv = 1/Gn and Rns =
1/Gns, following from Eqs. (2.6) and (2.7). Notice that Ry
follows Ohm’s law,

RN:%(I/FI-I—I/D*I), 2.9)
as expected from classical considerations. In contrast, the
resistance Rns has a minimum if one of the I'’s is varied
while keeping the other fixed. This resistance minimum can-
not be explained by classical series addition of barrier re-
sistances. If I'; <1 is fixed and I'; is varied, as in Fig. 1,
the minimum occurs when I'] = +/2I. The minimal resis-
tance RNY is of the same order of magnitude as the resis-
tance Ry in the normal state at the same value of I'} and
5. (For I'; <1, R3S = 1.52Rn) In particular, we find that
R\S depends linearly on 1/I,, whereas for a single barrier

RNS [o8 1/F2.
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Fig. 2. Density of normal-state transmission eigenvalues for an NS
Junction with a potential barrier at the interface (transmission prob-
ability ' = 0.4) The left panel (a) shows the disorder-induced
opening of tunneling channels in a NIS junction (solid curve:
s = 0.04, dotted: s = 0.4, dashed' s = 5; where s = L/I). The right
panel (b) shows the opening of channels by a second tunnel barrier
(transparancy I'') in an NINIS junction (solid curve: I = 0.95;
dotted: I’ = 0.8, dashed: I’ = 0.4). The curves m (a) are com-
puted from Ref. [9], the curves in (b) from Eq.(2.8). Notice the
similarity of the dashed curves.

The linear dependence on the barrier transparency shows
the qualitative similarity of a ballistic NINIS junction to
a disordered NIS junction. To illustrate the similarity, we
compare in Fig. 2 the densities of transmission eigenval-
ues through the normal region. The left panel is for an NIS
junction (computed using the results of Ref. [9]), the right
panel is for an NINIS junction (computed from Eq. (2.8)).
In the NIS junction, disorder leads to a bimodal distribution
p(T), with a peak near zero transmission and another peak
near unit transmission (dashed curve). A similar bimodal
distribution appears in the ballistic NINIS junction for ap-
proximately equal transmission probabilities of the two bar-
riers. There are also differences between the two cases: The
NIS junction has a unimodal p(T) if L/I < 1/I', while the
NINIS junction has a bimodal p(T') for any ratio of I'} and
I';. In both cases, the opening of tunneling channels, i.e.,
the appearance of a peak in p(7) near T = 1, is the origin
for the 1/I" dependence of the resistance.

3. Effects of disorder

Let us now investigate what happens to the resistance
minimum if the region of length L between the tunnel bar-
riers contains impurities, with elastic mean free path /. We
denote s = L/I. When introducing disorder, it is necessary
to consider ensemble-averaged quantities. To calculate the
ensemble-averaged conductance (Gns), we need to know
the density p of the transmission eigenvalues 7, as a func-
tion of s. It is convenient to work with the parameterization

T, =1/cosh’x,, x, = 0. 3.1)

The density of the x,’s is defined by p(x,s) = (T,6(x —
x,)). From Eq. (2.1) we know that, for s = 0 (no disorder),

2n
p(x,0)= N/ % d0(x — arccoshr/a + b cos ¢)
0

_ %sinth (5 = (@—cost®x?) ", (32)

for arccoshva — b = xpn < X < Xmax = arccoshv/a + b.
For s > 0 we obtain the density p(x,s) from the integro-
differential equation [15]

0 1 © 0
EP(X,S) = 5N a5 P 5
/ dx’p(x’,s) In | sinh® x — sinh® x| , (3.3)
0

which is the large N-limit of the scaling equation due to
Dorokhov [16] and Mello et al. [17]. This equation describes
the evolution of p(x,s) when an infinitesimal slice of dis-
ordered material is added. With initial condition (3.2) it
therefore describes a geometry where all disorder is on one
side of the two tunnel barriers, rather than in between. In
fact, only the total length L of the disordered region matters,
and not the location relative to the barriers. The argument
is similar to that in Ref. [18]. The total transfer matrix M
of the normal region is a product of the transfer matrices
of its constituents (barriers and disordered segments): M =
M\MMs; - - -. The probability distribution of M is given
by the convolution p(M) = pi x ps * p3 % --- of the dis-
tributions p, of transfer matrices M,. The convolution is
defined as

P:*PJ(M):/dM' p(MM" (M) (3.4)

If for all parts 7 of the system, p,(M,) is a function of the
eigenvalues of MIMf only, the convolution of the p, com-
mutes [18]. The distributions p, are then called isotropic. A
disordered segment (length L, width ') has an isotropic dis-
tribution if L> W. A planar tunnel barrier does not mix the
modes, so a priori it does not have an isotropic distribution.
However, if the mode dependence of the transmission prob-
abilities is neglected (as we do here), it does not make a dif-
ference if we replace its distribution by an isotropic one. The
commutativity of the convolution of isotropic distributions
implies that the location of the tunnel barriers with respect
to the disordered region does not affect p(x, s). The systems
in Figs. 3(a)—(c) then have identical statistical properties.

Once p(x,s) is known, the conductances (Gns) and (Gn)
can be determined from

4¢* [
Gy =2 [
0

(G = 22 /wdx P 5) (3.6)
0

,
cosh? x

p(x,s)

; 35
cosh? 2x (-5
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Fig 3 The systems a, b, and ¢ are statistically equivalent, 1f the
transfer matrices of each of the two barriers (solid vertical lines)
and the disordered regions (shaded areas, L) + L = L 1n case b)
have 1sotropic distributions, 1n that case, the position of the disorder
with respect to the barriers does not affect the eigenvalue density

p(x,s)

where we have substituted Eq (3 1) mto Eqs (24) and
(2 5) InRef [9] a general solution to the evolution equation
was obtamed for arbitrary initial condition It was shown
that Eq (3 3) can be mapped onto Euler’s equation of hy-
drodynamics

0 0
S UG8) + ULs) 5 ULs) = 0 37
0s o¢
by means of the substitution
smh2{ [, o(x',s)
U{,s)= d’ ——— 38
(€9 2N/, sinh? { — sinh? x! (38)

Here, U = Uy +1U, and{ = x +1y Eq (3 7) describes the
velocity field U({,s) of a 2D 1deal fluid at constant pressure
1n the x—y plane Its solution 15 '

U(L,s) = Un(C = sU(L5)) (39)

m terms of the mitial value Up({) = U({,0) The proba-
bility distribution p(x,s) follows from the velocity field by
mversion of Eq (3 8),

2N
plx,s) = - W(x —18,5), (3 10)
where ¢ 1s a positive infinitesimal

! The mmplicit equation (3 9) has multiple solutions m the entire
complex plane, we need the solution for which both ¢ and { —
sU(L,s) ie i the strip between the lines y = 0 and y = —x/2

Fig 4 Eigenvalue density p(x,s) as a function of x (in umits
of s=L/I) for I'y =T, =02 Curves ab,c,d, and ¢ are for
s =105,2,5,20,100, respectively In the special case of equal tun-
nel barriers, open channels exist already 1 the absence of disorder

In our case, the mnitial velocity field [from Eqs (3 2) and
(38)] 15
Us({) = —14 smh 2{[(cosh® { — a)® — 5717 3 11)
The resulting density (3 10) 1s plotted in Fig 4 for I') =
I'> = I and several disorder strengths The region near x =
0 1s of mmportance for the conductance (since x near zero
corresponds to near-unit transmission) The number Nopen =
p(0, ) 15 an estimate for the number of transmission eigen-
values close to 1 (the so-called “open channels” [19]) In
the absence of disorder, Nypn 18 non-zero only if I'y &
I'> (then a — b =1= xun =0) From Eq (3 2) we find
Nopen = NI'fnfors =0and ') = I, =TI « 1 Adding dis-
order reduces the number of open channels If I'y # I'; there
are no open channels for s = 0 (xmm > 0) Disorder then
has the effect of increasing Nopen, such that Nopen =2 Nfs 1f
(I't + I'2)s > 1 The disorder-induced opening of channels
was studied m Refs [9, 10] for the case of a single-tunnel-
barrier

To test our analytical results for the eigenvalue density
p(x,s), we have carried out numerical stmulations, similar
to those reported m Ref [9] The sample was modeled by
a tight-binding Hamiltoman on a square lattice with lattice
constant ¢ The tunnel barriers were accounted for by assign-
g a non-random potential energy Up = 2 3Er to a single
row of sites at both ends of the lattice, which corresponds to
a mode-averaged barrier transparency I'y = I'; = 0 18 The
Fermi energy was chosen at 1 5ug, with uy = A2/2ma® Dis-
order was introduced by randomly assigning a value between
i%UD to the on-site potential of the lattice points between
the barriers The disorder strength Up was varied between
0 and 1 Suy, corresponding to s between 0 and 11 7 We
considered geometries with both a square disordered region
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N‘lfX p(x s)dx
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Fig 5 Companson between theory and simulation of the integrated
eigenvalue density for I'y = I’y = 0 18 The labels a, b, ¢ indicate,
respectively, s = 0,3,11 7 Solid curves are from Eq (3 9), data
pomts are the x,,’s from the simulation plotted in ascending order
versus n/N Filled data points are for a square geometry, open
points are for an aspect 1atto L/W = 3 8

(285 x 285 sites, N = 119) and a rectangular one (285 x 75
sites, N = 31), to test the geometry dependence of our re-
sults In Fig 5, we compare the integrated eigenvalue den-
sity v(x,s) = N ™! fox dx’p(x’, s) with the numerical results

The quantity v(x, s) follows directly from our simulations
by plotting the x,’s m ascending order versus n/N = v We
want to sample v(x,s) at many points along the x-axis, so we
need N large Since the x,’s are self-averaging (fluctuations
are of the order of 1/N'), 1t 1s not necessary to average over
many samples The data shown m Fig 5 are from a single
realization of the impurity potential There 1s good agree-
ment with the analytical results No geometry dependence 1s
observed, which indicates that the restriction L> W of Eq
(3 3) can be relaxed to a considerable extent

Using Eqs (35) and (3 8), the average conductance
{Gns) can be directly expressed m terms of the velocity
field,

_2NE? —
- ]’l {——1m/4 6(

(Gns) U(L,s) (3 12)

for { — —in/4, U — 1U,, U, > 0 The implicit solution
(3 9) then takes the form

¢/ (Qa+smd — 1Y —4b? = 2scos ¢, (3 13)

where ¢ = 25U, € [0,m/2] We now use that

R IS

[see Eq (3 7)] Combining Eqgs (3 12) and (3 13) we find

2N

2
(Grs) = 5(s +1/Q) ' (314)

10

(Rye)X 2NT,e?/h
[o)

1T,
Fig 6 Dependence of the ensemble averaged resistance (Rns) for
a disordered NINIS junction on barrier transparancy I'y, while
'y =01 1s kept fixed [computed from Eqs (3 14) and (3 15)]
Curves a, b, ¢, d are fors = 0 2 7, 30, respectively The resistance
minmmum persists for small disorder

where the effective tunnel rate Q 15 given in terms of the
angle ¢ in Eq (3 13) by

_ ¢
0= scos ¢
2
X (sde— %[Sl\ld’+(1 =2/ X1 — 2/F2)]> (315)

Egs (3 13)—~(3 15) completely determine the conductance
of a double-barrier NS-junction contamning disorder

In Fig 6, we plot (Rns) for several values of the disor-
der, keeping I'> = 0 1 fixed and varying the transparency of
barrier 1 For weak disorder (I'2s < 1), the resistance mint
mum 1s retained, but its location moves to larger values of
I'1 On increasing the disorder, the minumum becomes shal-
lower and eventually disappears In the regime of strong
disorder (I';s > 1), the resistance behaves nearly Ohmic

We stress that these results hold for arbitrary s = L/I, all
the way from the ballistic into the diffusive regime Volkov
et al [7] have computed (Gys) in the diffusive limit s3> 1
In that limit our Eqs (3 13) and (3 15) take the form

scosd 1 ¢ o ¢ ’
st my- () 5 1‘(?@)’

(316)

Ny o\
MZEPﬁ(F—IS)] . (317)

Q-
i
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n precise agreement with Ref [7] Nazarov’s circuit theory
[10], which 1s equivalent to the Green’s function theory of
Ref [7], also leads to this result for (Gns) 1n the diffusive
regime

Two limiting cases of Eqs (3 16) and (3 17) are of par-
ticular interest For strong barriers, I'1, 12 €1, and stiong
disorder, s > 1, one has the two asymptotic formulas

2 2 2
Gy =IO er e, (318)
h 2 21372
(rt+13)
2N _
(Gns) = he (s+ UM+ 1)~ f 0, F> s
(3 19)

Eq (3 18) comcides with Eq (2 6) 1n the it oy, 02> 1
(recall that I', = 1/cosh®o,) This shows that the effect of
disorder on the resistance minimum can be neglected as long
as the resistance of the junction 1s dominated by the barriers

In this case (Gns) depends lmearly on I’y and ['> only 1f
I't = I'; Eq (319) shows that 1f the disorder dominates,
(Gns) has a linear I' dependence regardless of the relative
magnitude of I'y and I';

4. Conclusions

In summary, we have derived an expression for the con-
ductance of a ballistic NINIS junction mn the limit NI'> 1
that the tunnel resistance 1s much smaller than 4/e’ In this
regime the double-barrier junction contains a large number
of overlapping resonances, so that 1n the normal state the
resistance depends monotonically on 1/I" In contrast, the
NINIS junction shows a resistance minimum when one of
the barrier transparencies is varied while the other 1s kept
fixed The mimimal resistance (at I'y ~ I'» = I') 1s propor-
tional to 1/I", instead of the 1/I"* dependence expected for
two-particle tunneling mnto a superconductor This 1s simi-
lar to the reflectionless tunneling which occurs m an NIS
junction Using the results of the ballistic junction, we have
described the transition to a disordered NINIS junction by
means of an evolution equation for the transmission eigen-
value density [9] We found that the resistance mimimum 1s
unaffected by disorder, as long as /> L/T", 1 e, as long as the
barrier resistance dominates the junction resistance As the
disorder becomes more dommant, a transition to a mono-
tonic I" dependence takes place In the limit of diffusive
motion between the barriers, our results agree with Ref [7]

Throughout this paper we have assumed zero tempera-
ture, zero magnetic field, and mfimtesimal applied voltage
Each of these quantities 1s capable of destroying the phasc
coherence between the electrons and the Andreev-reflected
holes, which 1s responsible for the resistance mmimum As
far as the temperature 7" and voltage V' are concerned, we
require kT, eV <%i/tawen for the appearance of a resistance

minimum, where tgwey 18 the dwell time of an electron 1n the
region between the two barriers For a ballistic NINIS junc-
tion, we have tgwen ~ L/vrl", while for a disordered junction
Tawen ~ L*/opl’1 15 larger by a factor L/I It follows that the
condition on temperature and voltage becomes more restric-
tive 1f the disorder increases, even 1f the resistance remains
dominated by the barriers As far as the magnetic field B 1s
concerned, we require B <€h/eS (with S the area of the junc-
tion perpendicular to B) if the motion between the barriers
1s diffusive For ballistic motion the trajectories enclose no
flux, so no magetic field dependence 1s expected

A possible experiment to verify our results might be scan-
ning tunneling microscopy of a metal particle on top of a
superconducting substrate [12] The metal-superconductor
interface has a fixed tunnel probability I'» The probabil-
ity I'y for an electron to tunnel from STM to particle can
be controlled by varying the distance (Volkov has recently
analyzed this geometry 1n the regime that the motion from
STM to particle 1s diffusive rather than by tunneling [20] )
Another possibility 1s to create an NINIS junction using a
two-dimensional electron gas in contact with a supercon-
ductor The tunnel barriers could then be implemented by
means of two gate electrodes In this way both transparan-
cies might be tuned independently
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