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Abstract

The resistance is computed of an NIjNbS junction, where N is the normal metal, S the superconductor, and I, the msulator
or tunnel barner (transmission probability per mode Γ,) The ballistic case is considered, äs well äs the case that the region
between the two barners contams disorder (mean free path /, barner Separation L) It is found that the resistance at fixed
Γι shows a mimmum äs a function of ΓΙ, when Γ\ « λ/2/^2, provided / > Γ-iL The mimmum is explamed in terms of the
appearance of transmission eigenvalues close to one, analogous to the "reflectionless tunneling" through a NIS junction with
a disordered normal region The theory is supported by numencal simulations

1. Introduction

Reflectionless tunneling is a novel quantum interference
effect which occurs when dissipative normal current is con-
verted mto dissipationless supercurrent at the mterface be-
tween a normal metal (N) and a superconductor (S) [1]
Experimentally, the effect is observed äs a peak m the differ-
ential conductance around zero voltage or around zero mag-
netic field [2] Its name refers to the fact that, for full-phase
coherencc, the Andreev-reflected quasiparticle can tunnel
through the potential barncr at the NS mterface without
suffenng reflections (The potential barner can be the m-
sulator (I) m an NIS junction, or the Schottky barner in a
semiconductor-superconductor junction ) Application of a
voltage or magnetic field destroys the phase cohcrence be-
tween electrons and holes, and thus reduces the conductance
of the junction We now have a good theoretical understand-
mg of the effect, based on a combination of numencal [3,4],
and analytical work [5-10] The basic requirement for re-
flectionless tunneling is that the normal region has a resis-
tance which is larger than the resistance of the mterface
In that case the disorder is able to open a fraction of the
tunneling channcls, l c it mduces the appearance of trans-
mission eigenvalues close to one [10] As a result of these
open channels, the resistance has a linear dependence on the
transparency of the mterface, instead of the quadratic de-

* Correspondmg author

pendence expected for Andreev reflection [11] (which is a
two-particle piocess)

The purpose of this work is to present a study of reflec-
tionless tunneling m its simplest form, when the resistance
of the normal metal is due to a second tunnel barner, m se-
nes with the barner at the NS mterface This allows an exact
calculation, which shows many of the features of the more
comphcated case when the resistance of the normal region
is due to disorder Furthermore, the double-bamer geome-
try provides an expenmentally reahzable model System, for
example, m tunneling from an STM mto a superconductor
via a metal particle [12]

The outline of this paper is äs follows In Section 2 we
consider the pioblem of a NIiNtS junction without disorder
We compute the resistance of the junction äs a function of
the transmission probabihties per mode Γι and Γι of the two
barners The resistance at fixed ΓΪ shows a mimmum äs a
function of ΓΙ when Γ\ ~ ^/2Γ·i Ξ Γ The resistance
m the mimmum depends hnearly on 1/Γ, in contrast
to the quadratic dependence m the case of a smgle
bamer In Section 3 we apply a recent scahng the-
ory [9], to find the influence on the resistance mm-
imum of disorder m the region between the barners
(length L, mean free path /) The resistance mimmum
persists äs long äs / > FL In the diffusive regime
(/</-), our results agiee with a previous Green's func-
tion calculation by Volkov et al [7] The analytical results
are supported by numencal simulations, usmgthe recursive
Green's function technique [13] We conclude in Section 4
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2. MINIS junction without disorder

We consider a NIiN^S junction, where N is the normal
metal, S is the superconductor, and I, the insulator or tunnel
barrier (see inset of Fig. l). The transmission probability per
mode of I, is denoted by Γ,. For simplicity, we neglect the
mode dependence of Γ,. In this section, we assume ballistic
motion between the barriers. (The effect of disorder in the
normal region is considered in Section 3.) A straightforward
calculation yields the transmission probabilities T„ of the
two barriers in series,

Tn = (α + bcosφ„) ,

where

2 - Γ, - Γ2

(2.1)

(2.2a)

(2.2b)

and φη is the phase accumulated between the barriers by
mode n = 1,2, . . . ,N (with ./V the number of propagating
modes at the Fermi level). If we substitute Γ, = l/cosh2«,
(a, ^0), the coefficients a and b can be rewritten äs

a = \ + \ cosh 2«! cosh 2c<2 ,

b=\ sinh 2«i sinh 2o<2 ·

(2.3a)

(2.3b)

Since the transmission matrix t is diagonal, the transmis-
sion probabilities T„ are identical to the eigenvalues of ft1".
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Fig. 1. Dependence of the resistances AN and ANS of ballistic
NININ and MINIS structures, respectively, on barrier transparency
ΓΙ, while transparancy ΓΙ = 0.1 is kept fixed [computed from
Eqs.(2.6) and (2.7)]. The inset shows the MINIS structure consid-
ered.

We use the general relationship between the conductance
GNS = GNINIS of the NINIS junction and the transmission
eigenvalues of the normal region [14],

TL n
GNS = —

h :

which is the analogue of the Landauer formula,

>2 N

(2.4)

(2.5)

for the conductance GN = GNININ in the normal state. We
assume that L |> AF ( AF is the Fermi wavelength) and ΝΓ, $> l,
so that the conductance is not dominated by a single reso-
nance. In this case, the phases </>„ are distributed uniformly
in the interval (0,2π) and we may replace the summations
in Eqs. (2.4) and (2.5) by Integrals over φ: Σ^

(Λ//2π) /0

2π αφ f^\ The result is

GNS =
4e2N cosh 2α ι cosh2«2

4e2N

(cosh2 2αι + cosh2 2«2 — l)

(cosh2«i

3/2
(2.6)

(2.7)

These expressions are Symmetrie in the indices l and 2; it
does not matter which of the two barriers is closest to the
superconductor.

In the same way we can compute the entire distribution
of the transmission eigenvalues, p(T) = Σ,,δ(Τ — T„) —>

(Λ//2π) /Ο

2π αφ δ(Τ - Τ(φ)). Substituting Τ (φ) = (α +

from Eq. (2.1), we find

= -= (b2T2 -(αΤ-\)2\
πΤ

(2.8)

+ b)~[ < T < (a - b)~l·
In Fig. l we plot the resistance AN = I/GN and ANS =

I/GNS, following from Eqs. (2.6) and (2.7). Notice that AN
follows Ohm's law,

RN =
h

2Ne2 O/r,+ 1/Γ2-1), (2.9)

äs expected from classical considerations. In contrast, the
resistance ANS has a minimum if one of the r's is varied
while keeping the other fixed. This resistance minimum can-
not be explained by classical series addition of barrier re-
sistances. If Γ2 < l is fixed and Γι is varied, äs in Fig. l,
the minimum occurs when Γι = Λ/2Γ2. The minimal resis-
tance ANS" is of the same order of magnitude äs the resis-
tance AN in the normal state at the same value of ΓΙ and
Γ2. (For r2 « l, ANS" = 1.52ÄN) In particular, we find that
ANS" depends linearly on 1/Γ,, whereas for a single barrier
ANS oc 1/Γ2.
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Fig. 2. Density of normal-state transmission eigenvalues for an NS
junction with a potential bamer at the mterface (transmission prob-
abihty Γ — 0.4) The left panel (a) shows the disorder-mduced
openmg of tunnehng channels m a NIS junction (solid curve:
i = 0.04, dotted: i = 0.4, dashed· 5 = 5; where i = L/l}. The right
panel (b) shows the opening of channels by a second tunnel barner
(transparancy Γ') in an NINIS junction (solid curve: Γ' = 0.95;
dotted: Γ' = 0.8, dashed: Γ' = 0.4). The curves m (a) are com-
puted from Ref. [9], the curves m (b) from Eq.(2.8). Notice the
similarity of the dashed curves.

The linear dependence on the barrier transparency shows
the qualitative similarity of a ballistic NINIS junction to
a disordered NIS junction. To illustrate the similarity, we
compare in Fig. 2 the densities of transmission eigenval-
ues through the normal region. The left panel is for an NIS
junction (computed using the results of Ref. [9]), the right
panel is for an NINIS junction (computed from Eq. (2.8)).
In the NIS junction, disorder leads to a bimodal distribution
p(T), with a peak near zero transmission and another peak
near unit transmission (dashed curve). A similar bimodal
distribution appears in the ballistic NINIS junction for ap-
proximately equal transmission probabilities of the two bar-
riers. There are also differences between the two cases: The
NIS junction has a unimodal p(T) if L/l < 1/Γ, while the
NINIS junction has a bimodal p(T) for any ratio of ΓΙ and
ΓΙ. In both cases, the opening of tunneling channels, i.e.,
the appearance of a peak in p(T) near T = l, is the origin
for the 1/Γ dependence of the resistance.

3. Effects of disorder

Let us now investigate what happens to the resistance
minimum if the region of length L between the tunnel bar-
riers contains impurities, with elastic mean free path /. We
denote 5 = L/1. When introducing disorder, it is necessary
to consider ensemble-averaged quantities. To calculate the
ensemble-averaged conductance (GNS), we need to know
the density p of the transmission eigenvalues T„ äs a func-
tion of i. It is convenient to work with the parameterization

The density of the ,x„'s is defined by p(x, s ) Ξ (Σηδ(χ —
xn))· From Eq. (2.1) we know that, for 5 = 0 (no disorder),

--
2π

δ(χ — arccoshy7« + b cos φ)

· ι ~ ί,ϊ , , 2 s2= — s m h l x l o — (a — cosh x)
π ^

/-, ~ N(3.2)

for arccosh\/a — b = xmm < χ < xmax Ξ arccosh\/a + b.
For 5 > 0 we obtain the density p(x, s) from the integro-

differential equation [15]

1

dx'p(x',s)\n | sinh2* - sinn V | (3.3)

which is the large jV-limit of the scaling equation due to
Dorokhov [16] and Mello et al. [17]. This equation descnbes
the evolution of p(x,s) when an infinitesimal slice of dis-
ordered material is added. With initial condition (3.2) it
therefore describes a geometry where all disorder is on one
side of the two tunnel barriers, rather than in between. In
fact, only the total length L of the disordered region matters,
and not the location relative to the barriers. The argument
is similar to that in Ref. [18]. The total transfer matrix M
of the normal region is a product of the transfer matrices
of its constituents (barriers and disordered segments): M =
MiMzMs · · ·. The probabihty distribution of M is given
by the convolution p(M) = p\ * pi * p^ * · · · of the dis-
tributions p, of transfer matrices M,. The convolution is
defined äs

p, * Pj(M) = / dM' p,(MM'~l )Pj(M'). (3.4)

If for all parts i of the System, ρ,(Μ,) is a function of the
eigenvalues of M,M( only, the convolution of the p, com-
mutes [18]. The distributions p, are then called isotropic. A
disordered segment (length L, width W) has an isotropic dis-
tribution if L !> W. A planar tunnel barrier does not mix the
modes, so a priori it does not have an isotropic distribution.
However, if the mode dependence of the transmission prob-
abilities is neglected (äs we do here), it does not make a dif-
ference if we replace its distribution by an isotropic one. The
commutativity of ihe convolution of isotropic distributions
implies that the location of the tunnel barriers with respect
to the disordered region does not affect p(x,s). The Systems
in Figs. 3(a)-(c) then have identical statistical properties.

Once p(x,s) is known, the conductances (GNS) and {(JTM)
can be determmed from

T„ = l/ cosh2 x„, x„ ^ 0. (3.1) = -Γh Λ

dx

dx

P(x,s)
cosh2 2x

P(x,s)

cosh2* '

(3.5)

(3.6)
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Fig 3 The Systems a, b, and c are statistically equivalent, if the
transfer matnces of each of the two barners (solid vertical hnes)
and the disordered regions (shaded areas, L\ + L2 = L m case b)
have Isotropie distributions, m that case, the position of the disorder
with respect to the barners does not affect the eigenvalue density
p(x,s)

where we have substituted Eq (31) mto Eqs (24) and
(25) In Ref [9] a general solution to the evolution equation
was obtamed for arbitrary initial condition It was shown
that Eq (33) can be mapped onto Euler's equation of hy-
drodynamics

(37)

by means of the Substitution

'd*'
2N

p(x',s)

smh2 ζ — smh2 x'
(38)

Here, U = Ux + iUy and ζ Ξ χ + \y Eq (37) descnbes the
velocity field U (ζ, s) of a 2D ideal fluid at constant pressure
m the x-y plane Its solution is '

m terms of the initial value f/o(Q = U (ζ, 0) The proba-
bihty distnbution p(x,s) follows from the velocity field by
Inversion of Eq (38),

27V
p(x,s) = Uy(x — 16, i),

7t

where ε is a positive infinitesimal

(310)

1 The imphcit equation (3 9) has multiple Solutions m the entire
complex plane, we need the solution for which both ζ and ζ —
si/(£,s) he m the stnp between the hnes y = 0 and y = —π/2

Fig 4 Eigenvalue density p(x,s) äs a function of χ (m units
of 5 = L/1) for Γ ι = Γ2 = 0 2 Curves a,b,c,d, and e are for
i = 0 5,2,5,20,100, respectively In the special case of equal tun-
nel barriers, open channels exist already in the absence of disorder

In our case, the initial velocity field [from Eqs (32) and
(3 8)] is

i/0(Q = -i smh 2f [(cosli ζ - a) - b'].2-1-1/2 (311)

The resultmg density (3 10) is plotted in Fig 4 foi Γι =
ΓΪ Ξ Γ and several disorder strengths The region near χ =
0 is of importance for the conductance (smce χ near zero
corresponds tonear-umttransmission) The number Nopt:n Ξ
p(0,s) is an estimate for the number of transmission eigen-
values close to l (the so-called "open channels" [19]) In
the absence of disorder, 7Voptrl is non-zero only if ΓΙ sä
Γζ (then a — b = l => xmm = 0) From Eq (3 2) we find
Nopcn = ΝΓ/π for i = 0 and Λ = Γ2 = Γ < l Addmg dis-
order reduces the number of open channels I fTi φ ΓΙ there
are no open channels for 5 = 0 (xmm > 0) Disorder then
has the effect of mcreasmg Nopcn, such that 7Vopcn ~ N/s if
(Γι + F2)s » l The disorder-mduced opemng of channels
was studied in Refs [9,10] for the case of a smgle-tunnel-
barrier

To lest our analytical results for the eigenvalue density
p(x,s), we have carried out numencal simulations, similar
to those reported m Ref [9] The sample was modeled by
a tight-bmding Hamiltoman on a square lattice with lattice
constant a The tunnel barriers were accounted for by assign-
mg a non-random potential energy ÜB = 2 3£V to a smgle
row of sites at both ends of the lattice, which corresponds to
a mode-averaged barner transparency Γ ι = Γ2 = Ο 18 The
Fermi energy was chosen at l 5«o, with UQ = Ä2/2ma2 Dis-
order was mtroduced by randomly assignmg a value between
± i i/o to the on-site potential of the lattice points between
the barriers The disorder strength UD was varied between
0 and l 5«o, correspondmg to s between 0 and 11 7 We
considered geometnes with both a square disordered region
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Fig 5 Companson between theory and Simulation of the mtegrated
eigcnvalue density for Γ] = ΓΙ = 0 18 The labels a, b, c mdicate,
respectively, s = 0,3,11 7 Solid curves are from Eq (3 9), data
points are the x„'s from the Simulation plotted in ascending order
versus n/N Filled data points are for a square geometry, open
pomts are for an aspect latio L/W = 38

(285 x 285 sites, 7V = 119)andarectangularone (285 χ 75
Sites, N = 31), to lest the geometry dependence of our re-
sults In Fig 5, we compare the mtegrated eigenvalue den-
sity v(x,s) Ξ N~[ f* dx'p(x',s) with the numencal results

The quanttty v(x,s) follows directly from our simulations
by plottmg the x„'s m ascending order versus «/7V Ξ ν We
want to sample v(x, s) at many points along the .x-axis, so we
need 7V large Since the x„'s are self-averagmg (fluctuations
are of the order of l/TV), it is not necessary to average over
many samples The data shown in Fig 5 are from a smgle
reahzation of the impunty potential There is good agree-
ment with the analytical results No geometry dependence is
observed, which mdicates that the restnction L ^> W of Eq
(33) can be relaxed to a considerable extent

Usmg Eqs (35) and (3 8), the average conductance
(GNS) can be directly expressed in terms of the velocity
field,

27Ve2

hm —i
-1-171/4 9ζ

(312)

for ζ —> —ιπ/4, U —» iUy, Uv > 0 The imphcit solution
(39) then takes the form

-sin φ- l)2-4b2 = 2s cos φ , (313)

where φ Ξ 2sUy G [Ο,π/2] We now use that

3 _ Γ 9 .

[see Eq (3 7)] Combmmg Eqs (3 12) and (3 13) we find

„2

(3 14)

i-,

20

Fig 6 Dependence of the ensemble averaged resistance (ANS) for
a disordered MINIS junction on barrier transparancy ΓΙ, while
Γ2 = 0 l is kept fixed [computed from Eqs (3 14) and (3 15)]
Curves a, b, c, d are for i = 0 2 7,30, respectively The resistance
mmimum persists for small disorder

where the effective tunnel rate Q is given m terms of the
angle φ m Eq (3 13) by

ß = scos<

(315)

Eqs (3 13)-(3 15) completely determme the conductance
of a double-bamer NS-junction contammg disorder

In Fig 6, we plot (ANS) for several values of the disor-
der, keeping Γζ = 0 l fixed and varymg the transparency of
barrier l For weak disorder (Fi.s <§ l ), the resistance mini
mum is retamed, but its location moves to larger values of
Γι On mcreasing the disorder, the mimmum becomes shal-
lower and eventually disappears In the regime of strong
disorder (F^s > 1), the resistance behaves nearly Ohmic

We stress that these results hold for arbitrary s Ξ L/l, all
the way from the balhstic into the diffusive regime Volkov
et al [7] have computed (ÖNS) m the diffusive hmit s$> l
In that hmit our Eqs (3 13) and (3 15) take the form

s cos φ _ J_ / __ ί _φ_ \ J_

Φ ~ Γ, V \Γ2ί) Γ2

l -

l

Ö
-r, ι - _

r,s

(316)

(317)
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m precise agreement with Ref [7] Nazarov's Circuit theory

[10], which is equivalent to the Green's function theory of

Ref [7], also leads to this result for {GNS} m the diffusive

regime
Two hmiting cases of Eqs (3 16) and (3 17) are of par-

ticular mterest For strong barners, Γ ι , Γ 2 · 4 ΐ , and stiong

disorder, s > l, one has the two asymptotic formulas

2Ne2

Γ1)
3/2'

(3 18)

2Ne2

(ί+1/Γι ιίΓ,,Γ2ΜΛ

(319)

Eq (3 18) comcides with Eq (2 6) m the hmit α\,α.ϊ^\

(recall that Γ, Ξ 1/cosh α,) This shows that the effect of

disorder on the resistance mmimum can be neglected äs long
äs the resistance of the junction is dommated by the barners
In this case {GNS} depends linearly on Γ\ and Γι only if

Γι « Γ2 Eq (3 19) shows that if the disorder dommates,

{GNS} has a linear Γ dependence regardless of the relative

magnitude of ΓΙ and Γ'2

4. Conclusions

In summary, we have denved an expression for the con-

ductance of a balhstic NINIS junction m the hmit ΝΓ > l

that the tunnel resistance is much smaller than h/e1 In this
regime the double-bamer junction contams a large number

of overlappmg resonances, so that in the normal state the
resistance depends monotonically on 1/Γ In contrast, the

NINIS junction shows a resistance mmimum when one of

the barrier transparencies is varied while the other is kept

fixed The minimal resistance (at Γι ~ Γι = Γ) is propor-

tional to l/Γ, mstead of the 1/Γ2 dependence expected for

two-particle tunnelmg mto a superconductor This is simi-

lar to the reflectionless tunnelmg which occurs in an NIS
junction Usmg the results of the balhstic junction, we have

descnbed the transition to a disordered NINIS junction by

means of an evolution equation for the transmission eigen-

value density [9] We found that the resistance mmimum is
unaffected by disorder, äs long äs l^L/Γ, i e , äs long äs the
barrier resistance dommates the junction resistance As the
disorder becomes more dominant, a transition to a mono-
tomc Γ dependence takes place In the hmit of diffusive

motion between the barners, our results agree with Ref [7]

Throughout this paper we have assumed zero tempera-

ture, zero magnetic field, and infinitesimal apphed voltage

Each of these quantities is capable of destroying the phasc

coherence between the electrons and the Andreev-reflected

holes, which is responsible for the resistance mmimum As

far äs the temperature T and voltage V are concerned, we

require k&T, eF<^Ä/Tdwcii for the appearance of a resistance

mmimum, wherc tdwcii I S the dwell time of an elcctron m the
region between the two barners For a balhstic NINIS junc-
tion, we have Tdweii ~ L/VfF, whilc for a disordered junction
Tdweii ~ 1?/υρΠ is larger by a factor L/l It follows that the
condition on temperature and voltage becomes more restnc-
tive if the disorder mcreases, even if the resistance remams

dommated by the barners As far äs the magnetic field B is
concerned, we rcquirc B <ζ h/eS (with S the area of the junc-

tion perpendicular to B) if the motion between the baniers

is diffusive For balhstic motion the trajectones cnclose no

flux, so no magetic field dependence is expected

A possible expenment to venfy our results might be scan-

nmg tunnelmg microscopy of a metal particle on top of a

superconducting Substrate [12] The metal-superconductor

mterface has a fixed tunnel probabihty Γ2 The probabil-

ity Γ ι for an electron to tunnel from STM to particle can

be controlled by varying the distance (Volkov has recently

analyzed this geometry m the regime that the motion from
STM to particle is diffusive rather than by tunnelmg [20] )

Another possibility is to create an NINIS junction usmg a

two-dimensional electron gas m contact with a supercon-

ductor The tunnel barners could then bc implemented by

means of two gate electrodes In this way both transparan-

cies might be tuned mdependently
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