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Fragmenting the universe
I1. Voronoi vertices as Abell clusters
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Summary. The large-scale structure of the Universe (around
50 Mpc) can be described by means of “Voronoi foam”, which is a
partitioning of space obtained by a process called Voronoi
tessellation. We present the first results of a comparison between
the statistics of Voronoi foams and the observed galaxy distri-
bution. In particular, we show that the spatial two-point corre-
lation function of Voronoi vertices has a power law behaviour
with almost the same amplitude and slope as that of the Abell
clusters. This confirms our earlier expectations that Voronoi
nodes are to be identified with high-density galaxy clusters in the
Universe.
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1. The Voronoi model

In a pressureless, selfgravitating medium, fluctuations that have a
density above average must collapse to form structures with
increasingly aspherical shapes, becoming flattened and filamen-
tary (Lynden-Bell, 1964; Lin et al., 1965; Icke, 1972). The secular
increase of the asphericity of perturbations explains the filamen-
tary appearance of the distribution of galaxies (Icke, 1973; Oort,
1983; Giovanelli et al., 1986; De Lapparent et al., 1986), but the
approximation must break down as soon as the perturbations
become nonlinear.

Contrariwise, low-density fluctuations expand a little faster
than the average Hubble rate, becoming progressively more
spherical as they expand (Icke, 1984). These fluctuations are the
progenitors of the observed voids (Einasto et al., 1980; Kirshner et
al., 1981, 1987). The same arguments as above can still be applied,
except that the sense of the final effect is reversed: because a void is
effectively a region of negative density in a uniform background,
the voids expand while the overdense regions collapse, and slight
asphericities decrease as the voids become larger. Consequently,
the density in the voids becomes smaller in the course of time.
Moreover, because | dg/g| does not exceed unity in a void, the
linear approximation will remain good for a longer period, except
near the outer parts of the voids, where the matter gets swept up.
Just as in the case of growing filaments, the velocity field in the
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voids is proportional to the distance inside them: voids are
expected to be “superhubble bubbles.”

Thus, we can “‘turn the Universe inside out”, and consider the
evolution of the Jow-density regions. We may then think of the
large-scale structure ! of gravitating matter in the Universe as a
close packing of spheres, generating convex cells of different sizes
out of which matter flows in a slightly super-Hubble expansion
towards the interstices of the spheres.

In our description, the voids are driven by an effective
expansion that is due to the presence of locally underdense
regions. However, explicitly driven expansion, as in the case of
explosion bubbles (Ikeuchi, 1981; Ostriker and Cowie, 1981),
produces the same partitioning of space.

The above “Bubble Theorem” provides a physical mechanism
behind the construction of the skeleton of the cosmic large-scale
mass distribution by considering the locus of points towards
which the matter streams out of the voids. Consider a collection of
slightly underdense regions in the primordial density field. These
regions are the seeds of voids, expansion centres from which
matter flows away until it encounters similar material flowing out
of an adjacent void. Making the approximation that the excess
expansion is the same in all voids, the matter must collect on
planes that perpendicularly bisect the axes connecting the expan-

sion centres.
For any given set of expansion centres, or nuclei, the arrange-

ment of these planes defines a unique process for the partitioning
of space, a Voronoi tessellation (Voronoi, 1908). A particular reali-
sation of this process may be called a Voronoi foam (Icke and Van
de Weygaert, 1987). A Voronoi foam consists of a packing of
Voronoi cells. Each cell that surrounds a particular nucleus
encloses that part of space which is closer to its nucleus than to any
other nucleus.

In three-space, such a foam is built of three topologically
distinct elements: walls, formed by the planes that enclose the
polyhedral Voronoi cells (the interiors of which are observed as
voids), filaments where three walls intersect, and nodes where four
filaments come together. The walls are “pancakes” (Zel’dovich,
1970), the filaments are supposed to correspond to the elongated
superclusters (Icke, 1972; Oort, 1983; Giovanelli et al., 1986), and

! This is the term commonly used for structures with length scales
on the order of 100 Mpc. We prefer to call this a “medium” scale,
in view of the fact that the horizon radius is two orders of
magnitude larger. However, we will conform to present usage.
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the nodes are identified with the Abell clusters (Icke and Van de
Weygaert, 1987).

In principle, the Voronoi topology consists of a packing of
closed, convex cells. However, one should distinguish between the
mathematical Voronoi skeleton, and the actual mass density with
which that skeleton is covered. As will be seen in the kinematic
simulation to be presented below, the density in the centres of the
walls decreases rapidly during the evolution of the cells; later, the
density in the filaments decreases too, even as the matter streams
towards the nodes. Thus, the walls become porous, leading to an
actual matter distribution that is much more sponge-like (cf. Gott
etal., 1986; Weinberget al., 1987; Melott et al., 1988) than the pure
Voronoi partitioning would suggest.

Icke and Van de Weygaert (1987) published an extensive
analysis of planar Voronoi tessellations, for different arrange-
ments of nuclei. The resulting Voronoi foams show a striking
similarity with two-dimensional numerical simulations of gravi-
tationally collapsing scale-free media (e. g. Melott, 1983; Matsuda
and Shima, 1984). However, a slice through a three-dimensional
Voronoi foam cannot itself be the result of a (2-D) Voronoi
tessellation. Thus, 3-D work is essential; the first results of our
work on this problem are shown here (Fig. 1). The “CfA slices”
(De Lapparent et al., 1986; Geller, 1988) do not quite look like the
typical 2-D Voronoi shape, but they might resemble a slice
through a 3-D foam (Pierre et al., 1988).

2. Kinematics of Voronoi cell formation

When matter streams out of the voids towards the Voronoi
skeleton, cell walls form when material from one void encounters
that from an adjacent one. If the matter is still gaseous (or
collisionless dark matter), only self-gravity will tend to hold it
together. However, if galaxies form during the expansion of the
voids, they can collect in the walls because of the well-known fact
that galaxies have an immense number of internal degrees of
freedom, which are excited irreversibly during an encounter
(Toomre and Toomre, 1972; Binney and Tremaine, 1987,
Chap. 7). Thus, a gas of which the particles are entire galaxies will
behave very dissipatively on small length scales.

Accordingly, the kinematics of the formation of Voronoi cells
is as follows. Within a void, the mean distance between galaxies

increases uniformly in the course of time; this amounts to an
excess Hubble expansion about the cell nucleus. When a galaxy
tries to enter an adjacent cell, dynamic friction with oncoming
galaxies will slow its motion down; on the average, this amounts to
the disappearance of its velocity component perpendicular to the
cell wall. Thereafter, the galaxy continues to move within the wall,
until it tries to enter the next cell; it then loses its velocity
component towards that cell, so that the galaxy continues along a
filament. Finally, it comes to rest in a node, as soon as it tries to
enter a fourth neighbouring void. In a Voronoi foam, there are
exactly four cells adjoining each node, and the above process is
unique.

Animmediate consequence of this kinematic behaviour is, that
the density in the walls quickly becomes smaller than in the
filaments, which, in turn, remain less dense than the nodes, where
all matter eventually congregates. This is the main reason why we
identify the nodes with the rich Abell clusters. It is also a reason
why the actual mass distribution is expected to look quite sponge-
like, rather than a packing of convex cells with an approximately
constant density on all surfaces. We believe that, in this respect,
our simulations are more realistic than those of Yoshioka and
Tkeuchi (1988).

We have constructed three-dimensional Voronoi foams geo-
metrically (Van de Weygaert, 1988) and by means of the above
kinematic process (Icke, 1988). A stereogram of a geometrical
three-dimensional Voronoi foam with periodic boundary con-
ditions is shown in Fig. 1. A corresponding sequence of kinematic
cell formation is shown in Fig.2. Our aim in these studies is, to
obtain the statistical properties of the resulting mass distribution;
these are readily compared with the observations, and the Voronoi
models can be obtained by extremely modest computational
means (the sequence of Fig.2 took about 20 seconds on a VAX
785.) We emphasize that the Voronoi tessellations are expected to
give a correct asymptotic description of all structure formation in
gravitating pressureless media, except those in which most of the
power in the fluctuations occurs on a scale where dissipation is
important. Thus, some cold dark matter models fall outside this
scope, since their power spectrum has a large amplitude on
galactic scales, and galaxies — as we argued above — are very sticky
“particles”.

The sequence describing the kinematic cell formation was
obtained as follows. In a box with dimensions 1 x 1 x 1, assumed

Fig. 1. Stereoscopic pair of three Voronoi cells sharing a common line. The nuclei are indicated by stars. In a stereo viewer, the dashed lines will appear at the rear of
the picture. When attempting stereo fusion with crossed eyes, the pictures must be reversed to obtain the correct depth perception. This holds for Fig. 2 too
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Fig. 2. Time sequence of the formation of kinematic Voronoi cells, as stereo pairs. Counting from top to bottom, one has: first frame, location of the 20 nuclei; these
appear as circles in all frames. Second, initial Poissonian distribution of 2000 galaxies. Third, situation at dimensionless time = 0.5; fourth, at ¢ = 1; fifth,att=1.5
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Fig. 2 (continued)

to have periodic boundary conditions, a number N of nuclei was
placed at positions e, by a Poisson process (this defines the length
scale of the simulation.) Then a Poissonian distribution of G
galaxies at positions x, was chosen in the same volume. The
motion of each galaxy was determined by a sequence of four
trajectories.

First, the nearest nucleus was identified (all distance orderings
were obtained quickly by means of a k-d tree sorting method; Van
de Weygaert, 1987). Let its position be called e, . The velocity u of
the galaxy at initial position x, and time t=0 was made
proportional to the distance to its nucleus, and radially away from
it:
u=H,(x,—e). @

The Voronoi model does not specifically require this functional
form, but allows H, to be a function of | x,—e| that smoothly
joins Hy at the void walls. In Eq. (1), the excess Hubble parameter
was scaled to H,, = 1 (this defines the time scale of the simulation.)
The time was increased in steps As. Each time step, the new

position of the galaxy was obtained from the kinematic
prescription

Xnew = old+Atu'

@

This step was repeated until the galaxy got closer to another
nucleus than the one at the centre of the Voronoi cell from which it
departed. At that point, the galaxy would move into an adjacent
void, but it is prevented from doing so, and is constrained to move
in such a way that its distance to the two nuclei remains the same.

Second, this next-nearest nucleus was identified; call its
position e,. The velocity component of # perpendicular to the
Voronoi wall (i.e. the component parallel to e, —e,) was set to
zero according to

u—u—u-fi)fi, (3)
=676
f1—|91_ez|' @

Notice that this makes # - (e; —e,) = 0, while the inner product of
u with any vector perpendicular to the line connecting the two
nuclei remains unchanged (this connecting line is an edge of a
“Delaunay tetrahedron™; see Icke and Van de Weygaert, 1987).
On its new track, which lies within a cell wall, the galaxy was
advanced according to Eq.(2), until yet a third nucleus came
closer than the previous two.
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Third, the position e; of this nucleus was found, and the unit
vectors f, and f; were determined from
€;—é€3

= =al ©
hL=ELxS ©)

The vector f; is parallel to a second Delaunay edge, and f; lies
along the filament defined by the intersection of the planes that
perpendicularly bisect the two Delaunay edges. The component of
the galaxy’s velocity perpendicular to the filament is now can-
celled by putting

u— - f)fs. ™

The galaxy moves along according to Eq.(2) using this new
velocity, thereby keeping the three nuclei at equal distances, until
finally a fourth nucleus is approached to within the same distance
as the first three. At that point, the galaxy has reached a Voronoi
vertex: the point where it is equidistant to four nuclei. In the
kinematical model, galaxies stream into such a vertex from all
three spatial dimensions, along four joining Voronoi edges
(filaments). Thus, the velocity of the galaxy is finally reduced to
Z€r0.

Three remarks are in order at this point. First, the encounter of
two galaxies converts some of their orbital energy into ‘“heat”
(internal motions of the galaxies and stars lost from these systems;
Toomre and Toomre, 1972), but unless the galaxies merge, some
orbital energy will remain as a general galactic velocity dispersion.
Especially in the nodes, this will show up observationally in the
form of radial fingers in a position-velocity slice (Giovanelli et al.,
1986; De Lapparent et al., 1986). It is relatively easy to incorporate
this, by introducing a virial dispersion commensurate with the
local galaxy density, but that might be carrying the kinematic
approach too far, and detract from its simplicity.

Second, the galactic momentum components perpendicular to
walls, in filaments, and in nodes are not exactly cancelled during
the encounters we envisage. Rather, these components vanish on
the average, because the distances from a wall to its two nearest
Voronoi nuclei are equal; the momentum flux (i.e. dynamic
pressure) on one side of a wall is equal and opposite to the flux on
the other side.

Third, Eq. (2) shows that the spatial dispersion of the galaxies
about the exact Voronoi skeleton is given by the mean value of
u At. This value is on the order of 0.5 LH, 4t, or about 0.05 L in
the simulation shown in Fig. 2, where L is the mean radius of a
Voronoi cell. In reality, this dispersion is set by the “stickness” of
the interacting galaxies. We have verified that the choice of L At is
not important for what follows, provided that 47 <0.2.

3. Angular two-point correlations

In order to compare the Voronoi model with the statistical
properties of the observed galaxy distribution, we have deter-
mined the two-point correlation functions (Peebles and Hauser,
1974; Peebles, 1974; Peebles, 1980) of the kinematic simulations
and of the positions of the Voronoi vertices. First, we consider the
kinematic simulations as a model of the distribution of galaxies in
the sky. The published observed two-point correlations are
angular correlations, which can only be converted to spatial
correlations by means of additional algebraic operations. At-
tempts have been made to obtain spatial galaxy-galaxy corre-
lations, but these results are model dependent because of the need

5

to reconstruct the dimension of depth. Thus, we restrict ourselves
here to angular correlations; spatial correlations will be consid-
ered in the case of the Voronoi vertices below.

If dA is the area in the sky between distances r and r+ dr from a
given galaxy, and if dn is the number of galaxies counted in that
area, then the two-point correlation function w(r) is defined by

dn=a(l+w(r))dA, ®)

where 71 is the average (Poissonian) galaxy density in the sky. The
galaxy positions in the 1 x 1 x 1 cube of the kinematic model were
projected along the three perpendicular coordinate directions, and
the two-point correlations of the resulting three simulated sky
maps were calculated. These were then averaged to obtain w(r)
(with proper scaling, r corresponds to the customary angular
distance 6.) The standard deviations from this average were also
obtained. The correlation was performed in linear bins and in
logarithmic ones.

The results are shown in Fig. 3. From Eq. (8) it is clear that w
cannot be positive everywhere, and indeed the results show that
w=0at r~0.17. Now L ~0.18 in the case of Fig. 3, which was
calculated for 20 nuclei, so that we conclude that the two-point
correlation dips through zero at about the Voronoi foam scale,
climbing back to zero after that. This is entirely as expected:
galaxies should be distributed Poissonian on scales larger than
those of the voids. The observed amplitude of w (0) is on the order
of unity (Peebles, 1974), which in our kinematic models corre-
sponds to a dimensionless time ¢~ 1.8. An uncertainty is due to
the fact that, in reality, the distribution in the sky is not due to a
simple projection, but to a projection weighted with the galaxy
luminosity function (cf. Limber’s equation). We have not at-
tempted to take this into account, because we think that the depth-
to-width ratio of observed samples (e. g. Giovanelli et al., 1986, De
Lapparent et al., 1986) are close enough to unity to warrant our
use of a cube as a representative sample.

When one tries to compare an analytic model like that
described above with the observations, there is always the
possibility that the match is compromised by various forms of
biasing. In order to study a possible effect of this type, we have also
calculated the angular correlation function of high-density peaks
in the simulations (Icke, 1988). If one only considers galaxies that
occupy regions where the local density is one standard deviation
above average, the amplitude of w increases by a factor of 1.3; for
peaks with amplitude 2o, the increase is a factor 2.9; and 3 o peaks
have an angular correlation amplitude that is 4.9 times higher than
that of the unbiased correlation function. In fact, the amplitude w
of the angular correlation of galaxies that reside in regions of space
where the number density is three standard deviations above
average, is about w (r = 0) = 8. This comes close to the amplitude
for correlations between Abell clusters, as will be seen in the
following.

4. Spatial two-point correlations

Next, we consider the spatial correlation of Voronoi nodes.
Because we wish to identify these with Abell clusters, this
correlation can be compared with observations: the distances to
Abell clusters can be estimated accurately enough to allow
reasonable estimates of the spatial correlations to be made
(Bahcall and Soneira, 1983; Klypin and Kopylov, 1983; Shect-
man, 1985; Postman et al., 1986; Ling et al., 1987). '
The spatial two-point correlation function £(R) is defined in
the same way as w. Let dV be the volume between the distance R
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Fig. 3. Angular correlation functions of the galaxy distributions of Fig. 2. Left column, w (¥) as determined by counting in linear bins of r. The dashed lines show the

+ 10 deviations as determined from the counting statistics in the three independent coordinate directions. Right column, log;, w (r) as determined by counting in
logarithmic bins of r. Top frames, ¢ =0.5; middle, t = 1; bottom, t =1.5
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and R+dR centered on a given galaxy; if dN is the number of
galaxies counted in that volume, then the two-point correlation
function is defined by

AN=N{+ER)dV, )

where N is the average (Poissonian) galaxy density in space. A
useful way of relating our geometrical Voronoi model to obser-
vations is by comparing the spatial correlation function of galaxy
clusters, as determined by e.g. Bahcall and Soneira (1983),
Shectman (1985), and Postman et al. (1986), with the correlation
function of the vertices in the Voronoi tessellation. We identify
these vertices as the positions where clusters will form during the
formation of the large-scale structure in the Universe (see also e.g.
Kofman and Shandarin, 1988), because matter streaming away
from four nuclei (cell centres) will collect in these vertices.

Our 3-D Voronoi algorithm (see Van de Weygaert, 1988) was
applied to a Poissonian distribution of 1000 nuclei (it takes about
5.5 CPU-minutes on a VAX 785 to constuct a Voronoi foam of
1000 nuclei), giving 6733 vertices (““Abell clusters”). Each comput-
ational box had a size of 1 x 1 x 1, giving a mean volume of 103
per cell. The spatial vertex-vertex correlation function &, was
determined by using two slightly different estimators. In addition,
correlated and anticorrelated distributions of nuclei were
considered.

For large sampling radii, &, was determined in the way given
by Blanchard and Alimi (1988). This method uses a comparison
between two 1x1x1 volumes: one containing the Voronoi
vertices, the other containing a Poisson distribution of points (in
our case, 25,000). In each volume, a spherical sampling shell
(r—% 4r, r+% Ar) was centered on the coordinates of the i-th
Voronoi vertex. Then the number N/, () is the total number of
vertices in the Voronoi sample encompassed by the shell; N§, (r) is
the total number of points in the same interval in the Poisson
distribution. Summed over #, one obtains N, () and Ny, (7). Then
the correlation function is

Ny, (r) n,

(=521, 10
=30 10
in which 7 is the density of clusters (Voronoi vertices) and n, is the
density of Poisson points. In this way, one can neatly correct for
edge effects without losing too much information.

Because N, (r) becomes very small at small radii (the number

of Poisson points is proportional to r2), the |/ N fluctuations in Ny,
get too large, causing huge errors in the estimated £. Therefore,

another estimator was used when /N fluctuations exceeded 10 %:

(=N g (11)
iy v
i=1

where Ny, () is the total number of pairs in the Voronoi vertex
catalog determined by counting around each vertex i the number
of vertices in a shell (r— % 4r, r+ 1 Ar) if the vertex i had at least a
distance r+1 Ar from the edge of the catalog volume; N,, is the
total number of all these pairs. Consequently, a pair (i, ) will be

counted twice if both vertices i and j lie further than a distance
M

r+% Ar from the walls of the catalog cube. The number Y. dV;
i=1
is the sum of the shell volumes around the M vertices included in
the count.
Because the use of estimator (11) was limited to a radius of
0.5% of the size of the box (i.e. 0.005), in the case of a uniform

7

distribution of points only 3 % of the pairs is excluded from N,,,
which won’t increase the fluctuations in the counts significantly.
On small scales, the vertices do not form a uniform distribution, as
will be seen below, but they do so on larger scales.

The resulting cluster-cluster correlation function in our
Voronoi model is shown in Fig. 4, for a uniform distribution of
nuclei. The function can be approximated very well by a power
law, in this case with a slope of 1.97. In the case of moderately
correlated expansion centres, the slope turned out to be 1.88. Both
numbers look quite nice compared with the observationally
determined slope of y =1.8+0.3 (cf. Weinberg et al., 1988).

The amplitude of our correlation function is r, = 3.00 107 %; a
break appears around £~ 0.5, caused by the zero crossing of &
near r,~ 5.2 10~ 2, If we normalize the amplitude of & to the
mean distance 7~ '/® between clusters, (with 77 being the mean
number density of clusters), we get an estimate for our r,.
Blumenthal et al. (1988) give 55Mpc for the Abell clusters of
richness 1 and above. This corresponds to 6733713~ 5.2 107 2in
the Voronoi vertex sample; thus, rq & 32 Mpc, which is the upper
limit given in the estimate of r, in the review by Bahcall (1988). In
Fig.4 we have also plotted the function 1+¢ as calculated from
the same Voronoi foam. As in the case of £, one can approximate
1+ ¢ by a power law. The best fit to our results is

14+&(r)=(3.94 1072/n)177 (12)

which has a slope that is statistically indistinguishable from the
observed value 1.8. Furthermore, when normalizing in the same
way as above, we find that & (ry) =1 gives r, = 27 Mpc.

The observationally determined cluster-cluster correlation
function and our vertex-vertex correlation differ in the position of
the break, which occurs around 54 Mpc according to our Voronoi
model, while in the real world the power law extends to 80—
90 Mpc (Postman et al., 1986). A possible solution to this problem
is that the nuclei are correlated. We have begun to investigate this
effect; the first results show that the power law is in fact extended
to larger scales. Another possibility is, that the Voronoi model and
the Abell classification do not attach equal weights to vertices and
to clusters. In the Voronoi model, each vertex is treated equally
with the others, whereas in the Abell catalog only outstanding
mass concentrations are counted. This difference is possibly
important, because Voronoi vertices that are close together
effectively attract less mass than widely spaced vertices. This
biases our model towards the smaller length scales, when com-
pared with the observations.

Geometrically, our model bears some resemblance to that of
Weinberg et al. (1988), who found that clusters formed by a
confluence of triples of bubbles (expanding due to primordial
explosions) show a power law two-point correlation too.

5. Concluding remarks

Like any model, the Voronoi tessellation is only an approximation
of reality. In the case of our simulations of the formation of the
Voronoi voids, we are limited by the fact that only the kinematic
behaviour is included. We are in the process of improving on this,
by making dynamical calculations of the formation of walls,
filaments, and nodes. In the case of the spatial two-point
correlations, our results are approximate in the sense that the
mathematical Voronoi skeleton is only asymptotic, indicating the
locus where matter will congregate in the limit for large times. But
the accumulation of matter is fastest in the nodes; therefore, we are
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Fig. 4. Spatial vertex-vertex correlation functions of a Voronoi foam with 1000 Poissonian nuclei. The left panel shows &, on the right is 1 + &. Both have been plotted

as functions of the dimensionless quantity x = 2r/d, in which dis the mean separation between vertices. The error bars were determined on the basis of ]/N errors in
the estimators. The dashed lines are least-squares fits to all data points except the last three. One finds & (x) = (1.13/x)1°" and 1 + & (x) = (1.94/x)*-"7. The heavy solid

line is an approximate fit to the observational data

quite confident that the correlation behaviour of these points is a
rather robust property of the model.

Although the resulting estimate of our cluster-cluster corre-
lation function is not ideal, we think that it is very remarkable that
such a simple geometrical picture can give an estimate of &, nearly
in accordance with observations. Details might slightly change the
quantitative conclusions; for example, in the case of correlated
nuclei the slope of the correlation function becomes somewhat
shallower, while the position of the break shifts to a larger scale,
although the effect is surprisingly weak. Clustered nuclei may be
more realistic, because the expansion centres are the positions of
the large negative density peaks in a gaussian random field,
producing the voids in the Universe, of which Bardeen et al. (1986)
showed that they were correlated.

Notwithstanding such details, we expect that our conclusions
will remain essentially the same. It looks as if the cluster-cluster
correlation function on both small and large scales is determined
by the cell structure in the Universe (De Lapparent et al., 1986),
which might explain the remarkable fact that both for £>1 and
for £<1 the slope of £(r) is the same. Moreover, numerical
simulations (Centrella and Melott, 1983; Davis et al., 1985)
indicate that, during the evolution of the structure in the Universe,
the slope of the galaxy-galaxy correlation function £,, gets steeper
with time, having reached a value of 1.8 by now, due to the effects
of gravitation. This might be nothing but a reflection of the fact

that galaxies tend to congregate more and more towards rich
clusters, first going from a nearly uniform distribution to cluster-
ing in pancakes, then going to filaments, and finally to vertices,
leaving a Universe with nothing more than huge clusters. In the
end, this sequence of events produces a ,, with a slope around 2,
dictated by the positions of the clusters in the vertices of the cell
texture of the Universe.
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