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Entanglement in mesoscopic structures: Role of projection
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We present a theoretical analysis of the appearance of cntanglement in noninleracting mesoscopic structures.
Our setup involves two oppositely polarized sources injecting electrons of opposite spin into the two incoming
leads. The mixing of these polarized streams in an idcal four-channel beam splitter produces two outgoing
streams with particular tunable correlations. A Bell inequality test involving cross-correlated spin currcnts in
opposite leads signals the presence of spin entanglement between particles propagating in dilferent leads. We
identify the role of fermionic statistics and projective measutrement in the gencration of these spin-entangled

electrons.
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Quantum entangled charged quasiparticles are perceived
as a valuable resource for a [uture solid state based quantum
information technology. Recently, specific designs for meso-
scopic structures have been proposed which generate spa-
tially separated streams of entangled particles.l”“l In addition,
-Bell-inequality-type measurements have been conceived
which test for the presence of these nonclassical and nonlo-
cal correlations.™ Usually, entangled electron pairs are gen-
erated through specific interactions (e.g., through the attrac-
tive interaction in a superconductor or the repulsive
interaction in a quantum dot) and particular measures are
taken to separate the constituents in space (e.g., involving
beam splitiers and appropriate filters). However, recently it
has been predicted that nonlocal entanglement as signaled
through a violation of Bell inequality tests can be observed
in noninteracting systems as well." ™ The important task then
is 1o identify the origin of the entanglement; candidates are
the fermionic statistics, the beam splitter, or the projection in
the Bell measurement itself.'®8

Here, we report on our study of entanglement in a nonin-
teracting system, where we make sure that the particles en-
counter the Bell setup in a nonentangled state. Nevertheless,
we [ind the Bell inequality to be violated and conclude that
the concomitant entanglement is produced in a wave-
function projection during the Bell measurement. This type
of entanglement generation is well known in quantum
optics'" where entangled photons are generated through pro-
jection in a coincidence measurement. Also, we note that
wave-function projection as a resource of nonlocal entangle-
ment is known [or single-particle sources (Fock states),'” a
scheme working for both bosons and {fermions. What is dif-
ferent in Refs. 5-9 and in the present woik is that the sources
are many-particle states in local thermal equilibrium. It is
then essential that one deals with fermions: wave-lunction
projection cannol create entanglement ouwt of a thermal
source of bosons. ™™

The generic setup lor the production ol spatially separated
entangled degrees of freedom usually mvolves a source in-
Jecung the particles carrying the internal degree of ficedon
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(the spin"= 7" or an orbial quantum numbert °™) and a beam

splitter sepwating these particles in space, see Fig. . In ad-
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dition, ““filters” may be used to inbibit the propagation of
anwanted components into Lhe spatially separated leads,'™
thus enforcing a pure flow of entangled particles in the out-
going leads. The successful generation of entanglement then
is measured in a Bell-inequality-type setup.'> A surprising
new feature has been recently predicted with a Bell inequal-
ity test exhibiting violation in a noninteracting syslem;i"() the
question arises as {o what produces the entanglement mani-
fested in the Bell inequality violation and it is this question
which we wish to address in the present work. In order to do
so, we describe theoretically an experiment where we make
sure that the particles are not entangled up to the point where
the correlations are measured in the Bell inequality setup:
nevertheless, we find them violaled. We trace this violation
back to an entanglement which has its origin in the conflu-

FIG. I. Mesoscopic notmal-metal structure with a beam splitter
gencrating two sticams of clections with tunable correlations in the
two outgomg arms u and d The sowce (left) injects polarized
(along the £ axis) elecuions o the source leads s and s The beam
splitter miaes the two incoming steams with a mixing angle 9. The
scattered (o outgoing) beams are analyzed in a Bell type comci-
dence measwement mvolving spin cuncits projected oo the di-
rections Fa (in the u lead) and =h (n the d lead) The injection
1cscivous e voltage Vo biased against the outgoing 1escrvous The
Bell incquality test signals the presence of entanglement within the
mterval 19 -43571<0 122330 We aclawe tis entanglement o the
presence of spin-tuplet cortelattons m the projected pait ol the scat-
wred wave function describmg clection puars distributed between
the arms.
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ence of various elements: (i) the Fermi statistics provides a
noiseless stream of incoming electrons, (ii) the beam splitter
mixes the indistinguishable particles at one point in space
removing the information about their origin, (iii) the splitter
directs the mixed product state into the two leads thus orga-
nizing their spatial separation, (iv) a coincidence measure-
ment projects the mixed product state onto ils (spin-)
entangled component describing the electron pair split be-
tween the two leads, (v) measuring the spin-entangled state
in a Bell inequality test exhibits violation [the steps (iv) and
(v) are united in our setup]. Note that the simple fermionic
reservoir defining the source in Ref. 9 injects spin-entangled
pairs from the beginning; hence an analysis of this system
cannot provide a definitive answer on the minimal setup pro-
viding spatially separated entangled pairs since both the
source and/or the projective Bell measurement could be re-
sponsible for the violation.

Below, we pursue the following strategy: We first define a
particle source and investigate its characteristic via an analy-
sis of the associated (wo-particle density matrix. We then
define the corresponding pair wave function (thus reducing
the many-body problem to a two-particle problem) and

determine its concurrence following the definition of

Schliemann er af."> for indistinguishable particles (more gen-
erally, one could calculate the Slater rank of the wave func-
tion, cf. Ref. 13; here, we deal with a four-dimensional one-
particle Hilbert space where the concurrence provides a
simple and quantitative measure for the degree of entangle-
ment). For our specially designed source we find a zero con-
currence and hence our incoming hbeam is not entangled. We
then go over (o the scatlering state behind the (tunable) beam
splitter and reanalyze the state with the help of the two-
particle density matrix. We determine the associated two-
particle wave function and find its concurrence; comparing
the results for the incoming and scattered wave function, we
will see that the concurrence is unchanged, a simple conse-
quence of the unitary action of the beam splitter. However,
the mixer removes the information on the origin of the par-
ticles, thus preparing an entangled wave-function component
in the output channel. Third, we analyze the component of
the wave function to which the Bell setup is sensitive and
determine its degree of entanglement; depending on the mix-
ing angle of the beam splitter, we find concurrencies between
0 (no entanglement) and unity (maximal entanglement). Fi-
nally, we determine the violation of the Bell inequality as
measured through time-resolved spin-current cross correla-
tors and find agreement between the degree of violation and
the degree of entanglement of the projecled slate as ex-
pressed through the concurrence.

Our source draws particles {rom two spin-polarized reser-
voirs with opposite polarization directed along the z axis.
The polarized electrons are injected into source leads s and s
and are subsequently mixed in a tunable four-channel beam
splitter, see Fig. 1. The outgoing channels are denoted by u
(for the upper lead) and d (the down lead). The spin correla-
tions in the scattering channels u and d are then analyzed in
a Bell-inequality test. The polarized reservoirs are voltage
biased with e V= up/H/2 equal to the magnetic energy in the
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polarizing field H; the incoming electron streams then are
fully polarized (the magnetic field is confined to the reser-
VOIrs).

The spin correlations between electrons in leads x and y
are conveniently analyzed with the help of the two-particie
density matrix (or pair-correlation function)

g =Te(p W, ], ()P0 ()T (1)) (1)

with trace over states of the Fermi sea. Here, \IA/W are field
operators describing electrons with spin o in lead x and p is
the density operator. The pair-correlation function (1) is con-
veniently expressed through the one-particle correlators

G, y) = (VL0 5(v)),

S =G, ()G, (0)= G, (x=y) G, (v =),

(fl(r4 {)';ﬂf} (}'](/'
@

The one-particle correlators can be written in terms of a
product of orbital and spin  parts, G?,’;;(A\‘,y)z
GM(x,y)x®(o,0), and split into equilibrium and excess
terms,
G

oo

(v0) =G50 xe(0:0) + Gt v) xe (0, 7).
(3)

with G, (x,y) vanishing at zero voltage V and zero polariza-
tion field H.

In order to find the two-particle density matrix in the
source leads s, s we make use of the scattering slates

\Ifszz e*ay e M (cos Ve T, +sin VetV ),

ko

V<= AE e™ by +e ' (cos De'Pdy,—sin De TVEL),
(T

where 4, Z;A,, denote the annihilation operators for elec-
trons in the source reservoirs s and s with momentum & and
spin oe{T,]} polarized along the z axis and time evolution
xexp(—i€tlh), €, =h>k*2m; the operators ¢, and fﬂlka an-
nihilate electrons in the reservoirs attached to the outgoing
leads u and d, respectively. Also, we make use of the stan-
dard parametrization of a reflectionless four-beam splitter,

u eifcos 9 —eMsind\ (s
=l ey el @
d e Wsind e fcosd/\s

with the angles 9 e(0,7/2), @, e(0,27); without loss of

generality we will assume ¢=¢/=0 in what lollows. The
orbital part of the one-particle correlator GY(v—y)
=G (v —y) lakes the form

sin kg _

Gyl )=, (5)
TS sin kv

G (x)=¢ _—, (6)

T\
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with Ay=h(eV/e;) and ep (k) the Fermi eneigy (wave
vector) 1 the unbiased system The spin factors (o1 the equi-
Iibiium and excess paits 1ead,

)\cq(g G)_ O—|O—>

xlo o) =(al1)(1lo),  xi(o.6)=(o|){lle), (7)
the latter desciibing the mjection of polatized elections mto

the leads s and  Finally, the cioss cottelaton function be-
tween the source leads vanishes, fo&(\ —y)=0, and the fi-

nal result for the excess part of the pan-conelation function
between souice leads reads

[g:f(\7\/)]L\:1G€\<0)12<0-||T>< HO’4><O'2| I>< | i0'~,> (8)

This 1esult then describes the mjection of two uncortelated
stieams of polatized elections into the leads s and s Fuither
mote, statistical analysis' tells that the Feinn statistics en-
forces injection mto each lead ol a regular stieam of particles
sepatated by the smgle-paiticle correlation time ry=h/eV
The full many-body desciiption then 1s conventently 1educed
o a two-paiticle problem wheie the two teservous mject a
sequcnce of elecuon pans restding 1 the wave lunction

2 —[(/S‘ (/);‘ gbgl, (/)52,]/\2 with ¢ (¢5) the single-
pLullde wave lunctions assocrated with elections 1 the up-
pet (lower) souwrce lead This wave function 1s a simple Slater
determinant and hence nonentangled according to Ref 13

Next, we extend the above analysis to the outgomg leads
uand d The scattermg states in the outgoing leads take the
form

‘I’UZAZ 7R e et (cos 9d,,— s Ob,,),
s

\rld = E

Ao

e My et (cos Oby, +sin Ddy,)

The cxcess patucles mjected by the souice leads now aie
nuxed in the beam splitter and thus nonvanishing c1oss coi-
1elations are expected o show up m the leads u and d The
one-particle couelation function assumes the {oim (3) with
the orbital conelators (3) and (6) and spin conelators

={o|F), reud,

Aol T)

Ao, a)=cos? N ol ){([|o)+sin? o] ]

Hito),

K.l(

DLE)Y T cos Hal DT,

o @)=’ 29{ul|}

ud

Yo d)= "o, d)=cos 9 sin I (o] ] ){(1]7)
=(al {1 9)

v aluating the excess patt of the two paticle cross cotela
tions between the leads u and d at the symmetiie position 1
=\ we find
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Jo=1G 0] [cos* O (o [1)( T o) (o] )L os)
+sim? o [ DU o) oa] T T o)
+eos?9sin H o | 13T o) oa] 1M1 ]y

+cos?d s’ 9o |1 Lo o TH{T o]
(10)

[gud( |

Hence, a symmettic sphitter (9= m/4) produces the spm cot-
telatons of a tplet state [ x™ =)ol et 1D T/ 2 m-
volving two elections separated 1n different leads u and d but
at equivalent locations v=13 The geneial case with arbiuary
miximg angle ¥ 1esults 1 a density matix describing a pure
state mvolving the superposition |x %)+ cos 219]XU‘1 of the
above uiplet state and the sglet state |)(“d> 1D

=11y T)d]/\ 2 The analogous calculation for the two-
particle density matiix desciibing elections m the same out-
gomg lead x equal u o1 d points to the presence of smglet
conelations,

Lgr () e=1G () (oo (ol os)

|G =)o) (oo (1)

Agam, the above 1esults can be used to reduce the piob
lem from its many-body foim to a two-paiticle problem
Given the mcomimg Slater determmant W) we obtamn the
scatleted  state ‘l’oal thiough the uansformation ¢,
—cos ¥ ¢, +sm Iy, descibmg scattered spin T elections
ongmating from the source lead s and dg— —sm 9
+cos Dby for excess spin-| elections from s [the wave
functions ¢, = ¢ x,, descibe elections with oibutal (spin)
wave function ¢, (x,) propagating in lead x] The 1esultng
scattering wave {unction has the form

\I éul st Jcos 19[ ¢1|¢11Xs‘v - (/)(l (bd/\/su] + (1 uqu

+eos 29D Ixl, (12)

whete the fust two tetms descitbe the propagation of a spin-
2 1 2_ 1.0
singlet pann with the wave function /\lgz (XX _X\XQ/\@
m the upper and the lower lead The last two terms desciibe
the component wheie the election pan 1s sphit between the u
and d leads, 1t 1s a supetposition of singlet and tiplet states
12 242y D

[ xu =ax X x 2] with conespondimg symmetnized

2
and anllsymmemzed ol bllal wave functons ®!i=(¢p! b3
+¢u(/)u)/2 and (])“d (q/)U(/) (/) b, ’}/2 The entanglement
present m these wave functions ts eastly determuned using
the totmalism developed by Schhiemann ez al ' The wave
lunction assoctated with a pair of elections can be \’\HUCH m
\l’l“),/(b w,, b7,

guaum[ces lm

terms of a single electon basis {ob,}
whete the antisy mmettic matix w,, = —u ,
the proper symmetiizatton  The analysis simplhifies diast-
cally for the case where the one parttcte Thilbeit space 15 fou
dimensional  then the concuiicnce COWV)y=8 det i (W)
gnnes a gquantitabive measure tor the entangloment present in
the wave funcuon WV O y=0 lor a nonentangled state and
CWy=1 for a tully entangled wave function For ow setup
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the one-particle basis is defined as {¢,; b, Pq;»Pq;} and
the matrix w(W,,) describing the scattered state (12) as-
sumes the form

0 —sin 29%/2 0 cos?d
e 1| sin2922 0 sin? Y 0
RGN B —sin?9 0 sin209/2
—cos?? 0 —sin29/2 0

The concurrence of the scattering state (12} vanishes, hence
WO s nonentangled and takes the form of an elementary
Slater determinant. Next, let us analyze the concurrence of
that part of the scattering wave function to which our coin-
cidence measurement in leads u and d is sensitive. The com-
ponent describing the two particles split between the leads

reads ! Ud ]uan +cos 27 d)ll(,)(s]:, cf. Eq. (12). This pro-
jected state is described by the matrix
0 0 0 cos®d
w ! 0 0 sin® 9 0
"WTEl 0 —sine 0 o |
—cos* 0 0 0

from which one easily derives the concurrence C(\W!3
=sin*219; we conclude that the component ‘lf“d detected in a
coincidence measurement is entangled. Furthermore, the
concurrence is equal to unity for the symmetric splilter ¢
= /4 where we deal with a maximally entangled triplet state
[note the loss of information about which electron (from s or
5) enters the lead u or d]. We conclude that a Bell inequality
test sensitive to the split part of the wave function will ex-
hibit violation. We attribute this violation to the combined
action of (i) the splitter where the information on the identity
of the particles is destroyed and the entangled component
W12 is “prepared” and (ii) the wave-function projection in-
herent in the coincidence measurement and “realizing” the
entanglement.

The Bell-type setup'? in Fig. | measures the correlations
in the spin-entangled scattered wave function W2 . It in-
volves the ﬁmte time current cross correlators C,4,(x,y;7)

<1 (x, T)]b(y 0))) between the spin-currents ] (x,7) pro-
jected onto directions a (in lead u) and partners /b()’,O) (in
lead d) projected onto b. These correlators enter the Bell
inequality (a and b denote a second set of directions)

|E(a,b)— E(a,b)+ E(a,b)+E(a,b)|<2 (13)
via the current difference correlators
i.]T a7 'i,O *i_,(()
E(a,b):qj( ) / al )]LAI( ) [ )D. (14)
<l—/u(7)+/”.'1(7):”:“)(0»+[~I)(O)]>

The cross measurement in diflerent leads implies that the
setup is sensitive only (o the spin-entangled split-pair part
‘l’ﬁ of the scattering wave function and hence the Bell in-
equality can be violated. Making use ol the licld operators

‘I/“ and ‘lf, describing the scattering states in the oulgoimng

23

3

A
D
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leads, we determine the irreducible current cross correlator
and factorize into orbital and spin parts, C,p(x,y;7)
=C, (7)) F,y, with F, accounting for the spin projections.
Using standard scattering theory of noise," one obtains the
orbital cross correlator {only the excess part gives a finite
contribution)

e’sin®29  eV(r—71_)
C,\(7)=- e Sin 7 a(t—71_,0),
(15)
with a(7,8) =72 0*/sinh[worh], 7~ =(x=xy)/ve:, 6 the

temperature of the electronic reservoirs, and vg the Fermi
velocity. In order to arrive at the result (15) we have dropped
terms small in the parameler |’ — €|/ &g, '> The spin projec-
tion F, ), assumes the form

Fan=(alT)(T1)(bIT)(Tla)+ (al {1 [b)(bl1)(]]a)
—(alT)(TIb)(blL)(Ia)—(al [ ){I[b)}(b|T){]]a).

We express this result in terms of the angles 6, and ¢, de-

scribing the direction of magnetization in the u lead filters

and 8y, ¢, referring to the filters in the d lead and find that
'\b F*l 7l)hrlb’ F-—n.l):Fa.rh:Fa b and

b= (1 £cos 0,08 0,F cos @,,sin G,5in 6),)/2,

with @.,= ¢, — ¢,. The correlator E(a,b) takes the form

2C (N[ FI,—FI ]+ A
E(a,b) \ ab” Ib
?C\ \(T)[Fl h+Fsz]+A+
with Ai:[<iﬂ>i(i;;,>j[<ib>t<ikb)]. Evaluating  the
projected current averages one obtains A

=—e¢*(2¢V/h)?cos 6, cos 6, cos*29 and A =e*(2eV/h)>.
The triplet state is rotationally invariant within the plane 6,
= @,= /2 and choosing filters within this equatorial plane
the Bell inequality (BI) takes the form

C, ,(1)[cos pa— 08 @i COS @gy, + COS (,D,h]l
2C, (1) + A, =

Its maximum violation is obtained for the set of angles ¢,

=0, ¢p,=7/4, gz=7/2, ¢, =37/4,
2C, ,(7) I
=== 1
S TN R W (1o

Evaluating the above expression in the limit of low lempera-
tures #<<e V and at the symmetric position x =y, we arrive at
the simple form
.0 P a
sin“2 9 sin“(e V/h)

2eVr/h)?—sin®2

|

Ay 2 (17

9 sin’(eV

We observe that the violation of the Bell mequality is re-
stricted 10 short times 7~ 7y =7, =//eV (Rell 90 the rel-
cvance ol a coincidence measurement involving the shoit
time 7y was noticed in Refs. 6 and 4) A high temperatures
0>e¢V the Bl is violated as well, although the ume interval
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fo1 the violation shiinks to 7g;=#/6, ¢l Eq (15) The de-
gree of violation stiongly depends on the nuxing angle ¥ of
the beam sphitter, with a maximal violation 1ealized fo1 a
symmetiic splitter 9= 7/4 generating a puie tuplet state
actoss the two aims The Bell inequality cannot be violated
for asymmetiic sphiters with | 8 — 7/4|>0 2135 (conespond-
ing (o an angular width |9 —45°|>12 235°) evaluating the
BI (17) at zero ume difference (1€, in a comcdence mea-
sutement) we hind the condition

sin?2 9 1 (18)
.—S_’
2—sin*29 ﬁ

flom  which one deiives the cnucal angle O,

= (aesm[2/(\2+ 1)]"A72=0572 (o1 9,=32765°) The
appeatance of a cutical angle natwally follows from the fact
that the measured wave-function component \T’LIK% assumes
the form of a simple Slateir determmant m the limits 9
=0,7/2 and hence 1s not entangled Note that the product of
average cuttents Ay 1s the largest term 1 the denomimator of
Eq (16) and hence always 1elevant A similar sewp with
bosonic thermal 1eservons does not violate the Bl at any
time, a consequence of the sign change m the nieducible
curnent-cutrent contelator implying the addition of (wo posi-
tve terms 1n the denominator of Eq (16) Qualitatively, the
absence of the Bl violation for theimal bosons follows {tom
the property ol Bose statistics allowing for the simultaneous
emussion of two identical patticles by the same teservon s
In conclusion, we have descuibed a mesoscopic setup with
a source 1mjecting nonentangled election pans mto (wo
soutce leads s and s Subsequent muxing of these paiticle
stieams m a four-channel beam splitter does not generate
entanglement between (he paiticles in the two output leads u
and d However, proper mixing ol the incoming beams i the
splitter 1emoves the information on the path of the incoming
patticles and generates a wave function component desciib-
ing elections split between the leads u and d which 1s en-
tangled It 1s this component which mamfests 1tself mn the
comcidence measutement ol a Bell-inequality test and proper
violation 1s obseived at short times This analysis answers
the question 1egarding the onigm of entanglement obsered
in the Bell mequality test applied to the present nominteract-
ing system A modified setup wheie the patticles propagate
downstieam alter a comncidence measuiement lends tself as
a souice {or spi-entangled paiticles, ¢f Ref 10
Expetimental realizations may be more simply imple-
mented using entangled otbutal 1ather than spin degiees ol

PHYSICAL REVIEW B 69 235312 (2004)

fteedom For example, the pan of edge channel states m the
quantum Hall devices of Rels S and 8 assume the 10le of ow
spi-up and spin-down states with paiticles injected fiom
independent 1eservoiis as tequuired m our setup In Rel 5 4
Hall bai 1s divided up through a spht gate electiode playing
the 10le of the tunable (J) sphitter m ow setup The device
descitbed 1 Rel 8 mvohes a Mach-Zehnder geometry,
wheie the tunable sphitter 1s implemented thiough a combi-
nation of constirctions (labeled C and D 1in Rel 8) and an
additional flux penetiating the loop Altetnatively, a setup
whete the mixing 1s 1ealized 1 a chaotic quantum dot has
been desciibed in Ref 6

It 15 interesting to analyze the setup descuibed in Ref 9
the light of the findings 1epotted here The setup i Ref 9
mvolves a simple normal teseivon mjecting paus of elec-
tions 1nto a souice lead which are subsequently separated m
space by a beam splitter The 1njected paus 1eside 1 a spin-
siglet state involving the identical oibital wave function,
‘I’l]nzz (,Z)S' (/bslegz, the entanglement obseived m a Bell in-
equality test then has been atuibuted to the entanglement
assoctated with this spm-singlet state One may criticize that
this mcoming singlet, bemg a simple Slater detetmunant,
1s nol entangled according to the defimtion given by
Schitemann er al '* Howevel, alter the beam sphtter the o1
bital wave function ¢, 15 delocahzed between the two leads,
¢ P=ryd,F1qPy, With 1, and 7y the coresponding
scattering amplitudes While the scattered state remamns a
Slater determinant ‘l’é:l[:(b'(bz)(s’f, the singlel conelations
now can be observed 1n 4 comcidence measurement testing
the cioss conelations between the leads u and d Hence the
spin entanglement 15 produced by the 1eservour, but its obser-
vation requues proper projection It 1s then difficult to tiace a
unique origin for the entanglement manifested 10 the viola-
uon of a Bell-inequality test The appioptiate setup to ad-
diess this question should mvolve a 1eseivou njecting pat-
uicles with opposite spin 1esiding 1 a Slater determiant of
the foim \I’|[[::[(/’sl;<7’:1 = (7)5'1(/);]/\3, which 1s not en-
tangled in the spin vanable Such an analysis has been pie-
sented here with the 1esult that the orbital projection in the
comcidence measwement 1s sufficient to produce a spin-
entangled state
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nancial support [rom the Swiss National Foundation
(SCOPES and CTS-ETHZ), the FZ Julich, the Russian Sci-
eunce Suppoit Foundation, the Russian Ministty of Science,
and the program * Quantum Maciophysics”™ of the RAS
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