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Α sharpened Version of the AANDERAA-ROSENBERG conjecture

by

M.R. Best, P. van Emde Boas and H.W. Lenstra jr.

ABSTRACT

The AANDERAA-ROSENBERG conjecture states that every algorithm which

decides whether some graph, which is represented by means of its adjacency-

matrix, has some non-trivial monotonic property, must in the worst case

2
probe Ü(n ) entries. We present a number of techniques which enable us to

prove for several specific properties (e.g. connectedness) that in order to

decide these properties in fact all edges must be probed by the algorithm.

Moreover, we present some new examples of properties on und.irected graphs*

where not all the edges are needed, or even stronger, 0(n) edges are suffi-

cient.

KEYWORDS & PHRASES: Properties of graphsj analyses of algorithms.



1. INTRODUCTION

For ne Ή , let G be the collection of all graphs with set of

vertices {l,2,...,n}, and let G = U G . Let G,H e G and let χ be an edge.

nelN η

Then

|G| denotes the number of edges in G;

χ e G denotes that χ is an edge of G;

G c H, G η Η, etc. denote the corresponding expressions for the sets of

edges, provided the sets of vertices coincide;

G denotes the graph complementary to G;

G ^ Η denotes graph-isomorphism;

Ε denotes the totally disconnected graph on {l,2,...,n};
η

Κ denotes the complete graph on {l,2,...,n};

e = |K . We write e = e if no confusion arises.η ' η η

Let Ρ be a property on G, and G e G. Then in expressions like G e P,

G η P, G \ P, etc., Ρ is identified with the collection of graphs in G
η η

which satisfy P. We denote G η Ρ by Ρ . Ρ is called a property on G if

Ρ c G . In this case Ρ denotes G \ Ρ. Α property Ρ is called a grccph-

property if

VGe G VHeG ((Ge Ρ Λ G^H) => Η e Ρ).

Now fix a natural number η and a property Ρ on G and consider the

following game between two persons, called the hider and the seeker., First

the hider takes a graph G e G in mind. The seeker aims to find out as soon

as possible whether G e Ρ or not. To do so, each of his moves consists of

questioning the hider as to whether some edge χ is in G or not. The game

terminates on the moment that the seeker can decide, using the Information

gathered so far, whether G e P. The hider wins if all edges have been asked

for; otherwise the seeker wins.

In this note, zero will be called a natural number (0 e Έ).

For the time being, we leave undecided whether we consider directed or

undirected graphs.



In order to avoid trivialites, such as choosing the property "the

graph has η vertices" (one is ready at the beginning), or "the graph has

a self-loop" (as LIPTON and SNYDER have computed in [7], this game costs

the seeker at most as many moves as there can be self-loops), one should

agree:

I. all graphs are understood to contain no self-loops;

II. only non-trivial properties on G are to be considered.

Α property Ρ on G is called non-trivial, if neither Ρ nor Ρ is

empty. An arbitrary property Ρ is called non-trivial on G , if Ρ is non-

trivial.

After having lost many games (and being frustrated by his thankless

task), the hider becomes perfidious, and modifies the rules of the game.

Instead of actually selecting a graph in advance, he only provides answers

to the seeker's questions, thus designing a graph which is hard to deter-

mine for his opponents decision algorithm.

We denote the number of moves in this modified game, assuming that

both opponents play optimally, by μ(Ρ). Now the question is whether there

exists a (non-trivial graph) property Ρ on G^ such' that μ(Ρ) < e
n
. We call

property Ρ on G for which this is not the case (i.e. u(P) = e ), evasive.
η
 η

An arbitrary property Ρ is called evasive on G^ if P^ is evasive.

The quantity μ(Ρ
η
) indicates the number of entries of the adjacency

matrix of G any P-algorithm can be forced to probe, in order to decide

whether the graph G has property Ρ or not. This explains why the behaviour

of μ has drawn the attention of several people working in the field of

analysis of algorithms. HOLT and REINOLD [4] derived for the properties

"is strongly connected" and "contains a directed cycle" lower bounds of

respectively ^n(n-l) and |(n+l)(n-l). We show in section 4 that these two

properties are actually evasive.

ROSENBERG [8] conjectured that for any non-trivial graph property Ρ we

have μ(Ρ ) >> η
2
. *"* However, AANDERAA provided a counterexample for

n

It is not clear how the assertion "y(P
n
) = 0(n )" should be interpreted.

The LANDAU-BACHMANN 0-symbol can certainly not be intended. We have

chosen for the Interpretation μ(Ρ
η
) » η

2
 (WINOGRADOV's symbol:

liminf y(P ) / n2 > 0), although the Interpretation μ(Ρ
η
) = Ω(η

2
)

(i
n
.e°! not μ(Ρ

η
) = o(n

2
), or limgup v(P

n
) / n

2
 > 0) can be defended as well.



directed graphs (cf. section 7). Together they formulated the AANDERAA-

ROSENBERG conjecture, stating that for any non-trivial monotonic graph

2

property, the estimate \i(P ) >> η holds [8], Α property Ρ is called mono-

tonic if

V G e G V H e G ((Ge? Λ G C H ) => Η e P) .

Α number of results can be found in a paper by KIRKPATRICK [6]. He

2
proves \i(P ) >> η for several Special properties P. Furthermore he claims

the estimate p(P ) >> n.log η in case Ρ is monotonic, using a proof which

can not convince us (the treatment of case (2) in his lemma 3 is inadequate).

It has already been suggested by HOPCROFT and TARJAN [5] and by

R. KARP,(cf. [8]), that for many graph properties ?, any P-algorithm must, in the

worst case, inspect all entries of the adjacency matrix. Indeed, it seems

reasonable to conjecture that any non-trivial monotonic graph property is

evasive.

In this note, we develop a few techniques by which we can prove evasive-

ness for many Special properties. Moreover we present in section 7 some new

examples of properties on undirected graphs which are non-evasive, one of

them even being a counterexample to the original ROSENBERG conjecture.

2. SOME GENERAL REMARKS

I. It follows from a result of KIRKPATRICK that for any non-trivial graph

property Ρ the lower bound μ(Ρ ) >> η holds. His theorem 1 in [6] states

that for directed graphs the inequality

y(P ) > n(n-l)/k + k - 1
η Ρ Ρ

holds for some positive number k . This obviously yields \i{? ) > 2n-2.

For undirected graphs corollary 1 in the same paper leads to

μ(Ρ ) > n/2~-2 for any non-trivial graph property P.



II. The AANDERAA-ROSENBERG conjecture implies the existence of a universal

constant c„ > 0 and integer n~ e Έ such that for every η > η and for

every non-trivial monotonic graph property Ρ οη G one has

μ(Ρ) > c
Q
n

2
.

This can be seen as follows. Construct a property Ρ by Ρ =Ρ =0 and

P
n
 is a non-trivial monotonic graph property Q. on G for which μ(0) attains

its minimal value. This minimum exists by finiteness. By the conjecture

one has

2
3c

Q
 > 0 3n

Q
 ε I Vn > n

Q
 (P(P

R
) > c

Q
n ) .

Now the assertion stated above follows from the minimality of μ(Ρ ).
η

III. For each property Ρ on G we define the dual property Ρ by

P* = {G | G e G Λ G
C
d?}.

It will be clear that P* is a graph property (non-trivial, monotonic) if and

only if Ρ is. Furthermore μ(Ρ*) = μ(Ρ )·

IV. Let G be a directed graph on {l,2,...,n}. We define the undirected

graphs G' and G" on the same vertexset by:

(i,j) e G' «=> (<i,j> e G Λ <j,i> e G);

(i,j) £ G" *» (<i,j> £ G ν <j
s
i> £ G).

Now let Ρ be a property for undirected graphs. Then we define the

properties P' and P" for directed graphs by:

P
1
 = {G | G' e P} and P" = {G | G" e P}.

The hider can use any strategy for Ρ also for Ρ' (Ρ") by giving an

edge <i,j> always (never) when <j,i> has not yet been asked for, and other-

wise he gives this edge if and only if (i,j) should have been given in the

P-strategy. Hence μ(Ρ') > 2μ(Ρ ) and p(PJJ) > 2μ(?
η
).

On the other hand, it is clear that the seeker needs both for P' and

P" at most 2μ(Ρ ) questions, by asking every edge in both directions.

Hence μ(Ρ') < 2μ(Ρ ) and μ(Ρ") <
η η η



Together this yields:

) = 2y(P
n
).P

n

In particular P' is evasive if and only if Ρ is, and the same holds

for P".

As an example, we mention that if Ρ is the property "connectedness" then

P" is "weak connectedness". So if connectedness is evasive (and we shall prove

below it is), then the same holds for weak connectedness.

V. For many properties a trivial strategy for the hider can be given, which

makes the property evasive. We mention:

"The graph has exactly (at most) k edges"; the hider gives the first k

edges and thereafter none.

"The graph is point-symmetric" or "the graph is line-symmetric";

the hider gives every edge asked for. Since the complete graph on

η points is both point- and line-symmetric, and the graph with e-1

edges is neither, the seeker has to ask for all edges.

3. Α STRAIGHTFORWARD STRATEGY

LetΡbe the property "the graph contains a cycle" for undirected graphs.

Suppose the hider uses for this property the following strategy: he gives

every edge asked for, unless that edge should close a cycle. It turns out

that this simple strategy is optimal, and that it makes the property

evasive (except for η = 2 but then the property is trivial). We will prove

this for a more general class of properties.

η
THEOREM 1. Let η e IN and let Ρ be α non-trivial monotonio property on G

such that for every G e G and for every χ 4 G with G υ {χ} 4 V there is α

y 4 G υ {χ} such that G υ {y} 4 P. Then Ρ is evasive.

PROOF. Let G. be the graph consisting of all edges given by the hider in his
— — — — — -j_

first i answers. Thus G = Ε . The hider's strategy consists of giving an

edge χ in his i answer if and only if G. υ {χ} 4 Ρ. By induction, it is

clear that G. 4 Ρ for all i.



Now suppose \i(P ) = m < e . Let Η be the set of edges not asked for in

the game, and let χ e H. Then G υ Η £ Ρ since otherwise the game was not

finished. Put G = G
m
 υ Η \ {χ}. Since G υ {χ} ί Ρ, there is an edge
m

y i G υ {χ} = G υ Η such that G υ {y} i P. This edge y must have been asked
m
 th

for during the game (in the k move, say), and have been refused by the

hider. So G,_, υ{y} e P. Hence, by monotony, G υ {y} e P. Contradiction. Π

EXAMPLE 1. "The graph contains α eyele" is an evasive property for

undireated graphs with at least thvee vertiees.

It is left to the reader to show that this property satisfies the

conditions of theorem 1.

EXAMPLE 2. "The gvccph is planar" is an evasive property for undireeted

graphs with at least five vertioes.

PROOF. Suppose G is a planar graph with at least five vertiees
s
 (a,b) £ G,

and G υ {(a,b)} is planar. We claim that there is some edge different from

(a,b) which may be added to G without disturbing planarity.

We assume that G υ {(a,b)} is maximal planar, since otherwise our claim

is trivial. Now fix some embedding of G υ {(a,b)} in the sphere. By the

maximal!ty, its faces are all triangles, and therefore, the faces of G are

all triangles except for one quadrangle (a,c,b,d). Obviously G υ {(c,d)}

is planar, so if (c,d) i G, this yields the desired extension.

Hence we may assume that (c,d) e G. Let the two triangles adjoining

(c,d) be (c,d,e) and (c,d,f). If {e,f} = {a,b} then (a,c,d), (b
s
c

s
d) and

(a,c,b,d) are all faces, so G has only four vertiees.

Hence we can assume that a i {e,f}. (e,f) cannot be an edge, since

it would intersect either (c,d) or the path (c,a,d). Now we divert (c,d) as

the internal diagonal of the quadrangle (a,c,b,d)
s
 and (e,f) may be added to

G without disturbing the planarity.

This proves that for Ρ = "non-planar" the condition of theorem 1 is

satisfied. Q

This result has been claimed without proof by HOPCROFT and TARJAN [5].
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Picture of the graph G. The quadrangle (a,c,b,d) has

been drawn as the exterior face. Other vertices and

edges may be added in the shaded regions, although b = f

is allowed.

By the duality mentioned in section 2, we obtain:

THEOREM 2. Let V be α non-tvivial monotonio pvopevty on G such that fov

evevy G e G and fov every χ e G with G\{x} e ? theve is an edge y e G\{x}

such that G\{y} e P. Then V -is evas-ive.

EXAMPLE 3. "The gvaph is eonneeted" is an evasive pvoperty fov undiveeted

gvaphs.

The proof is left to the reader.

4. THE ENUMERATION POLYNOMIAL

We call a collection {A,B} of two sets a paiv of neighbouvs if

|Α Δ Β| = 1. (Δ denotes the Symmetrie difference.) Α collection is called

paivable if it is the disJoint union of pairs of neighbours.

THEOREM 3. Let η e 1^ Ρ be α non-evasive pvopevty on G . Then both Ρ and

Ρ are paivable.



PROQF. Let G be the set of all graphs in G which are compatible with

the first i answers of the hider, and let P
( l )

 = G
( l )

 η Ρ. Note that G
( l )

is pairable for i < e. If the game is finished after m moves
s
 then either

P ^ = 0, or P ^ = G
( m : >

, so P
( m )

 is always pairable, unless m = e.

Now assume that Ρ is not pairable. Then the hider does nothing except

to ensure that for i e {0,l,...,m}, Ρ is not pairable. He may do so,

because by assumption P^ ^ is not pairable, and by asking the i edge, the

seeker actually divides Ρ into two subsets Q.
 a n
d R> from which the

hider has to make the choice which one will become Ρ . Since Q. υ R = Ρ ,

there is at least one choice (P = Q. or P^
X)
 = R) for which P^

X)
 is not

pairable.(The disjoint union of pairable sets is again pairable.)

Therefore, P ^ is not pairable, so m = e
9
 and Ρ is evasive on G .

Contradiction. So Ρ is pairable. Similarly P° is pairable. Π

Although we do not give here any direct application of this theorem,

it might be useful for those who intend to find a counterexample to the

conjecture stated above. "Pairable" is quite a strong condition. Up till

now, we were not able to find any non-trivial, monotonic, pairable graph

property!

REMARK. It is not difficult to generalize theorem 3. Α collection I is

called a k~interval, if there are sets Α e I and B e i such that. |B\A| =k
s

and Ϊ = {C | A c C Λ Ccß}. Thus a 1-interval is a pair of neighbours.

Now the following holds.

Let k e Ι, η e Ή, and V be α property on G such that μ(Ρ) <
 e
- k .

Then Ρ is the disjoint union of k-intervals.

Let Ν e Έ. Then f(X) - T,
N
_
n
 a, X

k
 is called an enumerating polynomial

in X of degree Ν if for all k e {0
9
!

5
..,N} one has ^ £ I and a^ < (J.

(Note that a„ = 0 is allowed.)

Now let η ε IN and Ρ be a property on G^. Then we define

F(P,X) = l X
! G |
 = l N(P,k)-X

k
 ,

GeP k=0

where N(P,k) denotes the number of graphs in Ρ with exactly k edges.
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Obviously, for fixed P, F(P,X) is an enumerating polynomial in X of degree

e, called the enwneration polynomial·.

THEOREM 4. Let η e IN and ? be α non-evasive property on G . Then F(P,X) is

divisible by Ι +Χ in 7L [x], and moreover F(P,X)/(1+X) is an enumerating

polynomial. in X of degree e - 1.

PROOF. The contribution to the enumeration polynomial of a pair of neigh-

bours is divisible by 1 +X. Hence from theorem 3 both F(P,X)/(1+X) and

((1+X)
e
 - F(P,X))/(1+X) are polynomials in X over IN. D

COROLLARY 1. Let n e I, and V be α pvopevty on G such that F(P,-1) φ 0.

Then Ρ is evasive on G .
η

COROLLARY 2. Let η e 3N, and V be α property on G such that \V\ is odd.

Then Ρ is evasive on G .

EXAMFLE 4. "The graph oontains α direated ayate" is an evasive property for

direoted graphs.

PROOF. We use corollary 2. For η e IN let Α be the collection of all

n
 ^

acyclic digraphs on {l,2,...,n}. For η > 2 let A. be the collection of all

acyclic. digraphs on {l,2,..,,n} which are invariant under the transposition
Τ

of the vertices n- 1 and n, and define φ: Α ->· G , by $(G) is the graph
η η~ 1

that remains after deleting the vertex η and all its incident edges from G.
Τ

Α little reflection shows that φ is injective, and that φ(Α ) = Α ,.

Since |A \ Α | is even, |A | Ξ |A | = |A _ | (mod 2). Since

jA
o
| = |A | = 1, |A | is odd for each η e M. Hence "acyclic" is evasive,

Ό
1
 ' 1 η

and so is its negation. D

EXAMPLE 5. "The graph is transitive" is an evasive property for direoted

graphs.

The proof runs completely similar to that of example 4.

*"* This result has been found independently by R.L. RIVEST

(personal communication).



11

Α star is a bipartite graph such that one part of the bipartition

consists of a single vertex, called the centev of the star. Α star is

called maximal if the bipartite graph is complete.

EXAMPLE 6. "The graph is α star" is an evasive property for undirected

graphs with at least three vertiees.

PROOF. Let η e IN and Ρ be the property to be considered. We evaluate the

alternating sum F(P ,-l)· Clearly, the center of a star is uniquely deter-

mined if the star has at least two edges. Hence

F(P -1) = 1 -
 n
(n-l)/2 + η · \ (

n
"')(-l)

k
=

n
 k=2 '

 k

= (n-l)(n-2)/2 φ 0

for η > 3. D

EXAMPLE 7. "The graph oontains two discoint edges" is an evasive property

for undirected graphs with at least four vertiees.

PROOF. Α graph which does not contain two disjoint edges is either a star,

or a triangle. Therefore, the alternating sum for this property becomes

(n-l)(n-2)/2 - n(n-l)(n-2)/6 = -(n-I)(n-2)(n-3)/6. Π

EXAMPLE 8. "The graph is oonneoted" is an evasive property for undireoted

graphs.

(This was already proved in example 3.)

PROOF. Let Ρ be the property "connected". Following GILBERT [2.1,

formula (2), we have

J
where

=
 J

0

 Ö

Tn(X) = F(Gn,X) = (l+X)
n ( n" 0 / 2, Cn(X) = F(Pn,X).
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For X = -1 this yields

1 = Cj(-l),

0 = C
n + ]

(-l) + nC
n
(-l) if η > 1,

so

C (-1) = (-D^Cn-l)! if η > 1.
η

This is not zero, and therefore the property is evasive. •

EXAMPLE 9. "The gvaph is strongty aonnected" is an evasive property for

direated graphs.

PROOF. Let Ρ be the property "strongly connected". Then F(P ,-1) = (n-1)!

for η > 1 (see e.g. BEST & SCHRIJVER [1]). Hence by corollary 1, Ρ must be

evasive.

EXAMPLE I0. "The graph is bipartite" is an evasive property for direoted

graphs with at teast three vertiees.

PROOF. This also follows by explicit computation of the alternating sum

(cf. [1]).

EXAMPLE 11. Let k be α natural number. Then the property "the graph hos at

most k non-isolated vertiees" is evasive for undirected graphs with more

than k vertiees.

PROOF. The contribution to the alternating sum of those graphs which have

precisely m non-isolated vertiees, can easily be seen to be a polynomial

of degree m in n. Adding these contributions for 0 < m < k, we derive that

the alternating sum for the above property is a polynomial in η of degree k,

say A(n).

For η < k the property is trivial. Consequently A(0) = A(l) = 1, and

A(m) = 0 for 2 < m < k. This completely determines the polynomial A.

Moreover, by ROLLE's theorem, the derivative of Α has a zero in between 0

and 1 and in between m and m+1 for 2 < m < k. This shows that Α is strictly

monotonic for χ > k and consequently A(x) has no zeros for χ > k, Π
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For graph properties theorem 4 can be sharpened to:

THEOREM 5. Let η e Έ and let V be α non-evasive graph property on G .

Then

(1 / (e(l+X)))

and

F(P,X)
dX

(1 / (1+X)) (F(P,X) - (X/e) ^

are both envmerating polynomials in X of degree e-2.

PROOF. We use the same notation as in the proof of theorem 3. Suppose the

hider answers the first question affirmatively. Then, since it is

immaterial which edge is asked for, we have

e N(P
( 1 )

,k) = k N(P,k) ,

hence

1 )
,X) = f (k/e)N(P,k) X

k
 =

k=0

= (X/e) ̂  F(P,X) .

Similar to the proof of theorem 3 we find that both Ρ , and G \ P*·

are pairable. Hence F(P
0 )
,X) / (1+X) and (X(l+X)

e
~' - F ( P °

}
 ,X)) /(1+X)

are polynomials over IN. Since F(P^ ,X) is divisible by X, it follows that

F(P
O)
,X)/(X(1+X)) as well as (1+X)

6
"

2
 - F(P

0 )
,X) / (X(I+X)) are

polynomials over W. This confirms the first assertion.

Α negative answer from the hider on the first question leads to the

second assertion. D

COROLLARY 3. fei η
 £
 I and let V be α graph property on G^ such that

F(P,X) is not divisible by (I+X)
2
. Then ? is evasive on G^.

PROOF. If Ρ were not evasive on G^ then both F(P
9
X) and its derivative

would be divisible by 1+X. D

COROLLARY 4. Let η e W and let V be α graph property on G^ such that \?\

is not α multiple of 4. Then V is evasive on G^.
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5. THE ENUMERATION POLYNOMIAL OVER Α FINITE FIELD

Up till now, the enumeration polynomial has been considered as an

element of 7L [X]. It can be defined however as well over any arbitrary

commutative ring R with unity. It is clear that for non-evasive properties

Ρ on G the relation (1+X) | F(P,X) holds in R[X] too. In this section we

take for R the finite field Έ of prime order p.

Let η e U, let Ρ be a graph property on G , and let Τ be a subgroup

of S , the group of all permutations of the vertices. Then we define:

Τ
G = the collection of graphs in G which are invariant under T,

τ τ
Ρ = G η Ρ.

η

Since there is a natural way to regard S as a subgroup of S when η < m

it makes sense to speak of the graphs in G invariant under Τ c S when

m η

η < m.

THEOREM 6. Let η e Μ , ρ he α prime
3
 Ρ be α non-evasive graph property

3
 and

let Τ he α p-gvoup contained in S . Then (1+X) | F(P
T
,X) in Έ [X].

PROOF. This relation trivially follows from theorem 4 and the congruence

N(P
T
,k) Ξ N(P,k) (mod p). G

COROLLARY 5. Let η e IN, let V he α pvopevty
3
 and let Τ he α p-gvoup

Τ
contained in S

 3
 such that F(P ,-l) φ 0 (mod p). Then V is evasive on G .

As a first application, we give a very simple proof that strong

connectedness is evasive in case the number of vertices is a prime.

EXAMPLE 12. "The gvaph is stvongly conneated" is an evasive pvopevty for

diveated gvaphs with α prime nvmber of vertices. The same holds for

"contains α Eamilton civcuit" fov both divected and undirected graphs with

α prime nvrrber of vertices.

PROOF. Let ρ be a prime and le t Τ be the group generated by the cycle

( l , 2 , . . . , p ) in S , Clearly each non-empty graph which i s invariant under Τ
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is strongly connected (contains a Hamilton circuit). Consequently if we let

Ρ denote the property "is not strongly connected" ("does not contain a

Hamilton circuit") then F(P
T
,X) = F({E },X) = 1 i 0 (mod ρ). Π

Ρ Ρ

EXAMPLE 13. "The graph contains two adjacent edges" is an evasive pvoperty

for undiveoted graphs with at least three vertices.

PROQF. First assume that η is odd. Let ρ be a prime divisor of n, and

k = n/p. Let Τ be the group generated by the cycles (l,2,...,p),

(p+l,p+2,...,2p),...,((k-l)p+l,(k-l)p+2,...,kp)· Clearly every non-empty

graph which is invariant under Τ contains two adjaeent edges. Hence,

denoting the negation of the considered property by P, we have

F(P
T
,X) = F({E },X) = 1 t 0 (mod p).
η η

If η is even, then we take ρ a prime divisor of n- 1, and k = (n-I)/p and

the same argument holds. D

6. AN APPLICATION OF THE PRINCIPLE OF INCLUSION AND EXCLUSION

Let Ρ be a monotonic property on G. Α graph G is called V-minimal if

G has property Ρ but no proper subgraph of G has it. The collection of

P-minimal graphs is denoted by M(P), so M(P
n
> = M(P) η G^.

THEOREM 7. Let η e IN and let V be α monotonic, non-evasive pvopevty on

Then

l
J C M ( P )

S
U J - K

η

PROOF. Let G e M(P). Then the contribution to F(P,X) of the graphs containing

G as a subgraph equals X' (1+X)

By adding all these contributions, and using the principle of inclusion

and exclusion, we arrive at:
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F(P,X) = l X
| U J |

JcM(P) ,

Hence

F(P,-O= l (-1)
 eT|
-
J|
"
1
 ,

JcM(P),UJ=K
η

which proves the theorem by corollary 1. Π

EXAMPLE 14. 'The graph contains α maximal star" is an evasive property for

undireoted graphs containing at least two vertioes.

PROOF. The maximal stars themselves are the minimal graphs with this

property. The coverings c

η elements. Consequently

property. The coverings of Κ by maximal stars consist of either η - 1 or

l (-D
|J|

 = ±(n-l) * 0 . Π

JcM(P ),UJ=K

7. EXAMPLES OF NON-EVASIVE PROPERTIES AND COUNTEREXAMPLES TO THE

ORIGINAL ROSENBERG CONJECTURE

This section contains the example of a non-evasive property on directed

graphs given by AANDERAA, and three new examples of non-evasive properties

on undirected graphs. The AANDERAA example and the last undirected example

are moreover counterexamples of the original ROSENBERG conjecture: The

seeker needs at most a number of edges which depends linearly on the number

of vertices. The three undirected examples were designed at the Advanced

Study Institute on Combinatorics (Breukelen, the Netherlands, July 8-20,

1974) on which occasion the finding of such properties was raised by the

authors as an open problern.
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EXAMPLE 15. [AANDERAA] Let ? be the property "The graph eontains α sink".

Then y(P ) < 3n.
η

(Α sink in a directed graph on η vertices is a vertex with indegree n-1

and outdegree zero.)

STRATEGY. At each stage of the game we call a vertex a candidate sink

provided all incoming edges asked for have been given, whereas all out-

going edges asked for have been refused.

If the edge <i,j> is given (refused) by the hider, then vertex i (j)

is ruled out as a candidate sink. This makes it possible for the seeker

to reduce in n-1 questions the set of candidate sinks
s
 which eontains

initially all vertices, to a singleton. The verification that the last

candidate sink is indeed a sink takes at most 2(n-1) questions. D

2
REMARK. It is not difficult to prove that y(P

n
) < 3n - [ log n] - 3

for η > 1. Actually we can show, by means of an Information theoretical

argument, that equality holds.

EXAMPLE 16. [L. CARTER] Let V he the property "The graph eontains α vertex

of valeney n - 4 and the vertioes adgacent to this vertex have valaney 1".

Then μ(Ρ ) < |n(n-l) - 1 for η > 9.

STRATEGY. The seeker divides the set of vertices in two about equal parts,

and asks for all edges in between the two parts. This way he can identify,

if η > 9, the vertex with valeney n - 4 (or prove that no such vertex exists

or that to many vertices have valeney larger than one). Next he asks for

all edges ineident to this candidate, in this way isolating the three

vertices not adjacent to it. At least one edge in between these three vertices



is not yet asked for, and, therefore, μ(Ρ ) < |n(n-l) - 1. G
η

REMARK. By replacing η - 4 by e.g. 4n/5 in the above example one may produce

an example where the number of edges that need not be asked for is a

. . 2

positive fraction of η .

EXAMPLE 17. [D. KLEITMAN] Let η be an even nvmev and let Ρ be the propevty

"Theve ave tü)o adjaaent vertices χ and y
3
 each of vateney n/2

3
 such that the

sete of vevtices in {1,...,n}\{x,y} adjacent to χ and y
3
 called X and Υ

respectiveiy
3
 ave disjoint^ and such that no vertex in X is ad^aoent to

α vertex in Y". Then μ(Ρ ) < 3/8.η
2
 + 1/4.η- 1.

η

Χ χ y Υ

STRATEGY. The seeker selects at random some vertex and asks for all its

incident edges. Next the seeker proceeds to one of the vertices adjacent

to the first one, and asks for its incident edges. This way the seeker

proceeds, always selecting a vertex adjacent to one, which he has investi-

gated before. This way the seeker is able, before having investigated

n/2+2 vertices, either to isolate the vertices χ and y and the sets X and

Y, or to prove that the graph does not have the property. It is clear that,

after having isolated x, y, X, and Υ none of the vertices inbetween members

of X or Υ need to be probed. Moreover, no vertex in either X or Υ has yet

been investigated. Therefore, at least |(|n-l)Gn-2) edges need not be

probed. 0

REMARK. The property Ρ may be extended to odd η as follows: if η is odd the

graph G satisfies Ρ if G consists of an isolated vertex η and a remaining

graph on η - 1 vertices which satisfies Ρ _. as defined above. Since the

isolated vertex costs at most n-1 questions, one has

u(P
n
) < 3/8.n2 + 1/2.η - 15/8.

Α saorpion gpaph on η vertices contains a vertex b (the body) of

vaiency η - 2 , a vertex t (the taiV) of vaiency 1, and a vertex u of vaiency 2
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which is adjacent to both t and b. The remaining η - 3 vertices form a set

S, and edges in between members of S may be present or not.

EXÄMPLE 18. If V is the propevty "The graph is α scorpion graph" then

μ(Ρ ) < 6n.
η

STRATEGY. At each stage of the game we call a vertex a candidate body

(candidate taiV) if at most one incident edge has been refused (given).

The Weight of a candidate body (tail) equals two minus the number of

incident edges which have been refused (given). Hence a candidate has

weight 2 or 1.

First the seeker asks for the edges (1,2), (2,3), *.., (n-l,n), and

(n,l). In this way the set of all vertices is divided into three parts,

viz. :

B, consisting of candidate bodies of weight 2;

T, consisting of candidate tails of weight 2;

M, consisting of vertices with one incident edge given by the hider,

and one refused.

By asking at most |M| more questions, such that each vertex in Μ is

incident to three edges asked for, the seeker divides the set Μ into two

subsets Bj and Τ , consisting of candidate bodies and candidate tails

respectively, both of weight 1. At this stage of the game the sum of the

weights of all the candidates does not exceed 2|B|+2|T|+|Bj|+|Tj| = 2n-|M|.

Now the seeker asks for edges connecting candidate bodies to candidate

tails, thus reducing with each question the sum of the weights by one.

This part of the game, which takes at most 2n-|M| questions,terminates when

all edges in between the remaining candidate bodies and candidate tails

have been asked for. We denote the number of remaining candidate bodies

(tails) by3 (τ). Since of the connecting edges at most 3 have been refused
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and τ have been given, one derives ß + τ > βτ, and therefore β < 1 or τ < 1 or

β = τ = 2.

If β = 0 or τ = 0
9
 the seeker is ready. If β = 1 or τ = 1, then 3n

further questions are sufficient to determine the property. In case

8 = τ = 2, the vertex u is easily seen to be among the candidate bodies.

Now the seeker asks for all edges incident to both the candidate bodies, and

then for those incident to the only candidate tail left (if present). This

also takes at most 3n questions. Π
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