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We study the propagation of radiation through a disordered waveguide with a complex dielectric constant
ε, and show that dual Systems, which differ only in the sign of the imaginary part of ε, have the same
localization length. Paradoxically, absorption and stimulated emission of radiation suppress the transmittance
of the waveguide in the same way. [80163-1829(96)07338-9]

Localization of electromagnetic waves in a random me-
dium has attracted rauch interest,1 since the original propos-
als of John2 and Andersen.3 An essential difference with
localization of electrons is the absence of a conservation law
for photons. Light is absorbed or amplified—while retaining
the phase coherence—if the dielectric constant has a nonzero
imaginary part. The intensity of the radiation which has
propagated without reflection over a distance L is then mul-
tiplied by a factor eaL, with σ negative (positive) for absorp-
tion (amplification). The interplay of absorption and localiza-
tion has been studied extensively.2"8 For the one-
dimensional problem of a disordered single-mode waveguide
(length L, mean free path /), the result for the transmittance
T (being the ratio of transmitted and incident flux) is:6'7

where {· · ·) denotes an average over disorder. Equation (1)
was derived for σ<0, corresponding to absorption.

In this paper we address the question: What happens for
amplification? Since T=e<7L in the absence of reflection for
both positive and negative σ, one might surmise that Eq. (1)
holds both for absorption and amplification. This is correct
for short waveguides. However, äs first noted by Zhang,9 the
asymptotic result for L—>°° is

) = (-\σ\-Γι)1+Ο(1). (2)

We will show that exponential decay of the transmittance in
the case of amplification, (InT)— — L/ξ, is in fact implied by
its exponential decay in the case of absorption, with a duality
relation between decay lengths:

This duality relation extends beyond the strictly one-
dimensional case of Eq. (2), the only essential ingredient
being an exponentially decaying transmittance in an absorb-

ing system. Contrary to Intuition, amplification suppresses
the transmittance in the large-L limit just äs much äs absorp-
tion does.

Experimentally, a random amplifying medium can be re-
alized in a turbid laser dye or a powdered laser crystal.10"12

Stimulated emission of radiation leads to a dielectric con-
stant with a negative imaginary part, corresponding to
σ>0. We do not present a complete theory for such a "ran-
dom laser," because we ignore spontaneous emission.13 Still,
because of the different time scales for stimulated and spon-
taneous emissions, we believe that a time-resolved experi-
ment in a wave guide geometry might give evidence for the
localization of stimulated emission, before spontaneous
emission sets in.

To prove the duality relation (3) we consider the propa-
gation of monochromatic radiation (scalar amplitude E,
wave number k), described by the Helmholtz equation

(We suppose that all polarization-sensitive phenomena are
absent.) Disorder leads to spatial fluctuations of the real part
ε' of the dielectric constant. In the absence of disorder
ε' = l. A nonzero imaginary part ε" makes the system non-
conservative. For the general duality relation it is irrelevant

whether ε" depends on r or not. The sign of ε" determines
whether the system is locally absorbing (ε">0) or amplify-
ing (ε"<0). For a constant ε" the parameter σ introduced
above is given by

σ= - 2£ImVl+z'e", (5)

where the argument of the square root is chosen in the inter-
val (-7Γ/2,π/2).

The dual symmetry underlying Eq. (3) is fonnulated in its
general form in terms of scattering matrices. We assume that
the system consists of a scattering region of length L, in
which ε = ε' + i ε", embedded in an /V-mode waveguide with
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FIG. 1. Numerical Simulation of the transmittance of a single-
mode waveguide (W=d, £2 = 0.5;Γ2, δε = 0.2, 1 = 511 d, N=l),
averaged over l O4 realizations of the disorder. The right half of the
figure is for amplification (circles: γ=0.1; triangles: y=0.2), the
left half is for absorption (crosses: γ—— 0.1; squares: γ=—0.2).
The solid lines are the analytical asymptotes from Eq. (15). Their
slope is independent of the sign of γ, in agreement with the duality
relation (3). The inset shows the geometry considered.

ε = 1 (see Fig. l, inset). The scattering matrix S is a
2NX2N matrix relating incoming and outgoing modes. It
has the block structure

(6)

where r, r' are the reflection matrices and t, t' the transmis-
sion matrices. The transmittances and reflectances are de-
fined äs

(7a)

(Tb)

Here Γ and R are the transmitted and reflected flux divided
by the incident flux from the left. Similarly, 7" and R' cor-
respond to incident flux from the right. By taking the trace in
Eq. (7) we are assuming diffuse Illumination, i.e. that the
incident flux is equally distributed over the ./V modes. In the
absence of gain or loss (ε" = 0) the scattering matrix is uni-
tary, SS1 = l. This relation expresses flux conservation and
relies upon Hermiticity of the Heimholt/ operator, H=1~C< at
ε" = 0. For nonzero ε" we have Η( — ε") = Ή.'(ε"), which
implies the duality relation

5(-e")S t(e")=l. (8)

[If ε" depends on r the duality relation refers to a change of

sign for the complete function ε"(r)—» —e"(r).]
Let us now examine the consequences of the duality rela-

tion (8) for the reflection and transmission matrices of two
Systems which differ only in the sign of ε". (We call these
Systems "dual.") We assume that one of the two dual Sys-
tems (indicated by a subscript —) is globally absorbing, so
that all elements of f_ and t'_ tend to zero in the limit
L—>oo? while r_ and r'_ remain finite. Expanding the inverse
of 5_ to first order in the transmission matrices and equating
the result to St we find

(9)

(10)

We introduce the transmission and reflection eigenvalues
T„, ~Tn "R.„, 1Z'n being the eigenvalues of, respectively,
T=ii f, T' = i'i' t, R=rr t, R' = r'r' t. Because of time-
reversal symmetry S*S* = l. Together with Eq. (8) this im-
plies that S is a Symmetrie matrix. It follows that ί' = ίτ,
hence Tn = Tn and Γ=Γ'. The reflectances R and R' may
differ. Equation (9) directly yields a duality relation for the
reflection eigenvalues in the limit L—>°°,

Equations (9) and (10) together imply that the matrices
T^RI1 and T+R+" 1 have the same eigenvalues. The dual-
ity relation for the transmission eigenvalues follows from the
following lemma:

Let A (L) be a matrix function of L with exponentially
decreasing eigenvalues α „(L). The eigenvalue localization
lengths ξη are defined by ξ~ι = — HmL^ooL~l1na„(L). Let
B(L) be another nonsingular matrix function whose ele-
ments remain finite äs L—>°°. Then the matrix AB has the
same eigenvalue localization lengths äs A.

It follows that the matrices T+ , T + R+~' , TlRI1 Tl,
and hence T_ all have the same eigenvalue localization
lengths. Explicitly,

- limL-'ln Τη(ε")= - lim ZT'in Τη(-ε"). (12)
L—»«> L—*M

The transmittance Τ=Ν~1ΣηΤη is dominated by the largest
transmission eigenvalue, which is the T„ with the largest lo-
calization length: ^=max(^i,^2, · · · >£/v)· This completes the
proof of Eq. (3), since we have shown that all, and in par-
ticular the largest, transmission eigenvalues of dual Systems
have the same localization length.

The case N=l of a single-mode waveguide can be ana-
lyzed in more detail. The joint probability distribution
P(R,T,L) of reflectance and transmittance evolves with in-
creasing L according to a Fokker-Planck equation,

dP d

W1

(13)

The parameters / and σ are spatial averages over length
scales much smaller than the total length L of the waveguide.
Equation (13) holds if the wavelength λ is much smaller than
both / and 1/|σ|. (This is not a restrictive assumption for an
optical System.) For σ<0 (absorption), this equation is
equivalent to the moment equation of Freilikher, Pustilnik,
and Yurkevich.7 For σ>0 (amplification) their method of
moments cannot be used, because all moments of R diverge
when L exceeds the laser threshold Lc.

14 The derivation of
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FIG 2 Probabihty distnbution of the loganthm of the transmit-
tance of a single mode waveguide, for L//= 15 4 and y=0 2 (tn
angles, dashed curve), γ=— 02 (squares, solid curve) The data
points are provided by a numencal Simulation (same parameters äs
m Fig 1), the curves are a Gaussian distnbution of InT with mean
and variance given by Eqs (15) and (16) There is a slight offset
between the distnbutions for absorption and amplification because
the System is not fully in the large-L limit

Eq (13) proceeds along the Imes of Ref 15, where the case
σ=0 was considered On Integration over T it reduces to a
well known16"18 Fokker-Planck equation for P(R,L)
= IdTP(R,T,L) The lmntL->°° of P (R, L) was studied m
Refs 14, 17, and 18 In terms of the variable μ= l/(R- 1) it
reads

for

-1-μ), for y<0,

where we have defined y= σ/ The function θ(χ) = l for
x>0 and 0 otherwise

Usmg this asymptotic distnbution we have computed
from Eq (13) the first two moments of ΙηΓ m the large-L
limit The result for the average is

(15a)

for γ<0,

c(y) = C+ln2y-e2?Ei(-2y), for y>0, (15b)

where C is Euler's constant and Ei(x) = ix_xdte'/t is the
exponential integral [c( y)^ — 2 ylny if 0< y<i l ] Equation
(15) agiees with Refs 6, 7, and 9, and demonstrates that the
mverse localization length ^1(σ) = (1 + |γ | )/~ 1 = / ~ 1 + σ
is mdependent of the sign of σ—in accordance with the gen-
eral duality relation (3) The result for the variance is

var lnr=2[l+2|y|e 2 !%i(-2!y|)]L/Z+£>(l), (16)

in agreement with Ref 7 for y<0 Note that
Vvar \nT<i(\nT) for L//S>1 Evaluation of higher moments
shows that the distnbution of ΙηΓ tends to a Gaussian for
L—*=° (The tails are non-Gaussian, but contain negligible
weight)

5

0
0 "

+ -5

^ ^

.̂3-10
"̂**̂

-15

absorption

Η

ώ

+ D
+ α

+ 0 2 0

+ + π

+ D 15

+ + D ~Ϊ10
0 <"

α 05

0° 0°

amphfication

Δ

δο° 6°°~°
Δ 0

Λ Δ °Δ

ί«

S o *
Q *β

""·*>.

° 20 ι

°00

Δ 0
Δ -

Δ

ΔΔ

-

4 6η8 10 12

Ι ί

20 10 Ο 10 20
<- L/l L/l -»

FIG 3 Numencal Simulation of the transmittance of a multi
mode waveguide (W=25d, k2 = 20d~2, <5ε = 0375, 1 = 29 6d
N=]2), averaged over 50 reahzations of the disorder 'Hie param-
eter £0 = (N+ 1)1/2 is the localization length of the System m the
absence öl absorption or amphfication The nght half of the figure
is for amphfication (circles σ=0 0035c/~', tnangles
cr=00071rf '), the left half is for absorption (crosses
σ=-00035Λ ', squares σ=-00071ίΓ') The mset shows the
eigenvalue localization lengths, ξ~} = — hmL^„L~l\n Tn These
lengths ξη were computed from the L dependence of T„ for L up to
40 / and a single reahzation of the disorder The duality between
absorption and amphfication is verified with good accuracy

These results hold m the laige-L limit For short
waveguides instead of Eq (15) one has (lnT)=—(l —y)L//
The crossover length is the lasmg treshold Lc~lc( y)/| y|, at
which (T) diverges for y>0 Below this length stimulated
emission enhances transmission through the waveguide On
larger length scales stimulated emission teduces transmis-
sion In contrast, the reflectance is enhanced on every length
scale141718

To lest these analytical predictions for N=l, and to in
vestigate also the multimode case, we have numencally
solved a discretized version of the Helmholtz equation (4),
on a two-dimensional square lattice (lattice constant d,
length L, width W) The real part ε' of the dielectnc con
stant was chosen randomly from site to site with a uniform
distnbution between l ± δε The imagmary part ε" of the
dielectnc constant had the same value at each site The scat-
tering matnx for the multimode case was computed usmg the
recursive Green function techmque, origmally developed for
the electronic Anderson model19 (For the case 7V= l a
transfer-matnx method8 9 turned out to be more convement)
Simulations with ε" = 0 were used to obtain /, from the
relation20

-hmL (17)

The parameter σ was determmed from Eq (5) Results foi
the single-mode case are shown in Figs l and 2 and lor the
multimode case in Fig 3 The duality relation between the
localization lengths for absorption and amplihcation is vu i
fied with good accuracy, both for the single-mode and toi the
multimode case Furthermore, for N — l we find good agitt
ment with the results (15)-(16) of the Fokker Planck equa
tion
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In conclusion, we have demonstrated that stimulated
emission of radiation in a disordered waveguide reduces the
decay length, in the same way äs absorption does. This para-
doxical result is an immediate consequence of the exact du-
ality relation (8) between the scattering matrices of two Sys-
tems with complex conjugated dielectric constants. The dual

supported by an explicit computation of the decay lengths,
both analytically (for the single-mode case) and numerically
(for the single- and multimode cases).
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