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The approximative methods for obtaining the original semi-major axis of a comet orbit are reviewed with special reference to
the magnitude of the errors made. It is found that formulae linear in the masses of the disturbing planets and based on pertur-
bations computed for a parabolic comet orbit have sufficient practical accuracy, provided that the reduction to the barycentre
is correctly made and that the effects of all major planets are included. Where possible, the analytical estimates are illustrated

by actual numerical examples.

1. Introduction

When a long-period comet penetrates into the
region where the attraction by the planets becomes
appreciable, its orbital elements are changed by
planetary perturbations. So the elements of the
osculating orbit, defined at a certain moment during
the period in which the comet was observed, differ
from the elements of the original orbit, described while
the comet was at a large distance from the Sun. The
calculation of the original orbits is of special interest
for comets that move in nearly parabolic orbits. The
major axes of these orbits indicate the extent of the
large cloud of comets surrounding the solar system,
which is the reservoir from which the nearly-para-
bolic comets appear to come (OORT 1950).

The element that is of primary importance for this
problem is the reciprocal semi-major axis, 1/a. The
eccentricity, e, which is related to it by 1 — ¢? = p/a,
is subject to a nearly equivalent change because both
g, the perihelium distance, and p = ¢(1 +¢), the
“parameter’” of the orbit, change relatively little.
In the present article we shall consider only the
calculation of the original value of 1/a.

The problem thus defined has a long standing.
Much work has been done by Eris STROMGREN and
his collaborators. A list of comets for which reliable
original orbits were computed was given by SiNpING
(1948). It has since been extended by Dirixkis (1956),

who lists 26 comets. More recent work will be
referred to below.

A wide variety of methods has been employed, or
suggested. They range from fully numerical methods,
which are straightforward but laborious, to fully
analytical methods, which are too complicated for
practical use. The most common practice has been to
use Encke’s method for a certain time interval of
backward integration, say 15 years, and then to make
the reduction to barycentric elements, whereas an
upper limit of the perturbations over all earlier years
is estimated. Practice varies on the point of inclusion
of more perturbing planets than Jupiter and Saturn.

The present paper was written in a first draft in
1953 when one of us (E.H.B.) started his computa-
tions on the original orbits of some comets. The aim,
at that time, was to present a method that was
simpler than Encke’s and yet could be shown to
result in an error of 1/a not larger than one unit in
the fifth decimal. An accuracy of this order was
deemed sufficient both in view of the usual accuracy
of the definitive osculating orbits and in view of the
statistical discussion in OORT’s 1950 paper. It may
not be quite sufficient compared to the accuracy that
has been reached for the best observed comets in
recent years. It was concluded at that stage of the
work that, within the stated accuracy,

(1) it is permitted to compute the perturbations
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using the positions that the comet would have in an
unperturbed parabolic orbit,

(2) the integration may usually be limited to 10 years,
and

(3) the perturbations by Uranus and Neptune may
not generally be omitted.

These conclusions are verified by a more precise
discussion in the present paper. In the discussion of
errors we needed certain numerical data from the
work of other authors. This necessitated a comparison
of the different methods, although a full survey has
not been aimed at. Reference may be made to
STROMGREN’s classical paper (1914) and to a recent
survey by DIrikis (1956).

In judging the merits of a method it is useful to
separate two sets of considerations, which are com-
pletely mixed in all papers we have seen on this
subject. The first set refers to the ease and rapidity
of the calculations, by which two mathematically
equivalent methods may not be equally suitable in
practice. The results obtained by such methods may
differ only by interpolation and rounding errors.
Under this heading fall, for instance, the choice
between Encke’s and Cowell’s method, or between
rectangular and spherical coordinates, or between
the use of time or true anomaly as integration
variables.

The second set of considerations refer to the
accuracy reached. The errors caused by all approxi-
mations and omissions should be estimated. Under
this heading fall, for instance, the questions whether
to use more perturbing planets than Jupiter and
Saturn, how far to extend the integration time, and
whether it is permissible to compute the perturbing
forces from the position of the comet in an unper-
turbed orbit.

We concentrate in the present paper on the second
set of questions. For clarity it seems advisable to say
as little as possible about the first set of questions,
which are irrelevant to the final results. Accordingly,
we use vector notation throughout this paper. For,
although it is convenient to think of a vector r as a
short notation for the three coordinates (x, y, z), a
vector formula is equally valid in any system of
rectangular or spherical coordinates. The choice
may be made on the basis of convenience when the
numerical work starts.

2. Notations

Units and coordinates. Time is measured in mean
solar days; distance in astronomical units; unit of
mass = Sun’s mass; gravitational constant,

k* = 0.000 295 912 21I.
Vectors are in Clarendon type; their rectangular
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components are given in parentheses. The origin of
coordinates is the Sun.

Osculating orbit of comet. The usual notation for the
elements has been followed:

v = true anomaly,

P (P,, P,, P,) unit vector to perihelion.

Q (Q,, Q,, Q,) unit vector to position of v = go°.

r (x, y, z) radius vector in true (perturbed) orbit;

the length of this vector is 7.

V (V,, V,, V,) velocity in true (perturbed) orbit
with respect to the sun; the length of this
vector is V.

Parabolic orbit. This is defined by the same values of
the elements ¢, Q, i, w, T as the osculating orbit. The
true anomaly is found from the well-known relation
t—T

q3/2 ( I )

M(v) E—%Etan 1o —|—%(tan o)} =

Perturbations

m, (i =1 to 9) masses of the planets.

r; (x;, y;, z;) coordinates of perturbing planet.
r,—r (x;—x, y;, — J, Z;— z) vector from comet to per-
turbing planet; the length of this vector is p,.

k*a (F*u,, K*u,, kK’u,) acceleration due to the pertur-

bations,
Z r—r r
u = m; — =3(-

3
i Pi 7;

(2)

3. The fundamental equation

The sum of the kinetic and potential energy of a
comet with mass p moving in an undisturbed orbit
around the sun is

wh?
2a
Here a is the semi-major axis of the orbit the comet
would describe, if from the moment considered it
would move solely under the attraction of the Sun.
The work done per unit time by the perturbative
force acting on the comet is
wk’Vu.
Equating this to the time derivative of the energy we
obtain the rigorous result:
d(1/a)
——=—2Vu.

This fundamental equation may also be derived by
means of the equation of motion as follows:

d(1/a) d (2 V2>_ 1d
A _?t<;_? =g —
1d 2 2 —k*r
—Pd—t(VV)=—r—3rV—PV(———T3 —l—k2u>=
=—2Vu, (4‘)
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which may be written fully:

I/a VZ (r —r r;> (s)

T

We now compute V and u on the assumption that the
comet moves in a fixed parabolic orbit. The approxi-
mation introduced by this assumption is discussed in
section 6. The position and velocity are given by

r=gqg(1—tan’*lo)P 4 2gtan L0 Q, (6)
dr 2k . .
V= \/pcos—v( Psin Lo+ Qcos 2v), (%)

where p = 2 ¢. It follows that
2k
V= Vo cos L (8)

and the fundamental equation becomes

_d(;t{a)z%{Q(l—l—COS v)—Psinv% .a. (9

Upon multiplication by dt/dv = r*/k V' p equation
(9) becomes
d(1fa) r?

v =;%Q(I —I—cosv)—Psinv§ .u, (10)

which is the form used by MAKoOVER (1955), BARTE-
NEVA (1955), and GALIBINA (1958).

4. The barycentric orbit

The barycentre (index ¢) is the centre of gravity of
the Sun and the nine planets'). Its position with
respect to the Sun is

S,
i

o=t (1)

where m = z m; .Its velocity with respect to the Sun,
i

V,, is formed similarly from V,; its acceleration with
respect to the Sun is (exactly):

d*r, dV, m; ¥,
7=7=_k22—7l_3—. (12)

Let at a certain epoch r and V denote the position
and velocity of the comet relative to the Sun. The
barycentric osculating orbit is the orbit the comet
would pursue if from this epoch it would move solely
under attraction of the mass 1 + m placed at the

1) This is the classical definition of the barycentre. It is somewhat
unfortunate that the recent issue ‘‘Planetary Coordinates
1960-1980°’ understands by the term barycentre a quite different
thing, namely a point approximately coinciding with the centre
of gravity of the Sun and the four inner planets only (cf. eq.
28 of this paper).
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barycentre. Let a’ denote the semi-major axis of this
orbit, then

2 P
7=7~F (13)
I 2 (V—-V)?
and SO Tr—rl Batm (4
The difference
¢ (1) =a,#(t)-ﬁ (15)

is called the reduction to the barycentre for this
epoch. Differentiation of (14), in the same manner
as (4) may be derived from (13), rigorously gives

d(1y  2(V-V,)q
E:(Z)“‘ Gxm) (16)
where
r—r, r—r
q=m(1+m +2m ;o (17)

k*q may be called the perturbatlve acceleration in
the barycentric system. Further (15) gives

de V-V
%:zvu——z(—ﬂrm—c)q. (18)

It is permissible to use first-order perturbations,
i.e. to linearize these equations in terms of the small
quantities m,, m, |r,|/r and |V, |/V. In this approxi-
mation the denominator of (11) may be omitted.
We then obtain instead of (15):

2r r
o) =25+ 5V V o+ Vom),  (19)

instead of (16):

and instead of (18):

de (t rr\r r 1dV
O__y(nadtB) T g 1% g,

A few alternative forms may be mentioned.
Equation (20) can be transformed into

d (1
E‘(Z)z (22)
=—2V2m;[(r r)(P _;3)4—%]’

which form has been used e.g. by STROMGREN (1914)
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and by MAkOVER (1955), whereas (5) may also be
written in the form
1dV

%‘( )=_2V§Zm o TR dtc§' (23)

Finally, for a nearly parabohc orbit (19) may be
approximated by

()___(rr

but the other formulae are not correspondingly
simplified. ,

2VV

“tm)  (24)

5. The overall method

The original semi-major axis is the value of a’ at
t= — . The semi-major axis of the ‘“‘definitive
orbit” is the value of a at the osculation date ¢,.
Hence, the strict equation is

(2 (0, e e i) s

We shall further confine ourselves to first-order
perturbations. The heliocentric perturbations (second
term) may then be computed from (5) or from (23),
the barycentric perturbations (fourth term) may be
computed from (20) or (22) and the reduction to the
barycentre (third term) from (1g).

For a nearly-parabolic orbit each term may be
approximated by using the positions and velocities of
a parabolic orbit (6), (7). The second term then
transforms to (9) and the fourth term to a similar
expression with q instead of u. Further, the third
term may be written in the form (24), where it is
irrelevant to the first order whether the true position
and velocity or the parabolic approximations are used.

The integration interval should be chosen prac-
tically, i.e., in such a manner that the integrand does
not change too rapidly. It may be varied as required,
for instance, taken smaller during a close approach to
a planet and relatively large when the comet is very
distant. However, there is no point in selecting
awkward intervals in time corresponding to pre-
scribed intervals in v. Nor is MAKOVER’s claim justified
that a smaller total number of steps is then required.
In particular the last step, from |v|=170° to
|v] = 180° (f = 4 =), cannot be taken at once, for
q keeps its oscillating character with the periods of
the planets. There is no correct way but an analytical
estimate as extensively discussed by STROMGREN
(1914) and others.

The equations in the preceding section show that
the conversion date ¢, may be chosen freely. The
result is mathematically independent of this choice
and only reasons of convenience may cause preference
for a certain choice. The normal practice is that, for
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convenience, we wish to neglect the fourth term
altogether. It then becomes vital to choose ¢, — ¢,
sufficiently large.

In a first-order theory the conversion time ¢, may
be chosen separately for each of the planets because
not only the perturbation equations (5) and (22) but
also the “reduction to the barycentre” (19) may be
broken into contributions from each planet:

c(t):Zci(t) =Zmi% zVV 72

— + K2 } (26)

It is convenient to apply ¢;(¢) for the four inner

planets right at the start of the calculation, i.e., at the

moment Z,, because their contributions are small. The

forms of egs. (13) and (14) suggest that thlS should be
done by defining the semi-major axis a” by

I 2 V?

AW 2
where (in accordance with the notations used in
“Planetary Co-ordinates 1960-—1980”):

zrr,.

(27)

a 7

r =r —r, (length 7),
V=V — Vb (length V),

S4—I—|—Z

i=1

I Z
r,= = m.r;.
b i
S, :

i=1

(28)

The proof that the difference of (27) and (13)
consists to the first order of the terms ¢ = 1 to 4 of (26)
is precisely parallel to the derivation of (26) from the
difference of (14) and (13). Hence we may call a” the
semi-major axis reduced to the barycentre of the
Sun and the four inner planets.

It may be noted that r, as defined by (28) is not
precisely identical to the r, tabulated in “Planetary
Co-ordinates 1960 — 1980’°, in which Mercury was
omitted. The difference is <7 x 107

If the computation of the original orbit is started
with 1/a” by (27), the strict first-order procedure for
the further computation is to apply the barycentric
perturbations (22) for the inner planets and the
heliocentric perturbations (4) for the outer planets.
These terms together form d(1/a”)/dt. The reduction
to the true barycentre should be made, at another
time ¢,, by adding the last five terms of (26), which
may also be lumped together in a form similar to (19):

Fosam
_ Z _ zrr k (ZVVW i VZZmi) . (29)
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Here r, is identical to the vector tabulated in
Astronomical Papers for the American Ephemeris and
Nautical Almanac XI1II, part 4 (and there written x,
9, z). This is the radius vector of the heliocentric
position of the centre of mass of the Sun (increased by
the mass of the four inner planets) and the five outer
planets. We have accurately for the true barycentre

S,
r.= ﬁf?n r, + r, (30)
but to the first order simply
ro=r,+r,. (31)

The error in (31) is <7 X 107°.

It may be remarked that the factors 1 4 m, or S, ,
in front of £* are essential in (14) and (27), where the
terms are of order zero in the masses but that the
addition or omission of such a factor in (19) or (29)
does not make any difference in the first order.

6. Discussion of errors

Any practical method of computation contains
omissions or approximations, which introduce errors.
The magnitude of these errors may be estimated
from the strict equations derived above. We shall not
try to estimate the error of 1/a in the “definitive
orbit”. The mean error usually is of the order of
107, or 10 for exceptionally well observed comets.
Moreover a systematic error may arise from the
omission of the perturbations by any planets in
calculating the definitive orbit. For the sake of
argument, we assume that the given orbit at the
time ¢, represents the true heliocentric osculating
orbit. We try to estimate only the errors made from
there on.

A. Confinement to first-order perturbations

Omission of some terms higher than the first order
in the planetary masses occurs as soon as the decision
is taken to compute the perturbations of one element
(1/a) only. It then appears logical not to care about
any other terms of the second or higher order. The
error thus made cannot strictly be estimated. How-
ever, the “total change”

I 1 I

A(d) S (=) a(t)
statistically is ( 4+ 55 4 25 m.e.) X 10~ (SiNDING
1948). The second-order terms should not normally
exceed 107 times this amount, i.e. (3t08) X 107. We
also computed the exact second-order terms in ¢(%).
The difference between ¢(t) computed to the second
order from (13) to (15) and to the first order from
(19) is:

(32)
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(15) — (19) =

1 rr;)? 712
= —F(Vbz-l—szVb—l—szz) +&r—5i_—r%' (33)

A numerical check was made for comet 1914 III at
the time 1906 May 29.5 (¢ — T = 8.25 years) and for
comet 1930 IV at the time 1920 Jul. 14.5 (t— T =
10.20 years). This check gave the values:

comet 1914 III comet 1930 IV

(15) —.000 002 89 +.000 040 79
(19) —.000 002 71 +-.000 041 09
(15)—(19) —.000 000 18 —.000 000 30
(33) —.000 000 18 —.000 000 32

which shows that the first-order theory is practically
sufficient. The reduction refers to the four outer
planets only.

B. Omission of any planets in the reduction to the barycentre

In order to estimate orders of magnitude we replace
V by the value in a parabolic orbit: V?/k* = 2/randr,
and V, by the values in a circular orbit: r, = a,,
V2/k* = 1]a;. We then have

1) = Z_a‘ _2\/. __E _I__iz (
¢ (t)y=m; 2 COs o +- \/r_a,.COSBi ry 34)

where o, and B, are the angles between the vectors
multiplied in (26). Depending on the ratio of a to r
the first or the second term is more important than
the last one, so that we cannot make both oscillating
terms vanish.

For {—» 4 », r— » all terms go to o'), but the
middle term vanishes very slowly: for r = 10000
(t — T = 774 ooo years) the coefficient of cos B, for
Jupiter is still 118 X 107, so that it is not practical to
avoid the reduction to the barycentre by carrying the
heliocentric perturbations sufficiently far. Table 1
shows the values of the terms of (34) in units of the
~th decimal for r = 10, a distance which is reached
about 5 years before and after perihelium. It is seen
that within a desired accuracy of 107 Jupiter,
Saturn, Uranus and Neptune should all be retained
and that within an accuracy of 10 only Mercury
and Mars might be omitted.

At a smaller distance, for instance r=1, the terms
of (34) are larger, the multipliers being 100, V10
and 10, for the consecutive terms. This brings the

') The remark made by FAYET (1900) and repeated by GENNARO
(1937, p. 263) and Dirikis (1956, p. 9) that the heliocentric
osculating elements oscillate between very wide limits for very
large |t—T| is not to the point. For it is based on the fact that
for large |t—T| eventually V becomes smaller than V,, which
occurs in a parabolic orbit only if 7> 50 parsec.
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contribution of each term of (34) for the combined
inner planets to the order of 100 X 107. These
reductions are automatically taken into account if the
computation of the original orbit is started by (27).
Numerical estimates 7 = 1, V = 0.025,7, = 5§ X 10
(maximum), V, = 1.0 X 107 (maximum), §, =
1.0000060, give indeed 380 X 107 as the maximum
difference between (27) and (13). The conclusion is
that this difference should not be neglected and that
it is not permitted to use (13) and simply to ignore
the inner planets.

TABLE 1

Magnitude of terms in reduction to the barycentre
at r = 10 A.U. (units of 7th decimal).

coeff. of coefl. of 2m;

cos. o; cos B; T
Mercury o 3 o
Venus o 25 5
Earth I 27 6
Mars o 2 1
Jupiter 993 3740 1910
Saturn 545 826 571
Uranus 168 89 87
Neptune 312 84 104
Pluto 22 4 6

C. Omission of the barycentric perturbations

The formulae for the heliocentric perturbations are
more convenient for numerical work than those for
the barycentric perturbations. For, (23) is simpler
than (20) (terms of the various planets combined)
and (5) is simpler than (22) (terms of each planet
separate). It follows that it is practical to make the
reduction to the barycentre at such a time £, that itis
permissible to neglect the barycentric perturbations
in the interval #, to — « entirely. This is indeed
common practice. The error made by this omission
may be estimated in two ways:

(a) Numerical computation. STROMGREN (1914) has
calculated by means of eq. (22) the barycentric
perturbations of 8 comets by Jupiter and Saturn in
the approximate period { — T'= — 12 to — 6 years.

GaLBiNA (1658) has calculated by essentially the
same formula the original values of 1/a’ for 3 comets
(one common with STROGMGREN) and the future
values for 20 comets. In practice her integrations stop
atr =30,|t — T'| =13 years, because the products
(integrand X interval) become o in the sixth decimal.
At our request Mrs I. vaNn HouTEN-GROENEVELD
determined by interpolation in GALIBINA’s tables the
barycentric perturbations by the four planets sepa-
rately, over the interval [t — T| =6 to 12 years.
These values are given in Table 2. The full integral
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to |t — T| =« was also recomputed from GALIBINA’S
data. The changes arising from the perturbations in
the interval 12 years to oo were small and may not
be very certain as GALIBINA’s intervals in that period
are very large. However, by including them, the
results could be checked against GALIBINA’S own.
The differences were 3 X 107 at the most. They may
be interpreted as rounding errors. Only for comet
1889 I a difference of 17 X 1076 arose; this comet was
omitted from Table 2.

Table 3 gives the averages and the dispersions of
the values for individual comets from STROMGREN’s
as well as GALIBINA’s material. Please note that the
numbers behind the 4 signs are not mean errors of
the averages, but are the root-mean-square deviations
from the average displayed by the individual comet
orbits.

(b) Analytical estimate. In the present context it is
convenient to remark that, in consequence of the
footnote on p. 123, the “original” value of 1/a may be
considered to be well-defined and to be identical to
the original value of 1/a’. Hence we do not have to
determine the total change A (1/a) from (32), or
from the last three terms of (25), but can directly
integrate (23) from #,t0 — .

TABLE 2

Barycentric perturbations for |t — T| =6 to 12 years on the
basis of GALIBINA’S computations (units of 6th decimal)

| All

Comet | Jup. Sat. Ur. | Nept. four
1864 III fut —2 | — 1 o| —9 | —I2
1889 II  fut +6 | —4 | — 2 + 4 + 4
18921  fut — 1 + 4 +2 | —o9 — 4
1892 IT  fut — 3 —2 | —2 | — 3 —1I0
1897 1  fut o + 1 — I — 2 — 2
1898 VII orig -3 — 4| —2 | —1 —10
1898 VII fut + 3 o + 3 —10 — 4
1899 I  fut o o o o o
1904 I  fut + 2 + 3 3 — 9 — 1
1907 I fut — 2 - 3 -3 + 1 -7
1908 IIT fut + 3 o I —12 | — 8
1914 III orig — 6 o o| — 6 —12
1914 IIT fut —2 | —2 | —2 | —35 —1II
1914 V. fut -3 - 3 — 2 o| — 8
1915 IT  fut o — 3 o — 6 — 9
1919 V  fut + 1 + 2 o -7 — 4
1925 I fut + 5 + 4 o — 9 o
1930 IV orig — 2 — 1 — 4 + 1 — 6
1930 IV fut + 4 | — 4 o + 1 + 1
1932 VI fut -3 | -3 -3 —4 | —13
1936 I fut + 6 +5 | —4 | — 4 + 3
1937 IV fut + 1 -3 - 2 + 3 -1
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TABLE 3
Average barycentric perturbations (units of 6th decimal)
Author T‘t‘tﬁr"]f"l Number Jup. Sat. Ur. Nept. All four

STROMGREN 6 — 12Vyr 8 — 1 + 2 —1 4+ 6
GALIBINA 6 — 12yr 22 o + 3 — 1 + 3 — 1 + 2 — 3 + 5 — 5 + 5

» 6 — o« yr 22 o + 4 o+ 3 — 1 £+ — 4 £ 6 — 5 +7
Theory (eq. 40) 6 — 12yr — o o — 0.6 — 2.5 — 3.1

5 6 — o yr — o o — 0.6 — 2.7 — 3.3

Even if we take the planet orbits circular, the exact
expressions thus obtained contain four irreducible
parameters: two for the orientation of the comet
orbit, one for ¢ and one for the position the planet
has at the time of perihelium passage. STROMGREN
(1914) and others have derived series expansions
which may replace this exact expression for large
values of r but which have not proved very practical.

A less ambitious plan is to compute only the
average value assumed by the perturbations that are
incurred by comet orbits with the same ¢ in all
possible orientations. This problem was first set by
SINDING (1948), but as his solution appears in-
correct!), we shall newly derive the result.

We assume: one planet ¢ moves in a circular orbit
with radius ¢;, and the comet moves in a parabola
with perihelium distance ¢g. Let <> denote the
average values of the enclosed expression, taken over
all orientations. Random orientation implies that
<rr,> = < Vr,;> = o. However

rV =rVsinlo= 4+ kV2(r—yg). (35)

for r < a;: <d(1/a >_-
forr>a;: <d(1/a)>

and upon integration:
for r<a;: <A(1/a)
2m
for r>a;: <A(1fa) > =

so that in any case

<ot)> = <A(xje) —A(tfa) > =", (41)

which follows also directly from (26).
Values of A(1/a’) computed from (40) with the

) SinpDING assumes without reason that the difference of two
oscillating zero-order terms in m in his expression for A (1/a)
has no systematic part of the first order in m. In the limit of r/a
— oo SINDING’s resultis a factor 3/2 higher than that derived here.

Here and in (37) the lower sign holds before and the
upper sign after perihelium passage. Let for a moment
r be fixed in space and let r; assume all positions on a
sphere with radius ¢;. Direct integration then gives

r—r.
o= (36)

The integration giving this result is identical to that
yielding the attraction by a spherical shell. We now
can at once average the perturbation equations but
the resulting formulae are simpler if we first multiply
the time derivatives by

(oforr<a,
{x/r* for r > g

ik
P Avey e (37)
Let A(‘/“)=a<—lw)‘azt)’ (38)
1 3
Ale) = ==y ~ 7y

We then find from (5) and (22) with the aid of (35)
to (37) the simple but rigorous results:

<d(1/a) _
m, < (afay (39)
L <Arfa) > =" 2
’ (40)
: <A(I/a) =0,

average values r = 17 for | t— T'| = 6 years, r = 28 for
|t — T'| = 12 years are given in Table 3. They are in
good agreement with the numerical averages in the
same table. In conclusion it may be said that the
systematic errors made by omitting the barycentric
perturbations beyond |t— 7|=6 years are quite
small. However, for a reasonable certainty that the
error for any individual comet falls below 1 X 107%it
is better to extend the integration several years
further.
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D. Calculation of perturbations for a fixed parabolic orbit

It is very convenient to take the positions and
velocities used in the perturbation formulae from
a fixed parabolic orbit (egs. 6-9) instead of the true
orbit. The error caused by this approximation has
been estimated in two ways.

(a) The original orbit of comet 1892 II was
computed by Encke’s method as well as by eq. 9.
The resulting second term in eq. (25) from 1892
May 5 to 1886 April 27 was 4.0011268 by Encke’s
method and —+.oo11282 by the parabolic approxi-
mation, if in both methods only perturbations by
Jupiter and Saturn are considered. The original
value of 1/a’ for comet 1932 VI was computed by
VAN BiesBROECK (1937). From his results we derived
that the second term from 1932 Oct. 23 to 1927
Dec. 6 is +.0006505 by Encke’s method and pertur-
bations by Jupiter and Saturn only. The parabolic
approximation gives -.0006502 for the same time
interval using the same two planets. For comet 1898
VII the result was identical in the sixth decimal by
the exact method (STROMGREN 1914) and by the
parabolic approximation (GArLBINA 1958). The
differences of 1, o and o, in the sixth decimal in
these three examples are small enough to be per-
mitted.

(b) The error in the perturbations of 1/a can be
written as

d(1/a 2 2 2

Here 3u depends on 8r so it is necessary to compute
the position and velocity deviations of the comet
moving in the actual orbit from those of a body
moving in the unperturbed parabolic orbit. A sharp
error estimate cannot easily be made but an upper
limit to the errors is probably found if we replace
the actual orbit by a fixed hyperbolic orbit with

1
q = 2, € = 1.002, 105; = — 100.

A direct but somewhat tedious computation gives
the following expressions, correct to the first power
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of ¢ — 1, for the differences between the hyperbolic
orbit and the parabolic orbit with the same g¢.
The comparison is made at the same time after
perihelion passage, i.e. not at the same value of the
true anomaly o.

— I
s=tan;v

=B (iR =) (49)
= (iR ) (=) (44)
|3e] = (30)2 + (3r)2} (45)
K (I s (—1 4+ £s%) .
R | L S LR L
(46)

By order of magnitude, (42) may be replaced by

)

(47)

The maximum of du/u is found if 3r is along the line
joining the comet and the planet. Then:

du 2 9r
=_ == 8
u [r —rp, ] (48)
3V 3 (V3 r3(V?
Further, TS T e (49)

Employing these expressions with the numerical
values adopted above, we obtain for the Jupiter
perturbations the values in Table 4.

The values in the last two lines form probable upper
d(1/a)
dt
and to 3V separately. It is seen that their sum
barely exceeds 1 per cent. The empirical average of
the total change found from the numerical integra-
tion is 55 X 107°. Hence, we may conclude that the
error in the result due to the replacement of the
actual orbit by the parabolic orbit should almost

limits to the fractional changes in — dueto du

TABLE 4

Estimated maximum errors made by using a parabolic orbit

s I

¢ —T| 0.85 year
r 4.00

dr .0033

|r — ryyp | (minimum) 1.2

71‘ (maximum) .0055
3V

82 .0006

1.732 2.287 3.334
2.21 year 4.00 year 9.99 year
8.00 12.46 24.23
.0129 .0287 .0917
2.8 7.3 19.0
.0093 .0079 .0097
.0014 .0023 .0046
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