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Starting with Kenny and Judd (Psychol. Bull. 96:201–210, 1984) several methods have been intro-
duced for analyzing models with interaction terms. In all these methods more information from the data
than just means and covariances is required. In this paper we also use more than just first- and second-
order moments; however, we are aiming to adding just a selection of the third-order moments. The key
issue in this paper is to develop theoretical results that will allow practitioners to evaluate the strength of
different third-order moments in assessing interaction terms of the model. To select the third-order mo-
ments, we propose to be guided by the power of the goodness-of-fit test of a model with no interactions,
which varies with each selection of third-order moments. A theorem is presented that relates the power of
the usual goodness-of-fit test of the model with the power of a moment test for the significance of third-
order moments; the latter has the advantage that it can be computed without fitting a model. The main
conclusion is that the selection of third-order moments can be based on the power of a moment test, thus
assessing the relevance in the analysis of different sets of third-order moments can be computationally
simple. The paper gives an illustration of the method and argues for the need of refraining from adding
into the analysis an excess of higher-order moments.

Key words: structural equation modeling, goodness-of-fit testing, moment test, third-order moments, in-
teraction terms, equivalent models, saturated model.

Introduction

In Mooijaart and Satorra (2009) it has been shown that, under some general conditions, the
normal theory test statistics, which are based on means and covariances only, are not able to
assess interactions among observable or latent variables of the model. One conclusion is that
for analyzing models with interactions more information than just means and covariances need
to be brought into the analysis. Several methods have been proposed for analyzing models with
non-linear (interactions) relationships. Originally, the main approach was to bring into the model
as new variables the product of indicators of exogenous factors; see, e.g., Kenny and Judd (1984)
and Jöreskog and Yang (1996), among many others. For implementing that approach, a key
issue is the choice of the product indicators; see, e.g., Marsh, Wen, and Hau (2004). In that
approach it was assumed that the latent predictor variables are normally distributed. More re-
cently, the maximum likelihood (ML) approach that assumes normality for all the independent
stochastic constituents of the model has been promoted. In formulating the likelihood function,
this ML approach has to deal with a multivariate integral issue which, in the way it is tackled,
yields several ML alternatives: normal mixtures were used by Klein and Moosbrugger (2000) in
what they call LMS (latent moderated structural) method; the method of Muthén and Muthén
(2007) in their computer package MPLUS also approximates this multivariate integral, but now
by numerical integration; Klein (2007) in his QML methods uses a quasi-maximum likelihood
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method. A different approach, although in fact it also deals with finding maximum likelihood
estimates, is the Bayesian approach combined with the MCMC method as discussed by Lee and
Zhu (2002) and Lee (2007). Models with interaction terms have also been analyzed by methods
that involve factor score estimates; see, e.g., Wall and Amemiya (2000, 2007) and Klein and
Schermelleh-Engel (2010). Although interesting, such methods need to circumvent the classi-
cal issue of inconsistency of the maximum likelihood method under the presence of nuisance
parameters (Neyman & Scott 1948); further, their regression-type perspective deviates from the
classical structural equation model (SEM) approach where a goodness-of-fit test of the model
naturally arises.

In this paper instead of the ML approach we use the moment estimation method based on
fitting first-, second-, and a selection of third-order moments, as in Mooijaart and Bentler (2010).
We expand Mooijaart–Bentler’s work by developing theory for selecting the third-order moments
to be included in the analysis. We conjecture that expanding the set of first- and second-order
moments with just a selection of third-order moments yields a more accurate analysis, in terms
of robustness against small samples and against deviation from distributional assumptions, than
using methods that involve full distributional specification such as ML. Like in the traditional
Kenny–Judd’s approach when using product indicators, here we are also confronted with the
issue of which third-order moments should be included in the analysis. In contrast with ML,
the advantage of the moment structure approach is that a goodness-of-fit test of the model is
obtained. We recall that the ML approach faces the problem of assessing the distribution of
the likelihood ratio test under the null model (see Klein & Moosbrugger, 2000), and Klein &
Schermelleh-Engel 2010, for a discussion of this feature). In fact, in the present paper, the model
goodness-of-fit test guides the selection of the most informative third-order moments for specific
interaction parameters; more specifically, the third-order moments that maximize the power of
the model test will be the ones to be included in the analysis.

A key result of the paper is a theorem that shows the connection between the power of the
goodness-of-fit test of a model and the power of a moment test based on multivariate moments.
The theorem will allow us to circumvent parameter estimation and model fit when assessing the
importance of a specific set of third-order moments.

The remaining of the paper is structured as follows. Section 1 presents the class of models
considered, estimation issues, and the model and moment tests; Section 2 presents an illustra-
tion with simulated data that motivates the import of the paper; Section 3 develops the theo-
rem of the paper; Section 4 classifies the third-order moments into various classes and types; a
forward-selection procedure for higher-order moments is outlined in Section 5; Section 6 con-
cludes. Proofs and technical results that are not essential for the flow of the paper are confined in
appendices.

1. Formulation of the Model and Estimation and Testing

In LISREL formulation, a model with interaction terms is written as follows:

η = α + B0η + Γ1ξ + Γ2(ξ ⊗ ξ) + ζ, (1)

y = νy + Λyη + ε, (2)

x = νx + Λxξ + δ, (3)

where y and x are, respectively, the indicators of endogenous and exogenous variables, of dimen-
sions p and q , respectively; η and ξ are, respectively, the vectors of endogenous and exogenous
factors; ζ is the disturbance term of the structural model equation; and ε and δ are vectors of
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measurement error (or unique factors). In the developments of the present paper, the vector vari-
ables ξ , ζ , ε and δ will be assumed to be independent of each other, with ξ normally distributed.
(Often these stochastic terms are assumed to be only uncorrelated, and in the ML analysis they
are also assumed to be normally distributed.) The vector ξ ⊗ ξ collects the interaction factors,
and the elements of the matrix Γ2 are the magnitudes of the interactions. Whenever Γ2 is zero,
we say the model is linear, there are no interactions. Note that interaction is used as a general
term encompassing product variable and quadratic terms. The coefficient matrices B0 and Γ1
contain the usual linear effects among endogenous and exogenous variables. Here α, νy , νx are
intercept vectors.

For further use, we define B = I − B0, a matrix that is assumed to be non-singular. The
variances and covariances of independent variables of the model, namely Φ = cov (ξ) and Ψ =
cov (ζ ), can be structured as a function of more basic parameters. The vector of observable
variables is z = (y′, x′)′. The model equations (1) to (3), with the added assumptions on the
stochastic constituents of the model, imply that the means, variances and covariances, and third-
order moments of z can be written as a function of the model parameters. Let σ1 be the vector
of first-order moments of z; σ2 the vector of non-redundant second-order moments of z; and σ3
a vector of a selection of third-order moments of z. Then σ1, σ2, and σ3 can be expressed as a
function of the model parameters (e.g., formula (2) of Mooijaart & Bentler, 2010).

Let σ be all first-, second- and a selection of third-order moments of z, and let s be the
usual sample moment estimator of σ based on an i.i.d. sample of z of size n. Since σ = σ(θ),
where σ(θ) is a continuously differentiable function of the model parameters θ , estimation will
be undertaken by minimizing the weighted least squares (WLS) fitting function

fWLS(s, σ ) = (
s − σ(θ)

)′
W

(
s − σ(θ)

)
,

where W is a weight matrix that converges in probability (when n → +∞) to W0, a positive
definite matrix. A natural choice of W is the inverse of an estimate of the covariance matrix of
vector s. In covariance structure analysis, it has been shown, however, that the use of this general
weight matrix leads to biased estimates when sample size is not too large (e.g., Boomsma &
Hoogland, 2001). In our case, where in addition to the means and covariances we fit a selection
of third-order moments, the bias of estimates can be expected to be even larger; so, often, a
typical fitting function is the LS one, i.e. the one where W is the identity matrix.

Let Γ be the asymptotic covariance matrix of s (i.e., the asymptotic limit of cov(
√

ns)).
A well-known test statistic for testing the goodness-of-fit of the model is defined by

TWLS = (
s − σ(θ)

)′(
Γ̂ −1 − Γ̂ −1 ˆ̇σ ( ˆ̇σ ′

Γ̂ −1 ˆ̇σ )−1 ˆ̇σ ′
Γ̂ −1)(s − σ(θ)

)
, (4)

where ˆ̇σ is the Jacobian of σ(θ) evaluated at the WLS estimate θ̂ , and Γ̂ is a consistent estimate
of Γ . Under standard conditions it can be shown (Browne, 1984; Satorra, 1989) that TWLS is
asymptotically (central) chi-square distributed when the model σ = σ(θ) holds, and it is non-
central chi-square with non-centrality parameter λWLS when the analyzed model does not hold
(but it is not too deviant from the null). The degrees of freedom of the test is equal to the dimen-
sion of s minus the number of independent parameters of the model. This implies that a saturated
model is the one that leaves all the moments involved unrestricted. Note that the saturated model
will change depending on the selection of the third-order moments included in the analysis.

The specific expression for λWLS is now developed. We need to introduce a bit of notation.
Partition σ = (σ ′

12, σ
′
3)

′ where σ12 contains the first- and second-order moments and σ3 is the
vector of the selected third-order moments included in the analysis. Further, let the vector θ of
model parameters be partitioned as θ = (θ ′

1, θ
′
3)

′, where θ3 contains all the parameters involved
in the interactions, the free elements of Γ2. Consider a null model H0 with only linear terms,
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that is, Γ2 equal to zero. We note that, in contrast with Mooijaart and Satorra (2009), σ3 is now
present in the analysis, and that θ3 is present or not depending on whether the model fitted is H0
or H1. It holds

σ̇ =
(

σ̇12,1 σ̇12,3
σ̇3,1 σ̇3,3

)
,

where σ̇12,1 and σ̇3,1 are, respectively, the Jacobian of σ12 and σ3 with respect to θ1; and σ̇12,3
and σ̇3,3 are, respectively, the Jacobian of σ12 and σ3 with respect to the interaction term param-
eters θ3. In this set-up, the Jacobian matrix associated to model H0 is

σ̇ |H0 =
(

σ̇12,1
σ̇3,1

)
.

Furthermore, when the model fitted is H0, we have σ3(θ) = 0 independently of θ1, so we get
σ̇3,1 = 0, and thus

σ̇ |H0 =
(

σ̇12,1
0

)
. (5)

Note that we require this matrix to be of full column rank for the model to be identified.
Now, let σa be a moment vector under the specification H1 but deviant from H0 (i.e., σa

complies with the model equations (1) to (3) with at least one non-zero element in Γ2). Consider
the fit of H0 to σa and let σ̂0 be the fitted moment vector. Then the non-centrality parameter (ncp)
associated to TWLS is (Satorra, 1989)

λWLS(σa | H0) = n(σa − σ̂0)
′(Γ −1 − Γ −1σ̇

(
σ̇ ′Γ −1σ̇

)−1
σ̇ ′Γ −1)(σa − σ̂0). (6)

For further use, let σa3 be the sub-vector of σa involving only the third-order moments. The non-
centrality parameter (6) and the degrees of freedom of the model test determine the power of the
test against the deviation σa from H0. The vector σa deviates from H0 by having specific non-
zero values for interaction parameters of Γ2. We are interested in those third-order moments that,
when included in the analysis (i.e., included in s3), yield higher power for specific interaction
parameters of Γ2. In principle this would require computing the ncp λWLS(σa | H0) of (6) for each
set of third-order moments to be evaluated for inclusion in s3. This would be a computationally
cumbersome task, since it requires a different model fit for each selection of third-order moments.

Fortunately we will be able to circumvent this computational difficulty by using a moment
test based just on multivariate raw data.

Consider the partition s = (s′
12, s

′
3)

′ of the sample moments and the associated partition of
its variance matrix,

Γ =
(

Γ12,12 Γ12,3
Γ3,12 Γ3,3

)
,

where Γ3,3 is the asymptotic variance matrix of the vector s3 of the selected third-order moments.
A moment test (MT) for testing the null hypothesis σ3 = 0 is simply

TMT = ns′
3Γ̂

−1
3,3 s3, (7)

where Γ̂3,3 is a consistent estimate of Γ3,3. The number of degrees of freedom of the test is equal
to the dimension of s3. Since TMT does not involve specifying a model nor a test for model fit, it is
computationally easy to obtain using just multivariate raw data. The corresponding non-centrality
parameter when σ3 = σa3 is

λMT(σa) = nσ ′
a3Γ

−1
3,3 σa3. (8)
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Computation of λMT(σa) does not involve fitting a model, thus it is rather easy to autom-
atize. Given the difficulties of computing λWLS(σa | H0), it would be useful to obtain it from
λMT(σa). Section 3 develops conditions under which the two non-centrality parameters are in
fact equal. The use of λMT(σa) to assess the power of TWLS will be the basis of the procedure
for selecting third-order moments proposed in the present paper. The next section motivates the
need for researching this.

2. A Motivating Illustration

Using simulated data, we now illustrate a case where the choice of the third-order moment
changes substantially the power of the goodness-of-fit test of the model, and where the ncp’s of
the model and moment test do in fact coincide.

The model and simulations: We simulate data from the so-called Kenny and Judd (1984)
model, the same model context used by Jöreskog and Yang (1996) and Klein and Moosbrugger
(2000), among others. The Monte Carlo study consists on replicating (500 times) the generation
of a sample of size n = 600 from Kenny and Judd’s model with all the independent stochastic
constituents of the model following a normal distribution. For each simulated sample, Kenny and
Judd’s model was fitted by LS. The analysis was carried out without centering the data, with a
mean structure as part of the model. The power was computed as the percentage of rejections of
the goodness-of-fit test TLS across the 500 replications, when the model H0 of no-interactions
was analyzed. Essential to the illustration is that the theoretical value of the power of the test was
also computed using the above formulas (6) and (8) of non-centrality parameters. Here power is
the probability of rejecting the model H0 that assumes zero interaction when in fact interactions
are present in the model.

The model contains two latent factors plus an interaction term determining an observed
dependent variable, V5. In addition, each factor has two indicators, V 1 and V 2 are indicators
of the first factor, and V 3 and V 4 are indicators of the second factor. We are concerned with
the interaction parameter β12 which in our Monte Carlo study is varied from 0.0 to 0.7. When
the interaction equals zero the power is expected to be equal to the α-level (5%) of the test,
and the power is expected to increase with the magnitude of the interaction term. Mooijaart and
Bentler (2010) discuss a similar Monte Carlo study, however, they do not involve computation of
theoretical power using the non-centrality parameter.

The present simulations aim to compare the theoretical power of the TLS computed using
(6) with the actual empirical power. Tables 1 and 2 show, for different sizes of the interaction
parameter (coefficient β12, first column of the table), the values of the ncp’s for TLS and TMT
(columns 2 and 3, respectively) computed using the formulas (6) and (8). Column 4 gives the
theoretical power value for TLS (using the ncp’s of column 2 and the df = 8 of the model test).
The last column of the table shows the empirical power deduced from the 500 replications.
Tables 1 give the results for s3 equal to the third-order moment V1V3V5, while Table 2 gives

TABLE 1.
Power when using V 1V 3V 5 and the model with β12 = 0.

β12 λMT(1) λLS(8) powTh in % powEmp in %

0.0 0 0 5.0 4.4
0.1 1.472 1.472 10.7 9.2
0.2 5.264 5.268 31.3 31.2
0.4 14.607 14.618 78.7 75.6
0.7 24.711 24.746 96.7 97.0
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TABLE 2.
Power when using V 5V 5V 5 and the model with β12 = 0.

β12 λMT(1) λLS(8) powTh in % powEmp in %

0.0 0 0 5.0 4.6
0.1 2.215 2.217 14.2 14.0
0.2 5.752 5.777 34.3 32.4
0.4 8.204 8.359 49.7 42.6a

0.7 7.360 7.571 45.1 38.4a

aDifference from theoretical power is statistically significant at 5%-level.

the results when s3 corresponds to V5V5V5. In the computations for the theoretical power we
require the matrix Γ . This matrix is not exactly known in an application but can be estimated
from the data. To avoid distorting the illustration with variation due to an estimate of Γ , this
matrix was estimated by simulation with a sample of size 100,000 and it was kept fixed across
all the simulations (this is similar to Satorra, 2003, where in covariance structure analysis power
was computed for non-normal data).

From the tables we see, first, a substantial change on the power value of the model test de-
pending on which third-order moment is incorporated as s3, with V1V3V5 having more power
than V5V5V5 (when β12 is greater than 0.2); second, we see that the two non-centrality param-
eters λLS(σa | H0) and λMT(σa) are basically equal. Further, there is general agreement between
the theoretical and empirical power values, with only two cells showing a significant difference
between theoretical and empirical power. The significant differences correspond to cells related
to the non-monotonicity of the power function to be commented on next.

One would expect that the power of the test increases monotonically with the magnitude
of the misspecification inherent in the analyzed model H0, i.e. when the absolute value of β12

increases. Clearly, this is the case for V1V3V5, but not for V5V5V5. It is remarkable that when
s3 is V5V5V5, the non-centrality parameter does not increase monotonically with the interaction
parameter as one would expect. The empirical power shown in the last column of the table shows
also such a decrease on power when misspecification increases. An explanation for this deviation
from monotonicity will be given in Section 4.

3. Relation Between Power of the Model and Moment Test

This section develops a theorem setting up the conditions under which there is equality
among the non-centrality parameters of the model and the moment tests.

The first condition we need to introduce is that the linear part of the structural model is
saturated. This will guarantee that the models H0 and H1 are equivalent at the level of first- and
second-order moments (see Mooijaart & Satorra, 2009).

Condition 1 (Saturation of structural equations). Under H0 (Γ2 = 0), parameterization of model
equation (1) does NOT constrain α, Γ1, Φ and the product matrix B−1Ψ B−T (aside from sym-
metry).

As mentioned above, let σa satisfy the specification H1, and let σ̂0 be the fitted vector when
H0 is fitted to σa . The next lemma shows that, basically under Condition 1, σ̂0 and σa coincide
on the first- and second-order moments, i.e. (σ̂0)12 = (σa)12 where the subscript “12” denotes
first- and second-order moments.
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Lemma 1 (Model equivalence on first- and second-order moments). Assume Condition 1; the
variables ξ , δ, ζ and ε are uncorrelated; ξ is normally distributed; and the W of the WLS-
analysis is block-diagonal on s12 and s3. Let σa be a moment vector which will be fitted exactly
by H1, and σ̂0 be the fitted moment when H0 is fitted to σa . Then

(σ̂0)12 = (σa)12.

Proof: See Appendix A. �

Note that the conclusion of the lemma can also be written as

(σa − σ̂0) =
(

0
σa3

)
.

Lemma 1 implies that under Condition 1 the WLS fit of H0 to σa gives zero residuals for
first- and second-order moments. This result needed W = block-diag(W12,12,W3,3), a partition
conformable with σ = (σ ′

12, σ
′
3)

′.1
The non-centrality parameter (6) can be written alternatively as (Satorra, 1989)

λWLS(σa | H0) = n(σa − σ̂0)
′F

(
F ′Γ F

)−1
F ′(σa − σ̂0), (9)

where F is an orthogonal complement of the matrix σ̇ |H0 defined above, i.e. F ′σ̇ |H0 = 0. Given
the form (5) of the Jacobian σ̇ | H0, we have

F ′ =
(

G′ 0
0 I

)

with G′σ̇12,1 = 0. Thus, using the inverse of partitioned matrices and using Lemma 1, the non-
centrality parameter of (9) can be written as

λWLS(σa | H0) = nσ ′
a3

(
Γ −1

3,3 − Γ3,12G
(
G′Γ12,12G

)−1
G′Γ12,3

)−1
σa3, (10)

where we assumed that Γ3,3 is non-singular (recall the partition of Γ above).
Comparing (10) and (8), it holds

λMT(σa) = λWLS(σa | H0) iff G′Γ12,3 = 0. (11)

So, for the equality of the non-centrality parameters, we require the rather technical matrix equal-
ity G′Γ12,3 = 0. Appendix B shows that this matrix equality is also ensured by Condition 1,
provided mild additional conditions apply: symmetry and independence of a vector of random
constituents of the model (condition SI) and no constraints across different parameter matrices
(condition FPI).

The theorem to be proven in this section makes use of the form of the covariance matrix
among s12 and s3, the matrix Γ12,3 that is implied by the model equations (1) to (3). In the
derivations of Appendix B, under the model H1 the vector of observable variables z is written as

z = μ + Aδ = μ + A1δ1 + A2δ2 = μ + (Λ2ζ + ε) + (
Λ1ξ + Λ3(ξ ⊗ ξ)

)
,

1In that case
(
s − σ(θ)

)′
W

(
s − σ(θ)

) = (
s12 − σ12(θ)

)′
W12,12

(
s12 − σ12(θ)

) + s′
3W3,3s3,

since σ3(θ) = 0 when fitting H0.



72 PSYCHOMETRIKA

where matrix Λ3 consists of regression weights of interaction and/or quadratic terms of the ξ

variables. Note that under H0, Λ3 = 0; furthermore, δ1 and δ2 are independent of each other,
and matrix A is partitioned as A = (A1,A2). Note that δ = (δ′

1, δ
′
2)

′, with δ2 containing the main
factors and the interaction/quadratic factors. The vector δ1 collects the rest of the factors (errors
and disturbances).

The following lemma is needed:

Lemma 2. Under H1 and the assumption SI (symmetry and independence) of Appendix B,

Γz,12,3 = D+(A2 ⊗ A2)DΓδ2,12,3T
′(A2 ⊗ A2 ⊗ A2)

′T +′

holds, where A2 = (Λ1,Λ2Γ2), with D and T being duplication and triplication matrices re-
spectively (Magnus & Neudecker, 1999; Meijer, 2005).

Proof: From z = μ + A1δ1 + A2δ2, it follows that

Γz,12,3 = D+(A1 ⊗ A1)DΓδ1,12,3T
′(A1 ⊗ A1 ⊗ A1)

′T +′

+ D+(A2 ⊗ A2)DΓδ2,12,3T
′(A2 ⊗ A2 ⊗ A2)

′T +′, (12)

where Γδi,12,3, i = 1,2, is the covariance matrix of the first-, second- and third-order moments
of δ1 and δ2, respectively. Because δ1 has a symmetric distribution, Γδ1,12,3 = 0, and so the first
term on the right-hand side of (12) vanishes. �

For the main theorem of the paper, we need an additional lemma.

Lemma 3. Assume Condition 1 and G′σ̇12 = 0; then G′Γz,12,3 = 0.

Proof:

D+(A2 ⊗ A2) = D+[
(Λ1,Λ3) ⊗ (Λ1,Λ3)

]

= D+[
(Λ1,Λ2Γ2) ⊗ (Λ1,Λ2Γ2)

]

= D+
[
(Λ1,Λ2)

(
I 0
0 Γ2

)
⊗ (Λ1,Λ2)

(
I 0
0 Γ2

)]

= D+
[(

(Λ1,Λ2) ⊗ (Λ1,Λ2)
)((

I 0
0 Γ2

)
⊗

(
I 0
0 Γ2

))]
.

Since by Condition 1 the matrices Φ and B−1Ψ B−T are unrestricted, using Lemma B2, we
obtain G′D+(A2 ⊗ A2) = 0, from which we obtain the result of the lemma. �

So far, all the matrices were evaluated at the true population values, the same values as when
fitting H1 to σa . The theorem to be proven involves matrices evaluated at the fitted values under
the restricted model H0. Appendix C presents Lemma C1 that relates expressions involving both
sets of matrices. Now we are ready to state and prove the main theorem of the paper.

Theorem 1. Under the conditions of Lemma 3,

λWLS(σa | H0) = λMT(σa).
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Proof: Simply, combine (11) with Lemma C1. �

This theorem will be exploited in the next section to yield a classification of third-order
moments attending to their power functions.

4. Classes of Third-Order Moments

In Section 2 we presented an example where the choice of third-order moments determines
the shape of the power function of the model test. In this section we investigate analytically
such variation of the power function for different third-order moments. In principle, to study
this variation of the power function we would need to compute the expression of the ncp arising
from (6). That expression involves fitting a model for each set of third-order moments considered.
The theorem of the previous section equates the ncp of the model test with the ncp of the moment
test, and thus allows investigation of the power of the model test without requiring fitting a model.

For a given interaction term, we distinguish three classes of third-order moments: those for
which the power does not vary with the size of interaction, to be called the CP (constant power)
class; those for which the power increases monotonically with the size of the interaction term,
to be called the MP (monotonic power) class; and, finally, those for which the power does not
increase monotonically with the size of misspecification, to be called the NMP (non-monotonic
power) class. The three classes of third-order moments will be illustrated using a model example
similar to the one in Section 2.

We consider a simple model set-up of two observed independent variables x1 and x2, with a
single dependent variable y. Note that this example is closely related to the example discussed in
the illustration of Section 2 (now, however, we do not include the measurement part of the model).
This section aims to address the non-monotonicity between power and size of interaction noted
in Section 2 for some third-order terms. The model considered is

y∗ = β0 + β1x1 + β2x2 + β12x1x2 + e,

where the x’s and e are centered variables. This model equation can be re-written as

y = y∗ − E
[
y∗] = β1x1 + β2x2 + β12(x1x2 − φ12) + e, (13)

where φ12 is E(x1x2). In this example, the following types of third-order moment can be distin-
guished: μyx1x2 , μy2x1

, μy2x2
and μy3 . From the section above, we know that the power of the

goodness-of-fit test TWLS is determined by its ncp which has the same value as the ncp associ-
ated to the moment test TMT. That is, we have the following three types of expression for the
non-centrality parameters (up to a sample size scaling) (we used Theorem 1):

ncp(1) = (μyx1x2)
2

γyx1x2

, ncp(2) = (μy2x1
)2

γy2x1

, ncp(3) = (μy3)2

γy3
, (14)

where γyx1x2 = var(myx1x2), γy2x1
= var(my2x1

) and γy3 = var(my3) involve six-order moments
(they are elements of the matrix Γ ). Equations (14) express the link between the ncp’s and
third-order moments. Model equation (13) implies the following expression of the third-order
moments as a function of model parameters:

Type(1) : μyx1x2 = β12(φ11φ22 + φ12),

Type(2) : μy2xk
= 2β12

(
2β1φkkφ12 + β2

(
φ11φ22 + φ2

12

))
, k = 1,2,
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Type(3) : μy3 = 6
(
β2

1φ11φ12 + β2
2φ22φ12 + β1β2

(
φ11φ22 + φ2

12

))
β12

+ (
6φ11φ12φ22 + 2φ3

12

)
β3

12.

Here the φs denote the covariances among the x’s. (To derive those expressions we used bivariate
normality for the variables x1 and x2.) We see that, as should be expected, the third-order mo-
ments are zero when the interaction parameter β12 is zero. Importantly, note that the third-order
moments of Type 1 and 2 are linear functions of the interaction parameter β12 while the Type 3 is
non-linear on the interaction, thus inducing the non-monotonicity of the power function. Hence
we see that moments of Type 1 and 2 are of the MP class, while moments of Type 3 are of
the NMP class. We could have also considered third-order moments involving only X variables;
these are, obviously, of CP (constant power) class. Theorem 1 has thus allowed us to relate the
power of the TWLS test with the form of the third-order moments as a function of the interactions.
The power function is further investigated in the following simulation study.

Simulation example In this example we take as model parameters the same model param-
eters as in the structural part of the Kenny and Judd model. This means that the measurement
errors are not involved in our model. So the parameters are β0 = 1, β1 = 0.2, β2 = 0.4 and
var(e) = 0.2.

In this example we aim to assess the influence of the interaction parameter (β12) on the size
of the ncp. Unfortunately, there is no analytical expression for the ncp’s in terms of the model
parameters, because the denominator is hard to express in terms of the model parameters. For
instance, it is easy to verify that for Type 3 third-order moments the variance of the third-order
moments depends on moments up to order twelve. A small Monte Carlo study is carried out. In
this study 100,000 samples with sample size 600 are drawn from a population which is specified
by the model and parameter values described above. Table 3 gives the results of this study for two
different third-order moments (x1x2y and y3) for different values of the interaction parameters.

The results shown in Table 3 are summarized as follows: (i) As expected, the means across
replications of the third-order moments, column m, are close to the population values shown
in column μ. (ii) The ncp’s for the MP (monotonic power) third-order moments are always

TABLE 3.
Monte Carlo results for the mean and variance of two types of third-order momenta.

Moment x1x2y Moment y3

β12 μ m γ ncp μ m γ ncp

0.0 0.000 0.000 0.400 0.000 0.000 0.000 0.700 0.000
0.1 0.037 0.037 0.417 1.939 0.035 0.035 0.794 0.939
0.2 0.074 0.074 0.469 6.942 0.074 0.073 1.144 2.823
0.3 0.111 0.110 0.554 13.250 0.117 0.117 1.878 4.385
0.4 0.148 0.147 0.680 19.222 0.170 0.169 3.339 5.160
0.5 0.184 0.184 0.839 24.321 0.233 0.233 5.962 5.457
0.6 0.221 0.221 1.032 28.518 0.311 0.311 10.507 5.524
0.7 0.258 0.258 1.261 31.715 0.405 0.405 17.965 5.486
0.8 0.295 0.295 1.504 34.729 0.519 0.519 29.570 5.457
0.9 0.332 0.332 1.812 36.467 0.656 0.655 47.731 5.391
10.0 0.369 0.369 2.156 37.904 0.818 0.818 75.047 5.353

aNote that γ is defined as the sample size (600) times the variance of the third-order moment. Columns
μ and m indicate the population and the mean (over the 100,000 replications) of the corresponding third-
order moment. The “ncp” column correspond to the value of the non-centrality parameter computed using
the moment test associated to the specific third-order moment.
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(substantially) larger than for the NMP (non-monotonic power) third-order moments. (iii) The
variance of the moments increases (and so does γ ) when the interaction parameter increases,
although this variance increases more sharply for the third-order moment y3. (iv) When the
interaction effect increases, the ncp associated with x1x2y increases also, but not the ncp for y3,
where we see that the ncp does in fact decrease when β12 is larger than 0.6. This empirical non-
linear relation between the size of the interaction term and the ncp was noted above analytically
for the NMP (non-monotonic power) class of third-order moments.

Point (iv) is a counter-intuitive result that needs to be commented on. Our explanation of
this result is that the variance of the third-order moment (the denominator of the ncp) increases
sharply with the increase of the interaction parameter, so the ncp may in fact be decreasing
while the interaction term (the numerator of the ncp) is increasing. This explains why in Table 2,
involving a NMP class of third-order moment, the power does not vary monotonically with the
size of the interaction.

A forward-selection procedure for third-order moments is discussed in the next section.

5. A Forward-Selection Procedure

In the context of the same model as in Section 2, and for the interaction parameter β12,
Table 4 presents non-centrality parameters, bias and standard errors (s.e.’s) for estimates of inter-
action, mean of (chi-square) goodness-of-fit values, and theoretical power, for a sequence of for-
ward nested sets of third-order moments. The sequence starts with the third-order product term
V1V3V5 and adds one additional third-order moment in each stage of the sequence. The first

TABLE 4.
Monte Carlo results for the selection procedure.a

Moment univ-ncp mult-ncp bias se(β̂) sd(β̂) χ2 df Power

V1V3V5 14.675 14.675 0.007 0.132 0.129 6.81 7 0.81
V2V5V5 7.844 16.369 0.000 0.109 0.102 7.77 8 0.84
V4V5V5 8.201 17.068 −0.006 0.098 0.094 8.59 9 0.84
V1V4V5 10.414 17.283 0.005 0.100 0.099 9.93 10 0.83
V2V3V5 7.891 17.445 −0.005 0.098 0.095 10.80 11 0.82
V1V5V5 12.875 17.632 0.003 0.098 0.102 12.00 12 0.81
V1V1V5 3.893 17.870 0.005 0.099 0.095 12.54 13 0.80
V5V5V5 8.190 18.095 −0.008 0.091 0.086 13.54 14 0.79
V3V5V5 10.468 18.440 −0.008 0.091 0.089 14.93 15 0.79
V3V3V5 5.282 18.616 −0.006 0.091 0.094 15.57 16 0.78
V1V2V5 3.259 18.684 −0.005 0.092 0.092 16.10 17 0.77
V3V4V5 5.146 18.731 0.003 0.095 0.092 17.11 18 0.76
V2V4V5 5.479 18.760 −0.005 0.092 0.088 18.75 19 0.75
V2V2V5 0.946 18.766 0.002 0.095 0.091 19.96 20 0.74
V4V4V5 2.359 18.770 −0.002 0.095 0.095 20.69 21 0.73

aHere “univ-ncp” is the non-centrality parameter of the moment test for an analysis that adds only the
specific third-order moment. Corresponding to an analysis that uses the cumulative set of third-order mo-
ments: “mult-ncp” is the non-centrality parameter of the moment test; “bias” is the difference between
the mean (across Monte Carlo replicates) of the estimate of interaction minus the true value; “se(β̂)” is
the mean (across Monte Carlo replicates) of the standard errors; “sd(β̂)” is the standard deviation (across
Monte Carlo replicates) of the estimates of interaction; χ2 is the mean (across Monte Carlo replicates)
of the goodness-of-fit test; “df” is the number of degrees of freedom of the goodness-of-fit test; “Power”
corresponds to the asymptotic (theoretical) power associated with the moment test.
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term of the sequence (in our case V1V3V5 ) is chosen as the one giving maximum (theoretical)
non-centrality parameter when evaluated by the moment test approach discussed in Section 3.
The third-order moment that is added in each step of the sequence is the one that yields the
highest increase of the multivariate (overall) ncp. Column 3 showing the multivariate ncp will
therefore increase when moving down by rows. Columns 4 to 7 of the table give, respectively, the
mean of estimates minus the true value, the mean of estimates of s.e., the standard deviation of
the estimates, and the mean of the goodness-of-fit test (means and standard deviations computed
across replications). The last column of the table gives the theoretical power based on the multi-
variate ncp of column 3 and degrees of freedom reported in column 8. The reported sequence of
increasing nested sets of third-order moments is like a forward-selection sequence encountered
in variable selection procedures such as regression analysis. Note the key information for order-
ing the third-order moments arises from the ncp of the moment test. The Monte Carlo set-up
specification used β12 = 0.4 and 250 replications.

Table 4 shows that the estimates based on the first three third-order moments compare well
(in terms of bias and standard errors) to the estimates based on all third-order moments. Re-
markably, the gains in terms of efficiency of estimates are substantial when accumulating up
to three third-order moments, but there is no substantial gain after that. It could be conjectured
that adding third-order moments beyond the ones that improve on efficiency may deteriorate
robustness against small samples. The last column of the table shows power values of the H0

model test for the different sets of third-order terms. We see that, generally, after the inclusion
of three third-order moments in the analysis, the power of the model test does in fact decrease
if more third-order moments are added. This is another argument for refraining from including
all the third-order moments.

6. Discussion

A central issue in the analysis of models with interactions is the selection of the higher-order
moments to be included in the analysis. In this paper we argue that the most relevant moments for
assessing specific interactions are those that lead to higher power in detecting the failure of H0

(a model with no interaction terms) when the interaction terms are in fact present. In this paper
we have addressed the choice of third-order moments to be used in the analysis. We have spelled
out conditions (specially Condition 1) under which the power of the model test can be assessed
using the power of a multivariate moment test available from raw data, without involving model
fit. This fact is of importance since it simplifies considerably the practice of selecting higher-
order moments to include in the analysis of a model with interaction terms. We have seen that
the ncp λWLS(σa) can be computed as λMT(σa) = nσ ′

a3Γ
−1

33 σa3, without need of a model fit.
For the results of this paper to hold, distributional assumptions on the random constituents of

the model are required. We use the assumptions that the distribution of the factors involved in the
interaction term are normally distributed (note that then the interaction factor itself will not be
normally distributed). Other stochastic constituents of the model, such as errors of measurement
and disturbances, may, however, deviate from the normality assumption, though they are also
subject to a mild distributional assumption: the assumption SI in Appendix B requires distur-
bances and error terms (the vector δ1) to be symmetric and independent (not only uncorrelated)
of the stochastic term δ2, the vector of factors and interactions.

Note that, even though the model and moment tests have the same non-centrality parameter,
they will generally have different degrees of freedom, the moment test having generally the
smaller number of degrees of freedom. This implies that the moment test will have more power
than the corresponding model test; this issue, however, is of minor relevance in our paper, which
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is mainly concerned with variation of power when changing the third-order moments included
in s3.

For Theorem 1 to hold, a basic condition is that the structural part of the model is saturated;
that is, using the language of Mooijaart and Satorra (2009), the degrees of freedom of the struc-
tural part of the model need to be zero. The measurement part of the model can, however, have
restrictions so that the degrees of freedom for the whole model can in fact be large.

In this paper we have classified the third-order moments in three classes according to the
form of their power function. We have presented a simple model example, involving just one Y
dependent variable and two X variables, where different types of third-order moment arise de-
pending on the degree by which Y appears in the product term: when Y appears in degree one
or two (e.g., YXX and YYX), the third-order moment is of the MP class, the power is mono-
tonically increasing with the size of the interaction parameter (see expressions in (14)); when
Y appears in degree three (YYY), the third-order moment is of the NMP class, the power is not
monotonically increasing with the size of the interaction parameter. Deviation from monotonicity
lead us to recommend avoiding the NMP types of third-order moment when fitting models with
interaction terms. Note that there is also the CP (constant power) class of third-order moments,
for example, the moments involving only the Xs. Since third-order moments of the CP class are
not informative for specific interaction terms, they also should not be included in the analysis.

A final issue we want to discuss is how many third-order moments should be included, sup-
plementing first- and second-order moments, to improve the analysis of a model with interaction
terms. By looking at the last column of Table 4 we see that there is a slight improvement in the
power of the model test when adding two additional moments to the first one, but the power
does in fact decrease when the number of third-order moments added is beyond two. Inclusion of
higher-order moments deteriorates, generally, the robustness against small samples. In the case
where sample size is not extremely large, each third-order moment that is added to the analy-
sis is likely to induce more bias on parameter estimates and, generally, more inaccuracy in the
asymptotic results. Even though theoretically asymptotic efficiency of estimates increases with
the number of degrees of freedom, adding more moments may deteriorate accuracy measures
such as mean square errors. We therefore recommend researchers to refrain from adding higher-
order moments much beyond those strictly necessary for identification purposes.

Another argument for refraining from adding an excess of third-order moments relates to
the concept of saturated model implicit in the model test. As noted above, a saturated model
is the one that has enough parameters for the first-, second- and the selected higher-order mo-
ments to be unconstrained. Saturation of first- and second-order moments is a well-known topic.
Adding regression effects, loadings, variances and covariances as free parameters of the model,
can cause first- and second-order moments to be unrestricted. Saturation of higher-order mo-
ments is a much less explored land. Adding an interaction term in the model could possibly
saturate third-order moments of the MP or NMP class, but not a third-order moment of the CP
class. Saturating third-order moments of the CP class (for example, third-order moments that
involve only Xs) may require the introduction of distributional parameters (e.g. skewness, kur-
tosis, etc.) for independent variables of the model. Not having those parameters in the model
may amount to imposing distributional constraints on independent variables. So, to avoid distri-
butional parameters, or restricting the distribution of independent variables, we recommend not
to include moments of the CP class into the analysis.

In contrast to other approaches that require fitting a model for each set of third-order mo-
ments proposed, we now can assess the relevance of a specific set of third-order moments by
direct computation of a moment test that does not involve fitting a model. Obviously, there re-
mains issues to be investigated, such as the relative small sample size needed, effect-size issues,
optimal step-wise method for selection of third-order moments, etc.. These are issues for further
research that fall beyond the scope of the present paper.
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Appendix A. Proof of Lemma 1

We now prove Lemma 1 that shows the equivalence of H1 and H0 for first- and second-
order moments. Writing the class of models (1) to (3) in the linear-latent variable form (e.g.,
Satorra 1992)

y = νy + ΛyB
−1α + ΛyB

−1Γ1ξ + ΛyB
−1Γ2(ξ ⊗ ξ) + ΛyB

−1ζ + εy, (15)

x = νx + Λxξ + εx, (16)

we obtain expressions of the first- and second-order moments of observable variables as a func-
tion of the vector and matrix parameters; for the means:

E(y) = νy + ΛyB
−1(α + Γ2E(ξ ⊗ ξ)

)
,

(17)
E(x) = νx;

for the variances and covariances:

cov(y) = ΛyB
−1Γ1ΦΓ ′

1B
−T Λ′

y

+ ΛyB
−1[Γ2cov(ξ ⊗ ξ)Γ ′

2 + Ψ
]
B−T Λ′

y + Θε

= ΛyB
−1[Γ1ΦΓ ′

1 + Q + Ψ
]
B−T Λ′

y + Θε,

cov(x) = ΛxΦΛ′
x + Θδ,

cov(x, y) = ΛxΦΓ ′
1B

−T Λ′
y

(18)

where Q = Γ2 cov(ξ ⊗ ξ)Γ ′
2, and Θε and Θδ are the covariance matrices of ε and δ, respectively.

The first- and second-order components of the moment vector σa are derived from the moment
equations (17) and (18). The key issue now is whether such first- and second-order moments
can be equated exactly under model H0. The fitted matrices under model H0, which are not
necessarily equal to the ones obtained when fitting H1 (i.e., the ones in the right-hand side of
(17) and (18)), will be denoted with a tilde.

Let B̃ and Φ̃ be the solutions under the specification H0 of the matrix equality:

B̃−1Ψ̃ B̃−T = B−1(Q + Ψ )B−T

Such a solution exists by Condition 1, since saturation of the model at the level of the structural
equations leaves the product matrix B̃−1Ψ̃ B̃−T unrestricted. Define

α̃ = B̃B−1(α + Γ2D
+E(ξ ⊗ ξ)

)
,

Γ̃1 = B̃B−1Γ1, (19)

Φ̃ = Φ
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and the other vectors and parameter matrices (such as Λx , Λy , etc.) the same as under H1 (these
are parameters that can be constrained under both H0 and H1). Recall that α, Γ1 and Φ are
unconstrained by Condition 1, so α̃, Γ̃1 and Φ̃ could be feasible solutions under H0. Simply by
substitution it can be seen that

E(y) = νy + ΛyB̃
−1α̃,

(20)
E(x) = νx

and

cov(y) = ΛyB̃
−1[Γ̃1Φ̃Γ̃ ′

1B̃
−T + Ψ̃

]
B̃−T Λ′

y + Θε,

cov(x) = ΛxΦ̃Λ′
x + Θδ,

cov(x, y) = ΛxΦ̃Γ̃ ′
1B̃

−T Λ′
y.

Note that as expressed in our notation, the vectors νx and νy and the matrices Λy , Λx ,
Θε , Θδ are the same under H0 and H1. Note that such matrices are allowed to be constrained
under both models. When viewed as functions of the parameters, the matrices B and Ψ can be
restricted provided B−1Ψ B−T is unrestricted. These are the same conditions as the saturated
model of Mooijaart and Satorra (2009).

Appendix B. Proof of G′Γ12,3 = 0

In this appendix we will make use of the following.

Lemma B1. Given matrices A, B and C, we have

(A,B) ⊗ (C,D) = (A ⊗ C,A ⊗ D,B ⊗ C,B ⊗ D)E,

where E is a permutation matrix.

Proof: We use basic properties of the right-Kronecker product, namely (A,B) ⊗ C = (A ⊗
C,B ⊗ C) for conformable matrices A,B,C, so that (A,B) ⊗ (C,D) = (A ⊗ (C,D),B ⊗
(C,D)). By definition of the Kronecker products we see that the columns of A⊗(C,D) are either
ai ⊗ cj or ai ⊗ dk where ai , cj and dk are columns of the matrices A,C and D, respectively.
So A ⊗ (C,D) = (A ⊗ C,A ⊗ D)E1, where E1 is an elementary matrix which permutes the
columns of (A⊗C,A⊗D). Analogously, it can be written B ⊗ (C,D) = (B ⊗C,B ⊗D)E2 for
a different permutation matrix E2. So we have (A,B) ⊗ (C,D) = (A ⊗ (C,D),B ⊗ (C,D)) =
(A⊗C,A⊗D,B ⊗C,B ⊗D)E, where E is a super 2 × 2 matrix with block-diagonal matrices
E1 and E2. �

We can re-write (15) and (16) as

z = μ + [Λ2ζ + ε] + [
Λ1ξ + Λ3(ξ ⊗ ξ)

]
,

where z = (y′, x′)′ and ε = (ε′
y, ε

′
x)

′,

μ =
(

νy + ΛyB
−1α

νx

)
, Λ1 =

(
ΛyB

−1Γ1
Λx

)
, Λ2 =

(
ΛyB

−1

0

)
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and

Λ3 =
(

ΛyB
−1Γ2
0

)
.

Thus, in compact expression, H1 can be written as

z = μ + Aδ = μ + A1δ1 + A2δ2, (21)

where A = (A1,A2), δ = (δ′
1, δ

′
2)

′, δ1 = (ζ ′, ε′)′, δ2 = (ξ ′, (ξ ⊗ ξ)′)′, A1 = (Λ2, I ) and A2 =
(Λ1,Λ3), where B = I − B0 and B is assumed to be invertible. The null hypothesis H0 of
no interaction terms can now be expressed as Λ3 = 0. We need to introduce two additional
assumptions that will be needed for the theorem.

Assumption SI (Symmetry and independence). The model H1 holds and the distribution of δ1

of (21) is symmetric and independent of δ2.

Furthermore,

Assumption FPI (Functional parameter independence). The parameter vectors θα θΓ1 , θΦ , θB0

and θΨ are functionally independent (no constraints across them are allowed).

Consider now the specification H0, i.e. (1) to (3) with Γ2 set to 0. Consider the vec-
tor of first- and second-order moments for z, σ12 = (σ ′

1, σ
′
2)

′, where σ1 = E[z] and σ2 =
vechE[(z − μ) ⊗ (z − μ)]. Clearly, under the specification H0, the vector σ12 is structured as a
function σ12 = σ12(θ) of the vector of parameters θ . Let the parameter vector θ be partitioned as
θ = (θ ′

1, θ
′
2)

′, where θ1 = (θ ′
α, θ ′

Γ1
, θ ′

Φ, θ ′
B0

, θ ′
Ψ )′, θα , θΓ1 , θΦ , θB0 and θΨ denoting the vectors of

free parameters associated to the free components in α, Γ1, Φ , B0 and Ψ , respectively.
Consider the partitioned Jacobian

σ̇12 =
(

σ̇1
σ̇2

)
,

where σ̇1 = ∂σ1/∂θ ′
1 and σ̇2 = ∂σ2/∂θ ′

1. Clearly,

σ̇j = ∂σj

∂α′ ∂(vecΓ1)′ ∂(vechΦ)′ ∂(vecB0)′ ∂(vechΨ )′
R , j = 1,2,

where, by virtue of FPI,

R = block-diagonal[Rα,RΓ1,RΦ,RB0 ,RΨ ],
Rα = ∂α/∂θ ′

α , RΓ1 = ∂ vec(Γ1)/∂θ ′
Γ1

, RΦ = ∂ vech(Φ)/∂θ ′
Φ , RB0 = ∂ vec(B0)/∂θ ′

B0
and RΨ =

∂ vech(Ψ )/∂θ ′
Ψ . Further, by differentiation it can easily be seen that

σ̇12 =
(

A11 0 0 A14 0
0 A22 A23 A24 A25

)
,

where

A11 = ∂σ1

∂α′ =
(

ΛyB
−1

0

)
Rα,
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A14 = ∂σ1

∂(vecB0)′
=

(
(α′ ⊗ Λy)(B

−T ⊗ B−1)

0

)
RB0 ,

A22 = ∂σ2

∂(vecΓ1)′
= 2D+

p+q(Λ1Φ ⊗ Λ2)RΓ1 ,

A23 = ∂σ2

∂(vechΦ)′
= D+

p+q(Λ1 ⊗ Λ1)DnRΦ,

A24 = ∂σ2

∂(vecB0)′
= 2D+

p+q

[
(Λ1 ⊗ Λ2)

(
ΦΓ ′B−T ⊗ Im

) + (Λ2 ⊗ Λ2)
(
Ψ B−T ⊗ Im

)]
RB0,

A25 = ∂σ2

∂(vechΨ )′
= D+

p+q(Λ2 ⊗ Λ2)DmRΨ .

Below we will assume that the vector and matrices α, Γ1 and Φ are unrestricted, so Rα , RΓ1 , and
RΦ are identity matrices.

Let G be a matrix orthogonal to σ̇12, that is, G′σ̇12 = 0, and partition it as G′ = (G′
1,G

′
2), so

that we have G′
1σ̇1 +G′

2σ̇2 = 0. Because only the means of the y variables are functions of some
model parameters, it makes sense to define the partitioning G′

1 = (G′
1y,G

′
1x). Then we have the

following equations in which the means are involved:

G′
1yΛyB

−1Rα = 0, (22)

G′
1y

(
α′ ⊗ Λy

)(
B−T ⊗ B−1)RB0 + G′

2A24 = 0. (23)

Under the assumption that α is unconstrained, Rα is the identity and thus G′
1yΛyB

−1 = 0; so, it
follows that

G′
1y

(
α′ ⊗ Λy

)(
B−T ⊗ B−1) = G′

1y

(
α′B−T ⊗ ΛyB

−1) = 0.

This expression being zero follows from noting that α′B−T is a row vector, so α′B−T ⊗ ΛyB
−1

consists of scalars times ΛyB
−1. Thus (23) results in G′

2A24 = 0, which is (26) below.
Clearly, the equations in which the covariances are involved are the following ones:

G′
2 D+

p+q(Λ1Φ ⊗ Λ2)RΓ1 = 0, (24)

G′
2 D+

p+q(Λ1 ⊗ Λ1)DnRΦ = 0, (25)

G′
2D

+
p+q

[
(Λ1 ⊗ Λ2)

(
ΦΓ ′B−T ⊗ Im

) + (Λ2 ⊗ Λ2)
(
Ψ B−T ⊗ Im

)]
RB0 = 0, (26)

G′
2 D+

p+q(Λ2 ⊗ Λ2)DmRΨ = 0. (27)

Lemma B2. Consider the specification H0 under the separability assumption FPI. Assume Con-
dition 1 with Φ and Ψ of full rank. Then

G′
2D

+
p+q

[
(Λ1,Λ2) ⊗ (Λ1,Λ2)

] = 0

where

Λ1 =
(

ΛyB
−1Γ1

Λx

)
and Λ2 =

(
ΛyB

−1

0

)
.

G′ = (G′
1,G

′
2), conformably with the matrix product above, and G any matrix, such that

G′σ̇12 = 0.
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Proof: Using Lemma B1, it holds

G′
2D

+
p+q

[
(Λ1,Λ2) ⊗ (Λ1,Λ2)

] = G′
2D

+
p+q

[
(Λ1 ⊗ Λ1), (Λ2 ⊗ Λ1), (Λ1 ⊗ Λ2), (Λ2 ⊗ Λ2)

]
E

where E is a permutation matrix (square and of full rank). So, for proving the lemma it suffices
to show that G′

2D
+
p+q(Λi,Λj ) = 0 for i, j = 1,2.

Since G′
2 D+

p+q(Λ1Φ ⊗ Λ2) = G′
2 D+

p+q(Λ1 ⊗ Λ2)(Φ ⊗ I ), using (24), the non-singularity
of Φ and Γ1 being unrestricted (so that RΓ1 = I ) yield

G′
2 D+

p+q(Λ1 ⊗ Λ2) = 0. (28)

Since G′
2 D+

p+q(Λ1 ⊗ Λ2) = G′
2D

+
p+qKp+q,p+q(Λ2 ⊗ Λ1)Kn,m = 0 (the Ks are commu-

tation matrices). Because the commutation matrix is square non-singular and D+
p+qKp+q,p+q =

D+
p+q it follows G′

2 D+
p+q(Λ1 ⊗ Λ2) = G′

2 D+
p+q(Λ2 ⊗ Λ1)Kn,m, so we prove

G′
2 D+

p+q(Λ2 ⊗ Λ1) = 0. (29)

Since Φ is symmetric and unrestricted, (25) implies G′
2 D+

p+q(Λ1 ⊗ Λ1)Dn = 0, and so
G′

2 D+
p+q(Λ1 ⊗ Λ1)DnD

+
n = 0. Further, since D+

p+q(Λ1 ⊗ Λ1)DnD
+
n = D+

p+q(Λ1 ⊗ Λ1)Nn,

where Nn = 1
2 (I + Kn) and Kn is a commutation matrix (see Magnus and Neudecker 1999).

Because we have D+
p+q(Λ1 ⊗ Λ1)Kn = D+

p+qKp+q(Λ1 ⊗ Λ1) = D+
p+q(Λ1 ⊗ Λ1), and since

(Λ1 ⊗ Λ1)Kn = Kn(Λ1 ⊗ Λ1) and D+
p+qKp+q = D+

p+q (see, e.g., Theorem 7.37 of Schott,
1997), it follows that D+

p+q(Λ1 ⊗ Λ1)Nn = D+
p+q(Λ1 ⊗ Λ1) and thus

G′
2 D+

p+q(Λ1 ⊗ Λ1) = 0. (30)

From (28) it follows that the first term in (26) is 0. Combining this result and (27) we have

G′
2 D+

p+q(Λ2 ⊗ Λ2)
[(

Ψ B−1 ⊗ Im

)
RB0 ,DmRΨ

] = 0.

Define Z = [(Ψ B−1 ⊗ Im)RB0 ,DmRΨ ] = [Z1RB0,Z2RΨ ], then this can be written as

Z = (Ψ B−1 ⊗ Im,Dm)RB0,Ψ where RB0,Ψ = ( RB0 0
0 RΨ

)
. Let H = B−1Ψ B−T ; then H has

m(m + 1)/2 different non-duplicated elements. Now it holds true that H is completely unre-
stricted if the Jacobian of H w.r.t. the parameters has m(m + 1)/2 columns and is of full column
rank. This Jacobian can be written as

∂ vec(H)

∂[(vec(B0))′, (vech(Ψ ))′] = (Z1RB0,Z2RΨ )

= (Z1,Z2)

(
RB0 0

0 RΨ

)
= ZRB0,Ψ ,

where Z is of full column rank. So the condition for un-restrictedness of H is that RB0,Ψ is of
full column rank equal to m(m + 1)/2. That is, H = B−1Ψ B−T being free is equivalent to Z

being of full column rank, this rank being equal to m(m+ 1)/2. There are two typical conditions
under which this holds true: when Ψ is a diagonal matrix with unconstrained elements (B0)ij , or
when Ψ is an unconstrained free matrix and (B0)ij is constrained.

Now from G′
2 D+

p+q(Λ2 ⊗ Λ2)Z = 0 it follows that G′
2 D+

p+q(Λ2 ⊗ Λ2)DmD+
mZ =

G′
2 D+

p+q(Λ2 ⊗ Λ2)Dm = 0 and so

G′
2 D+

p+q(Λ2 ⊗ Λ2) = 0. (31)

Combination of (29) to (31) completes the proof of the lemma. �
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Appendix C. Orthogonality Conditions for Matrices Fitted Under H0 and H1

Here we show that an orthogonality condition satisfied by the matrices under the fit of H0
implies orthogonality when the matrices involved correspond to the fit of H1. We use a tilde to
denote the matrices fitted under H0 that may have different values as when fitted under H1.

Lemma C1. Under the same conditions as in Lemma B2; if

G′
2D

+
p+q

[(
Λ̃1, Λ̃2

) ⊗ (
Λ̃1, Λ̃2

)] = 0

then

G′
2D

+
p+q

[
(Λ1,Λ2) ⊗ (Λ1,Λ2)

] = 0

Proof: From the equivalence of H0 and H1, we have B−1Γ1 = B̃−1Γ̃1 and B̃−1Ψ̃ B̃−T =
B−1(Ψ + Q)B−T where Q = Γ2 cov(ξ ⊗ ξ)Γ ′

2. So, because B−1Γ1 = B̃−1Γ̃1, it follows
immediately that Λ1 = Λ̃1. Furthermore, it is easy to prove that Λ̃2 = Λ2V , where V =
(Ψ + Q)B−1B̃ ′Ψ̃ −1, which is non-singular in general. So,

(
Λ̃1, Λ̃2

) ⊗ (
Λ̃1, Λ̃2

) = (Λ1,Λ2V ) ⊗ (Λ1,Λ2V )

= [
(Λ1,Λ2) ⊗ (Λ1,Λ2)

][(
I 0
0 V

)
⊗

(
I 0
0 V

)]

= [
(Λ1,Λ2) ⊗ (Λ1,Λ2)

]
W

where W = (
I 0
0 V

) ⊗ (
I 0
0 V

)
, which implies the conclusion of the theorem since W is non-

singular. �
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