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ABSTRACT

Aims. Accurate measurement of gravitational shear from images of distant galaxies is one of the most direct ways of studying the
distribution of mass in the universe. We describe a new implementation of a technique for measuring shear that is based on the
shapelets formalism.
Methods. The shapelets technique describes PSF and observed images in terms of Gauss-Hermite expansions (Gaussians times
polynomials). It allows the various operations that a galaxy image undergoes before being registered in a camera (gravitational shear,
PSF convolution, pixelation) to be modeled in a single formalism, so that intrinsic ellipticities can be derived in a single modeling
step.
Results. The resulting algorithm, and tests of it on idealized data as well as more realistic simulated images from the STEP project,
are described. Results are very promising, with attained calibration accuracy better than four percent (1 percent for round PSFs) and
PSF ellipticity correction better than a factor of 20. Residual calibration problems are discussed.
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1. Introduction

Weak gravitational lensing is recognized as a profitable way
to study the dark matter distribution in the universe, and with
a series of ever wider-field astronomical cameras coming on-
line, very large weak lensing surveys are being planned and per-
formed. The inevitable source of noise in weak lensing measure-
ments is shape noise, caused by the diversity of projected galaxy
shapes on the sky. To beat down the noise, very large numbers
of galaxy ellipticities need to be averaged: thus new lensing sur-
veys such as the CFHT Legacy Survey (Hoekstra et al. 2005), the
CTIO survey (Jarvis et al. 2003), the VIRMOS-Descart survey
(van Waerbeke et al. 2005) or the recently-approved Kilo-Degree
Survey (KIDS) on the VLT Survey Telescope, will contain mil-
lions of background sources, which in principle should enable
very accurate shear measurements.

This averaging down of the shape noise through large num-
ber statistics only makes sense if systematic errors can be con-
trolled: the main one is still the blurring of the source images
by atmosphere, telescope and detector pixels. The commonly-
used Kaiser et al. (1995; henceforth KSB) and Luppino & Kaiser
(1997) methods provide recipes for correcting these effects, and
are very successful. Nevertheless, they are based on an idealized
model of the effect of point spread function (PSF) convolution
on ellipticity, and it is possible to construct plausible PSFs that it
fails to correct properly (e.g., Hoekstra et al. 1998, Appendix D).
Therefore it seems unlikely that the KSB recipes will deliver the
factor of 10 to 100 improvement in fidelity that will be required
to exploit the new surveys (Erben et al. 2001).

A number of different approaches have been put forward to
improve PSF correction (Kuijken 1999; Kaiser 2000; Rhodes
et al. 2000; Bernstein & Jarvis 2002; Refregier & Bacon 2003;
Mandelbaum et al. 2005). In this paper we present a new tech-
nique which combines elements from most of these.

The paper is organized as follows: in Sect. 2 shear and
ellipticity are defined, and the effect of one on the other.
Section 3 summarizes the shapelets formalism, and describes
how a shapelet description of a source and its PSF can be used to
generate an ellipticity estimate that is useful for shear estimation.
Section 4 substantiates the approach with idealized tests of the
algorithm. In Sect. 5 a software pipeline is presented that imple-
ments the full processing chain from an astronomical image to a
shear estimate. Results of applying the pipeline to test data from
the STEP project are shown in Sect. 6. In Sect. 7 we compare
with other techniques, and Sect. 8 gives the conclusions.

2. Preliminaries

2.1. Shear and distortion

Following the usual practice, we parameterize the effect of weak
gravitational lensing on a distant source in terms of a shear
(γ1, γ2) and a convergence κ: the distorted image Ilensed(x, y)
is derived from the original I(x, y) via the transformation
Ilensed(x, y) = I(x′, y′), where

(
x′
y′
)
=

(
1 − γ1 − κ −γ2
−γ2 1 + γ1 − κ

) (
x
y

)

≡ (1 − κ)
(

1 − g1 −g2
−g2 1 + g1

) (
x
y

)
· (1)

The first matrix in this equation (the distortion matrix) represents
the transformation from observed (x, y) to undistorted (x′, y′) co-
ordinates.

Without knowledge of the intrinsic source size, only the dis-
tortion (g1, g2) ≡ (γ1, γ2)/(1 − κ), which affects the shape of the
source, can be measured (Schneider & Seitz 1995).
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2.2. Ellipticity

We define the ellipticity of an object’s image I as follows:
Let Iell be the model image with constant-ellipticity

isophotes that best approximates I. Then the ellipticity (e1, e2)
of I is defined such that a distortion of (−e1,−e2) makes Iell cir-
cular.

The major axis position angle φ and the axis ratio q of an
elliptical source are simply related to (e1, e2):

q =
1 − e
1 + e

and e1 = e cos 2φ, e2 = e sin 2φ. (2)

This definition is similar to the one adopted by Bernstein &
Jarvis (2002; henceforth BJ02), but does not explicitly force a
fit to an elliptical Gaussian.

As discussed by BJ02, expressing the shapes of objects in
terms of distortions e has a practical advantage: in this formu-
lation it is simple to calculate the response of object shapes to
small distortions. An elliptical source with ellipticity (e1, e2) that
is sheared by a small amount (g1, g2) can be viewed as a circular
source that is sheared twice, first by ei and then by gi, giving a
combined distortion matrix(

1 − e1 −e2
−e2 1 + e1

) (
1 − g1 −g2
−g2 1 + g1

)

=

(
1 − e1 − g1 + e1g1 + e2g2 −e2 − g2 + e1g2 − e2g1
−e2 − g2 − e1g2 + e2g1 1 + e1 + g1 + e1g1 + e2g2

)
· (3)

This matrix is no longer a pure distortion matrix (which would
have to be symmetric and of trace 2), but some algebra shows
that this matrix can be decomposed into a magnification, a rota-
tion and a distortion:(

1 − e1 −e2
−e2 1 + e1

) (
1 − g1 −g2
−g2 1 + g1

)

= (1 + K)

(
1 R
−R 1

) (
1 − e1 − δ1 −e2 − δ2
−e2 − δ2 1 + e1 + δ1

)
, (4)

where, to first order in the distortion gi,

K = e1g1 + e2g2 (5)

R = e1g2 − e2g1 (6)

δ1 = (1 − e2
1 − e2

2)g1 (7)

δ2 = (1 − e2
1 − e2

2)g2. (8)

Thus the action of a small distortion g on an elliptical source with
ellipticity ei (according to the definition in Eq. (1)) is equivalent
to acting on a circular source with, successively, a magnification,
a rotation (neither of which affect the shape of a circular source),
and a distortion by ei + δi.

Assuming now that we have an ensemble of elliptical
sources, of random orientations, so that before distortion 〈ei〉 = 0
and 〈e2

1〉 + 〈e2
2〉 ≡ 〈e2〉, the average ellipticity of the population

after a distortion (g1, g2) is simply(〈e1〉
〈e2〉

)
= (1 − 〈e2〉)

(
g1
g2

)
· (9)

3. Shapelets

The shapelets basis is described in Refregier (2003). It consists
of the two-dimensional Cartesian Gauss-Hermite functions, fa-
mous as the energy eigenstates of the 2D quantum harmonic os-
cillator:

Bab(x, y) = kabβ−1e−[(x−xc)2+(y−yc)2]/2β2
Ha(x/β)Hb(y/β). (10)

Here (x, y) are coordinates on the image plane, xc and yc are the
center of the expansion, Bab is the basis function of order (a, b),
Ha is the Hermite polynomial of order a and β is a scale radius.

kab is a normalization constant chosen so that
(
Bab

)2
integrates

to one.
Shapelets are a convenient basis set for describing astronom-

ical images because of the compact way in which various opera-
tors (translation, magnification, rotation, shear) can be expressed
as matrices that act on the shapelet coefficients. Shapelets have a
free scale radius β (the size of the Gaussian core of the func-
tions), and R03 shows how the coefficients transform under
change of β, and how to convolve objects with different scale
radii.

To avoid introducing a preferred direction, the expansion
should be truncated in combined order N = a + b, not in a or
b separately. (A basis set truncated in N is complete under rota-
tion. Effectively, such a truncation describes an image as a prod-
uct of a circular Gaussian with an inhomogeneous polynomial in
x and y of order N. Rotation of such an image will mix the xiy j

terms at constant i + j.)
The reason for choosing shapelets as a formalism for weak

lensing analysis is its ability to describe the main operations that
a galaxy image undergoes before it is registered at a telescope
focal plane: in reverse order, pixelation, convolution with a PSF,
and distortion.

In this paper we concentrate on well-sampled (PSF FWHM
at least 3–4 pixels), ground-based seeing-limited images. It re-
mains to be seen to what extent diffraction-limited PSFs, and
undersampling, can be handled with this formalism.

3.1. Pixelation

An image that is registered on a CCD is pixelated: the flux
on the surface of the detector is read out in binned form.
Mathematically, the flux is first boxcar smoothed (i.e., convolved
with a pixel), and then sampled at a spatial frequency of once per
pixel. Therefore, if we fit a shapelet expansion to the binned im-
age I(k, l) as a linear superposition of the basis functions Bab:

I(k, l) =
N∑

a=0

N−a∑
b=0

sabBab(k − xc, l − yc) (11)

then the shapelet coefficients sab describe the pixel-convolved
image directly. If a similar fit is made to a PSF image that is
pixelated in the same way, then the intrinsic, pre-seeing image is
exactly the deconvolution of the two shapelet expansions (apart
from the effects of noise, undersampling, and truncation of the
shapelet expansions).

3.2. PSF convolution

Convolution with the PSF can be expressed as multiplication
with a PSF matrix Pa1b1a2b2 (βin, βout): if the shapelet coefficients
of the PSF are pab, and those of a model source are mab, then
their convolution is(∑

a,b pabBab
βpsf

)
⊗

(∑
a,b mabBab

βin

)
=

∑
a1,b1

(∑
a2,b2

Pa1b1a2b2 (βin, βout)ma2b2

)
Ba1b1
βout
. (12)

The subscripts on Bab identify the scale radius β, which can
be different for the three shapelet series involved: those for the
PSF, input model source and output result of the convolution.
P(βin, βout) convolves a shapelet expansion with scale radius βin
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with the PSF, resulting in a shapelet expansion with scale radius
βout. The coefficients of the PSF matrix are

Pa1b1a2b2 (βin, βout) =
∑
a3,b3

C
βoutβinβpsf
a1a2a3

C
βoutβinβpsf

b1b2b3
pa3b3 . (13)

Here the elemental convolution matrix Cβ3β1β2

nml expresses the con-
volution of two one-dimensional shapelets of scales β1 and β2 as
a new shapelet series with scale β3. A recurrence relation for
Cnml is given in R03.

3.3. Ellipticity from shapelets

Given a PSF and a PSF-convolved source, both expressed as
shapelet series, we determine the ellipticity of the source by
modeling it as a PSF-convolved, distorted circular source of ar-
bitrary radial brightness profile. This approach is similar to the
one described in Kuijken (1999), but it is more effective when
expressed in terms of shapelets.

A circular source of arbitrary radial brightness profile can be
written as a series of circular shapelets Cn of the form c0C0 +
c2C2 + c4C4 + . . ., where the cn are free coefficients. The Cn (see
Appendix) are normalized to have unit integral over x, y, so cn
gives the total counts in each component. After distortion of such
a source, it becomes an elliptical source which, to leading order
in ellipticity e, can be written as

(1 + e1S1 + e2S2)(c0C0 + c2C2 + c4C4 + . . .) (14)

where Si are the first-order shear operators (see R03).
This machinery allows us to write the model for the observed

source as

P · (1 + e1S1 + e2S2)(c0C0 + c2C2 + c4C4 + . . .), (15)

expressed as a set of shapelet coefficients that depend on the ei

and the cn. Fitting this model to the shapelet coefficients of the
observed source (with their errors) yields the best-fit ellipticity
(e1, e2) and the associated errors.

To improve the accuracy, we make two modifications: we
add centroid error parameters, and we only fit the model to a
subset of the shapelet expansions. The centroid error parame-
ters are included to allow for a mismatch between the center
of the object and its shapelet expansion. If the PSF and/or the
galaxy have some lopsidedness to them, the center of their best-
fit shapelet expansion may not be at the flux-weighted center
of the source (since our centering technique simply requires the
01 and 10 components to be exactly zero). Hence the centroid
may move under convolution, which would spoil the fit. To guard
against this, instead of fitting Eq. (15) we fit a model of the form

P ·(1+e1S1+e2S2+d1T1+d2T2)(c0C0+c2C2+. . .+cNcC
Nc ) (16)

instead. The free translation terms diTi in the model are ex-
pressed in terms of the shapelet operators Ti.

The second modification is made to contain truncation er-
rors. While the shapelet basis is complete, and hence can de-
scribe any source given enough terms, in practice the fact that
the source is only sampled in a finite set of pixels means that
the expansion needs to be truncated. Hence, except in very spe-
cial cases, the PSF and galaxy are not described perfectly by
a truncated shapelet series. The missing information propagates
through the analysis, and is a source of systematic error in the
PSF convolution (as some PSF terms may be missing) and in
the calculation of the action of shear (since shearing high-order
shapelets generates also lower-order terms).

Truncation effects can be seen most clearly if we re-express
the shapelets in polar (r, θ) coordinates (they become Gaussians
times Laguerre polynomials of r – see BJ02, R03, Massey &
Refregier 2005). Polar shapelets are combinations of Cartesian
shapelets Bab of the same order N = a + b, whose angular de-
pendence is a pure sine or cosine of mθ, for angular order m. The
order of the Laguerre polynomial is N, with N ≥ m and N + m
even.

The translation and shear operators, when applied to a polar
shapelet of order (N,m), generate terms at order (N ± 1,m ± 1)
and (N±2,m±2), respectively. If we truncate the shapelet series
of the best-fit circular model for the pre-seeing, pre-shear galaxy
at order Nc, then to be consistent the m = 1 and m = 2 series
must be truncated at order Nc − 1 and Nc − 2, respectively.

Note that we are never completely safe from truncation ef-
fects: in particular, complex PSFs can in principle mix coeffi-
cients of all orders. The problem is minimized, but not com-
pletely eliminated, by adopting suitable scale radii so that the
amount of information carried in the high-order coefficients is
small. We further include a “safety margin” by setting Nc =
N − 2, in case the highest-order shapelet coefficients are affected
by PSF structure at even higher order. The scheme is illustrated
for the typical case of N = 8 in Fig. 1. The highest-order polar
shapelet coefficients that should be included in the fit are (Nc, 0),
(Nc − 1,±1) and (Nc − 2,±2).

In summary, from the shapelet series for each source, up to
Cartesian order Nmax, we form a truncated polar shapelet series
including terms of order (m = 0,N = 0, 2, . . . ,Nmax − 2), (m =
1,N = 1, 3, . . . ,Nmax − 3) and (m = 2,N = 2, 4, . . . ,Nmax − 4).
The effect of the shear, translation and PSF operators on circular
basis functions up to order Nmax−2 is then calculated up to order
Nmax, and the result likewise converted to polar shapelets up to
order Nmax − 2.

Least-squares fitting the model to each source yields an el-
lipticity estimate (e1, e2), expressed as the shear that needs to be
applied to a circular source to fit the object optimally.

Performing the least-squares fit is straightforward to do
numerically. χ2 is a fourth-order polynomial in the fit pa-
rameters {c0, c2, . . . , cN−2, e1, e2, d1, d2}, and the minimum can
typically be found in a few Levenberg-Marquardt iterations
(Press et al. 1986).

The errors on the shapelet coefficients for each source can
be derived from the photon noise, and these can be propagated
through in the χ2 function. The second partial derivatives of χ2

at the best fit give the inverse covariance matrix, which can be
inverted to show the variance and covariances between the fit
parameters. This results in proper error estimates on all param-
eters, in particular on e1 and e2. In practice the errors on ei are
only weakly correlated with those on di and cn.

4. Tests

We now describe some elementary tests of this approach.

4.1. Test of ellipticity estimates

For small ellipticity e the linear shear operator provides a good
description of the action of the shear, but for larger e higher-order
corrections come into play, and these corrections depend on the
radial brightness profile. We have calibrated these corrections
empirically using a set of model sources that follow a Sersic
(1968) distribution of brightness, of index 1–4. Each source was
sheared by varying amounts and encoded into shapelets using a
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Fig. 1. The information used in the ellipticity determination, for shapelet expansion to order N = 8. On the left, the Cartesian shapelet coefficients
that are fitted to describe a source and its associated PSF. On the right, the same information has been rearranged into a polar shapelet expansion
(the two may be transformed into one another by appropriate mixing of the terms at order N ≡ a + b). The heavy line indicates the polar shapelets
from which the ellipticity is estimated by a fit to Eq. (16). Note the safety margin at order N − 1 and N, and the fact that only azimuthal orders
between −2 and +2 are fitted.

range of different scale radii. The first-order ellipticity estimate
e1st derived by fitting a model of Eq. (14) was then compared to
the true ellipticity (see Fig. 2). For small e the correct ellipticity
is recovered, but at larger e the discrepancy grows. Fitting the
residuals versus the radial profile shape parameters c0, c2, c4, it
turns out that the true ellipticity etrue can be derived from the
fitted 1st-order estimate by applying the correction factor

etrue

e1st
� 1 − e2

1st

(
−0.41 +

0.085c2 + 0.63c4

c0

)
· (17)

The formula is valid to better than 1% accuracy for e < 0.7,
corresponding to axis ratios of nearly 6:1.

Below we will, in fact, NOT apply this correction, because
the errors on c0, c2 and c4 are typically so high, and (in the case
of small, barely resolved sources) correlated, that the correction
factor cannot be determined accurately. Fortunately most galax-
ies in the sky have ellipticity below 0.3, where the correction is
below 3%. If necessary, the accuracy could be further increased
by evaluating the effect of shear on the shapelet basis functions
to higher order in Eq. (16).

4.2. Choice of scale radius

A truncated shapelet expansion can only describe deviations
from a Gaussian over a particular range of spatial scales (which
widens with order N). For ellipticity determinations the outer
parts of galaxy and PSF images are most important (e.g., the
classic second moments depend on the 3rd moment of the radial
profile), so there is some advantage to taking as large a scale ra-
dius as possible. On the other hand, this radius should not be so
large that the inner structure of the source cannot be resolved.

We have found that, for shapelet expansions up to order
N = 8 or higher, taking a scale radius which is 1.3 times the dis-
persion of the best-fit Gaussian works well for a range of model
PSFs. Figure 3 shows an example for a Moffat PSF with index 2:
both the core and the wings can be fitted adequately with this
choice of β.

Fig. 2. Empirical calibration of the post-linear correction to the mea-
surement of e. Top left: fractional error on derived 1st-order ellipticity
e for a range of different scale parameters and Sersic indices. Top right:
fractional error of the corrected ellipticity. Bottom left: the coverage of
the c2/c0, c4/c0 plane by the models. The four groups of points corre-
spond, from top to bottom, to Sersic index 4, 3, 2 and 1. The horizontal
spread is mostly a consequence of using different scale radii β. Bottom
Right: residuals on 1st-order ellipticity vs. the linear combination of
c′/c0 = (0.085c2 + 0.63c4)/c0 for input ellipticity 0.4, showing that this
parameter drives the scatter.

The impact of the choice of scale radius on ellipticity mea-
surements is shown in Fig. 4, for typical images. The factor 1.3
represents a good compromise, though its exact value is not
critical.
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Fig. 3. Different shapelet fits to a Moffat PSF (1 + αr2)−2 with FWHM
of 12 pixels. Top panel: the solid line shows a cross-section of an 8th-
order fit, using the dispersion of the best-fit Gaussian as scale radius.
The dotted line shows the corresponding fit for a scale radius that is a
factor of 1.3 times larger. The lower panel shows the PSF multiplied by
radius3, in order to accentuate the residuals in the wings. Dots are the
actual (monte-carlo realized) pixelated PSFs used in the simulations of
Sect. 4. Note how the increased scale radius makes for a much better
fit in the outer regions, without a serious degradation in the core of the
PSF.

Fig. 4. Illustration of the effect of the choice of scale radius on the el-
lipticity measurement. Each curve shows, for a different galaxy profile,
how the derived e depends on the choice of scale radius (expressed as
a multiple of the dispersion of the best-fitting round Gaussian). Each
model galaxy had an effective radius of 4 pixels and ellipticity 0.3, and
was convolved with a PSF of Moffat index 2 and FWHM 8 pixels. The
β for convolved source and PSF are both scaled by the same factor.

4.3. Test of PSF correction

Correcting for the effects of PSF convolution (dilution of ellip-
ticity by a round PSF, or biasing of ellipticity by an elongated
one) is the most critical part of weak lensing. The following tests
show how well the shapelets technique can do this.

For the tests we generate simulated, high signal-to-noise
(S/N) sources. To be sure that pixelation effects are taken into
account properly, and that the PSF convolutions are done accu-
rately, a brute-force technique is used: each source is built of
individual “photons” that are drawn from a 2D Sersic distribu-
tion, sheared if required, then have a “PSF” displacement added
to them, and finally are added to the pixel in which they fall.

We use 10 million photons per source, which gives effectively
noise-free images (S/N >∼ 1000).

We ran three sets of tests. In each case we explore galax-
ies with Sersic laws f (r) ∼ exp (−kr1/ns ) with indices ns =
0.5 (Gaussian), 1 (exponential), 2, 3 and 4 (de Vaucouleur), and
use PSFs with a Moffat profile (1 + αr2)−βm of index βm = 2, 3
and 9 (nearly Gaussian). All galaxies are scaled to an intrinsic ef-
fective radius of 4 pixels, and the PSF FWHM’s range from 4 to
12 pixels. We use shapelet expansions to order N = 8 and 12, and
scale radii of 1.3 times the dispersion of the best-fit Gaussian.

First, to test the “shear calibration” factor, we check how
well we can recover the shear of a galaxy that is sheared by
g1 = 0.1 and convolved with a round PSF. Figure 5 shows the
result: any calibration error is at the sub-percent level; the worst
results are obtained for the most non-Gaussian PSFs (βm = 2).
The noise in the curves suggests that we are also limited by the
accuracy of the Monte-Carlo simulations of the galaxies, and by
the numerics of the software implementation of the method.

The second test shows to what extent PSF ellipticity pol-
lutes the shear estimate. The input PSFs were given an elipticity
e1 = 0.1 (axis ratio 0.82), and convolved with round galaxies.
The recovered e is shown in Fig. 6. The residual effect is at most
half a percent (worst case), which represents a correction of the
PSF ellipticity by a factor of better than 20. The best results are
obtained for lowish Sersic indices (below 2) and for PSFs with
not too extended wings (Moffat index 3 or higher). Perhaps sur-
prisingly, the larger the PSF (for the same galaxy size) the better
the correction: presumably this is a small sampling effect.

Finally, we introduced a lopsided PSF (by giving 1/4 of the
photons an extra offset of half the FWHM) and repeated the anal-
ysis. As can be seen from Fig. 7, this combination of dipole and
quadrupole PSF distortion can also be handled.

In all cases, taking the expansion to N = 12 increases accu-
racy, though not spectacularly. We conclude that the algorithm
works: shapelets provide a promising technique for measuring
galaxy ellipticities, and for correcting ellipticities for smearing
by the PSF.

4.4. Noise

A final series of tests was used to check the behaviour of the
algorithm on noisy images. We added Poisson noise to simula-
tions such as those just described, and compared the result of
many realizations. The PSF FWHM ranged from 4 to 12 pixels,
the galaxies’ effective radii were set to 4 pixels. The same ranges
of Sersic (0.5–4) and Moffat (2, 3, and 9) indices were used as
above, and the input shear was 0.1. Different levels of noise were
added, roughly to span the S/N range between 10 and 100.

The results are summarized in Figs. 8 and 9, which show that
the noise causes a scatter on the ellipticity estimates, but that this
does not lead to a bias; and that the propagated error estimates
on the ellipticities are a good measure for the rms scatter among
the different realizations.

5. The pipeline

We have implemented the above ideas into a “shear pipeline”.
It starts from a fully reduced image, detects sources, determines
the PSF and its variation across the image, decomposes detected
sources into shapelets, and obtains a shear estimate for each
object. The pipeline consists of a number of stand-alone pro-
grammes that run in sequence. The modules operate on source
catalogues and FITS images, and generate new catalogues and
diagnostic plots. The pipeline can run fully automatically.



832 K. Kuijken: Shears from shapelets

Fig. 5. Fractional error in recovering a 10% shear, using round PSFs. Each panel represents a different Moffat PSF; the rightmost panels are very
nearly Gaussian. The simulated galaxies have effective radii of 4 pixels. Top row: 8th-order shapelets; bottom row: 12th-order shapelets.

Fig. 6. Residual shear after correction for an elliptical PSF (the same PSFs as Fig. 5, sheared by 10%).

5.1. Detecting sources

The first step in the reduction process is the detection of sources.
For this the SExtractor software (Bertin & Arnouts 1996) is used.
A few basic parameters are measured during extraction: position,
the flux and its error, the FWHM1, major and minor axis length
and position angle, and source quality flags. SExtractor is fast
and effective, particularly for the relatively high S/N sources that
are used here.

1 FWHM is determined by doubling the FLUX_RADIUS parameter
of SExtractor, and not the FWHM_IMAGE parameter which is prone to
failure at low fluxes.

5.2. PSF maps from shapelets

The PSF is determined from the stars in the image itself. We
assume that the pixel values are linearly related to intensity.

First, the stellar locus is determined from the plot of magni-
tude vs. FWHM in the standard way (e.g., KSB). We fit a circu-
lar Gaussian to each star, and adopt the median dispersion from
these fits, multiplied by 1.3 (see Sect. 4.2) as the scale radius βpsf .

For all objects near the stellar locus a shapelet expansion is
fitted using βpsf as scale radius. The SExtractor centroid is cho-
sen as initial centroid for the expansion, but after the expansion
is completed the centroid is adjusted (using the 1st-order trans-
lation operators of R03) until the coefficients of B01 and B10 are
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Fig. 7. Residual shear after correction for a lopsided PSF (the same PSFs as Fig. 5, but a third of their flux is displaced by (2/3)FWHM).

exactly zero. Finding the required offsets involves solving a sim-
ple linear equation. Each shapelet is finally normalized to unit
integral, by analytically integrating the counts in each shapelet
term and dividing by the total.

Once this is completed, we have a shapelet description of
(candidate) PSF objects scattered over the image. A map of the
PSF variation across the image can now be made by interpolat-
ing the shapelets. We have found that a straightforward polyno-
mial fit, coefficient by coefficient, works well, though complex
PSF variations may require more sophisticated schemes such as
weighted nearest neighbour averages (Christen 2006), Padé in-
terpolants (Hoekstra 2004), or even physically-motivated model
fits (Jarvis & Jain 2004; Jain, et al. 2005). During the fitting of
the variation of each coefficient over the image, deviant points
can be rejected, leaving a cleaned sample of PSF objects.

The result of this step is a recipe for the shapelet coefficients
of the PSF at any point in the image.

5.3. Shapelet encoding

Once the PSF is determined, all other detected sources are ex-
pressed as shapelets as well. As for the PSF objects, a shapelet
expansion centered on the SExtractor coordinates, is fitted di-
rectly to the observed pixel values. The statistical errors on the
pixel values are propagated through the least-squares fitting,
leading to errors (and if desired, covariances) on the shapelet
coefficients. In the case of well-resolved shapelets and uniform
noise level across the source, the shapelet normalization is such
that the rms error on each coefficient is the same, and the corre-
lation between errors on different coefficients small.

Each source is encoded into shapelets with scale radius de-
rived as described in Sect. 4.2. All pixel values within a radius
of 4β from the SExtractor centroid (at least 10 pixels) are used in
the fit. For efficiency reasons in the shear estimation step, the al-
lowed β values are quantized: allowed values are β = 2n/8βpsf ,
n = 0, 1, 2, . . . After fitting, the center of expansion for each
object is shifted in the image plane by means of the shapelet
translation operators until the 01 and 10 coefficients are zero, as
before.

This procedure describes the source as seen in the image
plane, i.e., after it has been convolved with the PSF and pix-
elated. An alternative approach also make sense: to convolve
all basis functions with the pixelated PSF, and fit the observed
source image as a combination of those. This yields a shapelet
description for the intrinsic, pre-seeing, object shapes (Massey
& Refregier 2005). As long as the same procedure is followed
for the sources and PSF, the end result should be the same: the
deconvolved image will be free of pixelation and PSF. We prefer
our approach because it leaves the covariance between the fitted
shapelet coefficients small.

All sources are encoded to the same shapelet order as the
PSF (typically 8 or 12), in order to avoid signal-to-noise depen-
dent smoothing effects. For faint sources, the higher-order coef-
ficients will therefore be very noisy, but still unbiased.

5.4. Shears from shapelets
With a description of the shape of each source and the corre-
sponding PSF, the next task is to determine the intrinsic shape
parameters that are needed for a weak lensing analysis.

As explained in Sect. 3.3, we derive the ellipticity as the
shear that needs to be applied to a suitable round source in or-
der to fit the observed image. The fit is applied completely in

shapelet space. We use a scale radius equal to
(
β2 − β2

psf

)1/2
for

the intrinsic, deconvolved, circular model galaxy, and normalize
all sources to unit flux before fitting so that es with β > βpsf are
used. The Cnml convolutthe cn can be used as radial profile shape
parameters. Only sourcion coefficients need to be evaluated only
once per value of β.

5.5. Cleaning the catalogue
The resulting catalogue of sources with shape estimators needs
to be cleaned in order to remove sources which are affected by
neighbours, edge effects, poor fits, etc. We apply various cuts:

1. SExtractor Flags. We first exclude all objects for which
SExtractor raised a flag (due to neighbours, being close to
the edge, saturation, etc.).
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Fig. 8. The result of Monte-Carlo simulations, in which many noise realizations of Sersic profile galaxies were run through the ellipticity-fitting
procedure described in this Paper. Shapelet order N = 8 was used throughout. Each plotted dot represents the average ellipticity of 2500 different
noise realizations of the same galaxy image. The same data are plotted in both panels, but coded by different model parameters: the Sersic index on
the left, and the PSF size on the right. The vertical axis shows the fractional scatter of the measured fluxes, σ(F)/F, of the sources, as determined
by integrating their shapelet series. No trend of the mean shear with S/N is seen: noise leads to scatter but no bias.

2. Unresolved and faint objects. Next size and S/N cuts
are applied to the catalogue: typically all objects with
best-fit Gaussian radius smaller than 1.1 times that of the
PSF, and those with flux less than 10 times the flux error
(as measured by SExtractor parameters FLUX_AUTO and
FLUXERR_AUTO), are removed.

3. Shape cuts. For the next cut, for each source the fraction of
power Fn at each order n in the shapelet expansion is calcu-
lated. An unusually high amount of power at high order, par-
ticularly for odd n, indicates a source whose shapelet expan-
sion is affected by a neighbour. Thresholds are set for each
Fn based on the properties of the ensemble population, above
which sources are rejected. Typical values are F3 > 0.05,
F4 > 0.2, F5 > 0.1, F6 > 0.2. By construction F1 = 0, but
to filter out peculiarly lopsided sources a maximum can be
imposed on the distance by which the center of the shapelet
expansion had to be moved in order to set the 10 and 01 co-
efficients to zero. No cuts are applied to F2 since that would
be similar to a cut on image ellipticity.

4. Radial profile cuts. As a by-product of the shear estimation,
radial profile parameters c0 . . . cN−2 are generated. These can
be used to further excise peculiar objects. If the shapelet

scales are chosen properly and the shear fit worked well,
most of the flux of the pre-seeing, pre-shear model source
should be contained in the C0 term. Catastrophic failures of
the fit, or problems with the setting of the shapelet scale, can
be identified as peculiar values of c0. Requiring |c0−1| < 0.5
filters out such cases.

5.6. Average shear

Once individual estimates have been obtained for each source
these need to be combined in some way to generate a shear esti-
mate.

Conceptually the simplest methods are (i) to average the ei
and divide by (1 − 〈e2〉) (Eq. (9)), and (ii) to identify the mode
of the ellipticity distribution (provided it is centrally peaked),
which identifies the intrinsically round galaxies.

A better technique is to form a weighted mean, where
the weight is driven by the amount of information about the
shear field each source provides. The scatter in the ellipticity
measurements of sources is due to the intrinsic dispersion in
shapes se, and to measurement errors. The latter can be esti-
mated by propagating the noise in each image through the fitting
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Fig. 9. Comparison between the scatter in ellipticity measurements from
sets of 2500 random noise realizations, and the error predicted by prop-
agating the pixel noise through the calculations.

procedure, and the former can be estimated as the excess vari-
ance of e in the source population. We therefore adopt individ-
ual weights w = (s2

e + σ
2
1 + σ

2
2)−1 when forming the mean of all

measured ellipticities.
The same weighting is then applied to determine the value

of (1 − 〈e2〉) in Eq. (9). So the shear estimate is determined as

w = (s2
e + σ

2
1 + σ

2
2)−1 (18)

〈e2〉 = w(e2
1 + e2

2) − w(σ2
1 + σ

2
2)

w
−

(
we1

w

)2

−
(
we2

w

)2

(19)

gi =
1

1 − 〈e2〉
wei

w
· (20)

The value of s2
e in Eq. (18) can be iteratively adjusted to equal

〈e2〉 from Eq. (19), though its precise value is of little conse-
quence.

Depending on the form of the intrinsic shape distribution
of galaxies, different weightings are optimal: for example, for
a very peaked distribution of ellipticities higher weight can be
given to nearly round sources, whereas for a top-hat distribution
the sources with large ellipticity carry more information – for a
discussion see BJ02. A problem with weight factors that depend
on e is that the centroid needs to be found first as it is the intrin-
sic, pre-shear ellipticity that counts. The weight adopted above
is optimal for a Gaussian distribution of intrinsic ellipticities.

In the tests below we will compare the weighting scheme just
described, and a simple unweighted median. To the extent that
the median identifies the center of the distribution of ellipticities
of the source population, i.e., the intrinsically round sources, no
(1 − 〈e2〉) correction needs to be applied to the median.

6. Tests on STEP1 data

A rather realistic test of the whole procedure is provided by
the “Shear Testing Programme” (STEP, Heymans et al. 2006).

Table 1. Summary of the results of the STEP1 simulations. For each
PSF, the slope m1 and intercepts ci of the best-fit linear relation between
input and recovered shear are shown. The ci have been multiplied by
100 for clarity. As no input g2 distortion was applied in the STEP1
simulations, m2 cannot be measured.

Weighted Average Median
PSF m1 c1 c2 m1 c1 c2

0 0.995 −0.02 0.03 0.982 −0.03 0.01
1 1.005 0.06 0.22 0.981 0.01 0.12
2 0.963 0.19 0.38 0.967 0.02 0.07
3 1.009 0.00 0.03 0.984 −0.02 0.02
4 1.010 −0.01 0.02 0.986 −0.02 0.01
5 1.012 −0.01 0.03 0.988 −0.04 0.02

Phase 1 of STEP has produced a large set of realistic simulated
images across which a constant shear (in g1) and PSF smearing
has been applied. The PSFs mimic realistic optical aberrations.
These images provide an important test, since unlike the tests
presented in Sect. 4, the pre-seeing sources do not have a con-
stant ellipticity with radius. Furthermore, the STEP images in-
clude photon noise, and the sources may overlap. The PSFs are
also somewhat smaller (in pixels) than in the tests of Sect. 3.3:
scale radii used range from 2.2 to 3.2.

An analysis of the STEP1 data with an earlier version of this
software was reported in Heymans et al. (2006). The main im-
provement in the implementation since then has been the use of
polar shapelets in the shear determinations, which allows trun-
cation effects to be curtailed properly, and the use of larger scale
radii as discussed in Sect. 4.2.

Results of the use of the present pipeline on the STEP1 data
are shown in Fig. 10. For each of three g1 shear values, and six
different PSFs, 64 separate simulated images were run through
the pipeline, each image yielding shear estimates based on about
2200 galaxies. Table 1 summarizes the results per PSF in terms
of a multiplicative correction factor m, and an additive offset c.
It can be seen that in general the method suffers from very lit-
tle bias. For the non-elliptical PSFs (0, 3, 4, 5), the recovery is
perfect within the noise (m = 1, c = 0), which indicates that
the correction for dilution by PSF smearing works. On the other
hand, for the comatic (1) and elliptical PSF (2) there is a resid-
ual additive term, of nearly 0.003 and 0.005 in shear respectively.
This result is consistent with that of the simulations in Sect. 4.3.
In addition the elliptical PSF suffers from a multiplicative bias
of nearly 4%. The origin of this discrepancy is not clear at the
moment.

The STEP1 analysis revealed that many methods show a
small systematic trend between the error in the derived shear and
the magnitudes and sizes of the objects (Heymans et al. 2006).
The technique presented in this Paper is no different, as illus-
trated in Fig. 12. These trends are still a puzzle, but it is clearly
important to trace their origin and further improve the accuracy
of the shear measurement. Possible causes include ellipticity-
dependent incompleteness in the catalogues, problems esti-
mating the intrinsic ellipticity dispersion 〈e2〉, magnitude- or
size-dependent neighbour contamination, or residual systematic
issues in the method itself. Further work addressing these issues
is on-going.

7. Comparison with other techniques

The method described here has several advantages. It goes be-
yond the KSB description of PSF anisotropy as a convolution
with a very compact PSF, and is in principle applicable to all
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Fig. 10. Results from the STEP1 simulations, which are based on mod-
eling of the optics of the CFHT. Each plotted point represents the av-
erage ellipticity of about 2200 sources in one STEP1 image. Shapelets
to order Nmax = 8 were used. PSFs 0 to 5 are, respectively, round, with
coma, with astigmatism, with defocus, and with 3rd and 4th-order astig-
matism, and results for images with applied shears of 0, 0.05 and 0.1 are
shown as three clusters of points in each panel. The correction factor
1− 〈e2〉 is about 0.93 in all cases. Results from cluster to cluster are not
statistically independent, but within each cluster of points they are.

PSF shapes. The correction for the PSF is performed in a sin-
gle step, which avoids the need to separate the effect of the
PSF into an anisotropic part that shifts the ellipticities, and a
round part that causes a dilution of the source ellipticities. The
forward-fitting approach of a PSF-convolved model for the in-
trinsic galaxy shapes to the observations allows error propaga-
tion. The fact that the ellipticities derived are “geometric” in the
sense of BJ02 (i.e., they represent the shear to apply to a round
object in order to fit the source) means that there is no need to
derive a higher-order “shear polarizability”, but instead the re-
sponse of an ensemble of sources to shear can be predicted sim-
ply from the dispersion in ellipticities.

The use of shapelets in this method is not essential, but does
help to speed up the calculations, and gives a natural framework
for isolating the m = 2 components that carry the ellipticity

Fig. 11. As Fig. 10, but now the median ellipticity is used as shear esti-
mator. The STEP1 galaxy ellipticity distribution is very peaked, which
makes the median a very efficient estimator of the center of the distri-
bution.

information about a galaxy. It also allows the source lists to be
filtered efficiently based on objective shape criteria, and gives a
robust way of interpolating the PSF shape across an image. In
cases where the PSF cannot we well-described by a truncated
shapelet expansion (for example, poorly-sampled space-based
observations) it is possible to extend the technique, by perform-
ing the PSF convolution of Eq. (16) in pixel space instead of in
shapelet space (Kuijken 1999).

As was shown by the STEP1 project (Heymans et al. 2006) a
variety of techniques can be used to derive shears from ground-
based image data, with residual errors around the 1% level.
While the focus of STEP1 was on different variations of the
KSB method, we have shown here that the shapelets technique
can do as well. As KSB is expected to hit a fundamental level
of systematic error (because of its good but imperfect descrip-
tion of the PSF effects), which may well be inadequate for the
next generation of weak shear surveys, it is worthwhile to look
to higher-order methods.
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Fig. 12. The recovered shear for the STEP1 simulations for PSF0 and
input shears of 0, 0.05 and 0.1, split up by source brightness (top) and
size (bottom). In both cases there is a systematic, so far unexplained
trend. The upper panel in each plot shows the ellipticity dispersion cor-
rection factor derived for and applied to each bin.

The approach we have taken here differs in several ways
from that of Refregier & Bacon (2003) and Massey & Refregier
(2005), which is also shapelets-based. We perform the shapelet
expansions to a fixed order, and prefer not to introduce signal-
to-noise dependent thresholds that may lead to biases in the de-
rived shears (S/N dependent truncation and averaging do not
commute). Our non-iterative procedure is also much faster. Our
shapelet expansions describe the observed, post-seeing images,
which means that the coefficients are statistically almost in-
dependent (whereas shapelet coefficients of the deconvolved

shapes are necessarily correlated), ensuring that they are vir-
tually unaffected by truncation of the series. We explicitly al-
low for errors in the centroiding of the sources in our elliptic-
ity estimates, and forward-fit the observed images to account for
PSF effects rather than deconvolving them using a truncated PSF
shapelet expansion. Finally, rather than modeling the response of
a (model or empirical) population of images to a shear, we de-
rive “geometric” ellipticities (BJ02) for each individual source,
and average these only at the end.

Compared to the Bernstein & Jarvis (BJ02) technique, the
two main differences are the way ellipticity is measured, and the
way PSF effects are handled. BJ02 derive geometric ellipticities
by fitting an elliptical Gaussian form to the observed images.
This is similar to, but not quite the same as, a low-order shapelet
fit as used in this paper. For sources with constant-ellipticity
isophotes the BJ02 method is exact, whereas ours is accurate
only to o(e2) (see Fig. 2). The benefit is a much faster numerical
convergence. BJ02 correct the ellipticities for PSF convolution
by means of a description of the PSF as a Gauss-Laguerre ex-
pansion (equivalent to polar shapelets). Optionally, the images
can be convolved with a rounding kernel before the ellipticities
and PSF are measured, in order to improve the accuracy of the
PSF model. Thus the main difference with the approach here
is that BJ02 first derive a post-seeing ellipticity, which is then
corrected for the PSF; here we forward-fit the intrinsic ellipticity
in one step. BJ02 separate the effects of PSF anisotropy (elliptic-
ity bias) and circularly-symmetric smearing (ellipticity dilution).
They correct for the latter by assuming an intrinsic light profile
of the source that is a perturbation about a Gaussian, expanded
up to the kurtosis. The fact that here we model the full intrin-
sic radial profile of the source as higher-order shapelets should
provide higher accuracy.

The Kaiser (2000) technique is a more sophisticated kernel
convolution technique, in which a convolution kernel is con-
structed which turns an image into one for which the effect of
pre-seeing shear on all sources is known exactly. This allows
one to find the shear that makes the source ellipticity distribution
isotropic – this is then the opposite of the amount by which the
population was sheared on its way to the telescope. The method
is in principle exact, and operates in pixel space. It appears to
have received relatively little use thus far (Wilson et al. 2001a,b;
Dahle et al. 2002).

8. Conclusions

Shapelets provide a neat framework in which to describe the
transformations that an astronomical source image undergoes
until it is registered on a detector. Gravitational shear, convo-
lution with a PSF, and pixelation can all be modeled within the
shapelets formalism. All these elements can be combined into an
efficient algorithm for extracting image ellipticities that can be
used for accurate gravitational lensing shear measurements.

The implementation of these techniques into a working
pipeline is presented in this paper. Tests show that the pipeline
is able to recover input gravitational shears with very small cali-
bration error (of the order of a percent) and PSF residual (better
than a factor of 30 in PSF ellipticity).

It remains to be seen to what extent this approach can be
applied successfully to diffraction-limited PSFs, which cannot
be described easily with a shapelet expansion. A different set of
basis functions for the expansion might be the answer. Further
possible improvements are also under investigation.
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Appendix A: Circular shapelets

The Cartesian shapelets S ab at order n = a + b can be written
as inhomogeneous polynomials in x and y of combined order n
times a circular Gaussian. The leading-order term for S ab(x, y)
is (R03)

2nkxaybe−r2/(2β2) (A.1)

where k is a constant that is independent of order, and r2 = x2 +
y2. The circular shapelet at (even) order n is the unique linear
combination of the S ab with a+ b = n that depends only on r: to
leading order in r

Cn(r) ≡ k′
∑

i=0,2...,n

(
n/2
i/2

)
S i,n−i(x, y)

= 2nkk′
(
x2 + y2

)n/2
e−r2/(2β2), (A.2)

where k′ is chosen to normalize Cn to unit integral over the xy
plane. From the fact that rotation of Cartesian shapelets only
mixes terms of the same order n = a + b it follows that the lin-
ear combination in Eq. (A.2) is circularly symmetric at all orders
of r.
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