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We mnvestigate current fluctuations in nondegenerate semiconductors, on length scales mtermediate between
the elastic and nelastic mean free paths We present an exact solutton of the nonlinear kinetic equations n the
regime of space-charge Immuted conduction, without resorting to the drift approximation of previous work By
including the effects of a finite voltage and carrier density 1n the contact region, a quantitative agreement 1S
obtained with Monte Carlo simulations by Gonzalez et al, for a model of an energy-independent elastic
scattering rate The shot-noise power P 1s suppressed below the Poisson value Ppgon=2¢7 (at mean current

1) by the Coulomb repulsion of the carriers The exact suppression factor 1s close to 1/3 1n a three-dumensional
system, in agreement with the stmulations and with the drift approximation Including an energy dependence
of the scattering rate has a small effect on the suppression factor for the case of short-range scattering by
uncharged umpurities or quasielastic scattering by acoustic phonons Long-range scattering by charged impu-
rities remains an open problem [S0163-1829(99)02931-8)

I. INTRODUCTION

The kinetic theory of nonequilibitum fluctuations in an
electron gas was pioneeted by Kadomtsev m 1957 (Ref. 1)
and fully developed ten years later >® The theory has been
comprehensively reviewed by Kogan * In recent years there
has been a revival of interest in this field because of the
discovery of fundamental effects on the mesoscopic length
scale (See Ref 5 for a recent review )} One of these effects 1s
the sub-Poissonian shot noise 1 degeneiate electron gases on
length scales intermediate between the mean free path [ for
elastic impuuity scattering and the melastic mean fiee path [,
for electron-phonon o1 electron-election scattening The uni-
versal one-thnd su(?;)ressmn of the shot-noise power pre-
dicted theoretically” * has been observed 1n experiments on
semiconductor o1 metal wires of micrometer length 81!

The electron density 1n these experimments 18 sufficiently
high that the election gas 1s degenerate The 1eduction of the
shot-noise power

P=2foo dt' 8I(t) SI(t+1t") 11

{with S8I(z) being the fluctuations of the cuntent around the
mean curient /] below the Poisson value Ppmsson=2e7 1S
then the 1esult of conelations induced by the Pauli exclusion
principle. When the electron density 1s reduced, the Pauli
principle becomes meffective One entets then the regime of
a nondegenerate election gas, studied recently in Monte
Carlo simulations by Gonzalez ef al 12 In a model of eneigy-
independent three-dimensional elastic impunity scattering,
these authois found the very same ratio P/ Ppy0n=1/3 as 1n
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the degenerate case The ongin of the suppression 1s quite
different, however, bemg due to corielations nduced by
long-range Coulomb repulsion—rather than by the Pauli
principle The one-third suppression of shot noise in the
computer simulations 1equured a large voltage and short
scieening length, but was found to be otherwise independent
of material parameters

Subsequent analytical woik by one of the authors’® ex-
plained this univeisality as a feature of the regime of space-
charge limited conduction The kinetic equations 1n this 1e-
gime are highly nonlineai and could only be solved mn the
approximation that the diffusion term 1s neglected compared
to the drift term This 1s a questionable approximation: The
ratio of the two terms 1s 1/d, with d the dimensionality of the
density of states The result of Ref 13,

12 3d?>+22d+ 64
5 (d+2)(3d+4)(3d+8)’

PlpPonsson= (1 2)

becomes exact in the large-d limit, when P/Ppygon—47/5d,
but has an error of unknown magnitude for the physically
relevant value d=3.

The main purpose of the present paper 1s to report the
exact solution of the kinetic equations i the space-charge
limited transpott regime We find that inclusion of the diffu-
ston term has a pronounced effect on the spatial dependence
of the electuic field, although the ultimate effect on the noise
power tuins out to be 1elatively small The exact suppiession
factor differs from Eq (1 2) by about 10% for d=3 We find
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06857 for d=1
04440 for d=2
03097 for d=3,

P/PPmsson: (1 3)

close to the values reported by Gonzalez et al (although
their surmise that P/Ppyon 1S a stmple fraction 1/d for d
=2, 3 1s not borne out by this exact calculation) By includ-
g the effects of a finite temperature and scieening length,
we obtain excellent agreement with the electric-field profiles
n the stmulations (which could not be achieved n the diift
approximation of Ref 13) and determine the conditions for
space-charge Imited conduction We also go beyond previ-
ous work by calculating to what extent the shot-noise sup-
pression factor varies with the energy dependence of the
scattermg rate (This breakdown of umversality was antici-
pated 1n Refs 13 and 14)

The paper 1s organized as follows The kinetic theoy 1s
mtroduced 1in Sec II, where we summarize the basic equa-
tions and emphasize the differences with the degeneiate case
In Sec III we formulate the problem for the regime of space-
charge limited conduction In Sec IV we solve the kinetic
equations for the case of an energy-independent scattering
rate and compate with the Monte Carlo simulations ' We
study separately the capacitance fluctuations The effect of
deviations fiom the conditions of space-charge limited con
duction 1s also investigated Energy dependence in the scat-
tering rate 1s considered m Sec V. We conclude m Sec VI
with a discussion of the experimental observability 1n con-
nection with electron-phonon scattering

II. KINETIC THEORY
A. Boltzmann-Langevin equation

Our starting point 1s the same kinetic theory!™ used to
study shot noise i degenerate conductors >’ 52! We sum-
martize the basic equations, emphasizing the differences n
the nondegenerate case The density f(r,p,z) of carriets at
position r and momentum p=mv at time ¢ (where m 1s the
effective mass and v 1s the velocity) satisfies the Boltzmann-
Langevin equation

0 J d
5;+v 5;+eE(r,t)&—I;f(r,p,t)=S+ 8 21

Here E(r,?) 1s the clectric field (we take the charge of the
cartiers positive), S(r,p,z) 1s the collision mtegral, and
8J(r,p,t) 1s a fluctuating source (or ‘‘Langevin curient’’)
The collision ntegral desciibes the average effect of elastic
impurity scattering,

. n' .. . .
S(r,pn,t)=f ?Ws(n n")[f(r,pn’,t)— f(r,pn,t)]
22)
The integial over the duection n=p/p of the momentum
extends over the surface of the unit spheie m ¢ dimensions,
with surface area Q=27Y%I'(1d) The scattermg rate

W.(n n') depends on the kinetic energy & =p?/2m and on

the scattermg angle n n’ The effective mass m 1s assumed
to be energy independent
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The stochastic Langevin current 8/ vanishes on average,
87=0, and has correlator?

8J(r,p,t)8J(r',p',t")

=8(r—r')8(t—t')S(e—¢’) (&)

«| Sth—i") f AW (R &) (F+T - 2F F)

—W,(n ﬁ’)(f+7’~2f7’)}, (23)

determined by the mean occupation number f [We abbievi-
ated f'=f(r,p’,t) and analogously for f” ] The density of
states m d dimensions 18 v(e)=mQ(2me)??~ !, where we
set Planck’s constant A=1

A nondegenerate electron gas 1s charactetized by f<1 In
contrast to the degenerate case, the Pauli exclusion principle
1s then of no effect One consequence 1s that we may omit
the terms quadiatic mn f in the correlator (23) A second
consequence 15 that deviations from equilibrium are no
longer restricted to a narow energy 1ange aiound the Ferm
level, but extend over a broad range of £ One cannot, there-
fore, elimmate & as an mdependent vaiiable from the outset,
as in the degenerate case

B. Diffusion approximation

We assume that the elastic mean free path is shoit com-
pared to the dimensions of the conductor, so that we can
make the diffusion approximation This consists m keeping
only the two leading terms,

f(r,n\2me,t)= F(r,e,1)+n f(r,e,1), 24

of a multipole expansion m the momentum direction n We
substitute Eq (24) mto the Boltzmann-Langevin equation

(2 1) and ntegiate over n to obtam the continuity equation,

d 7] d
— +—j —j -
atp(r,s,t) &rJ(r,s,t)+eE(r,t)as_](r,s,z) 0,

(25)
for the energy-resolved charge and current densities
p(r.e.t)=ev(e) F(r,e,1), 26)
1
j(r,e,t)=36UV(8)f(l',8,t), (2 7)

with v=1+2g&/m In the zero-frequency limit we may omut
the time deitvative in Eq (2 5)

Multiplication by n followed by mtegration gives a sec-
ond relation between p and j

a
j(r,e,t)= —D(s);r-p(r,s,t)—cr(s)E(r,t)

a
X%-f(r,s,t)+5j(r,s,t), (28)
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FIG. 1. Semiconducting slab (grey) between two metal contacts
(black) at x=0 and x=L. The (d— 1)-dimensional cross-sectional
area is A. The current flows from left to right in response to a
voltage V applied between the contacts.

a combination of Fick’s law and Ohm’s law with a fluctuat-
ing current source. The conductivity a(e)=ev(e)D(e) is
the product of the density of states and the diffusion constant
D(e)=v27/d=(2e/md)7'(s). The scattering rate is given
by

1 n L. . -
(o) =JTWE(H'H J(l—n-n'). (2.9)
The energy-resolved Langevin current
dn .
5J(r,s,t)=e7'(s)vv(s)fﬁnﬁj(r,n\&ms,t)
(2.10)

is correlated as

8J(r,e,t)6],,(x &' ,t")

=20(e)F(r,e,t) 8, 0(r—r' ) 6(t—t")Se—¢'),
@2.11)

where we have omiited terms quadratic in F.
These kinetic equations should be solved together with
the Poisson equation

J
Kg;E(r,t)Zp(r,t)—peq, (2.12)
with p(r,2) = [de p(r,e,t) the integrated charge density, «
the dielectric constant, and p., the mean charge density in
equilibrium. The Langevin current &J induces fluctuations in
p and hence in E. The need to take the fluctuations in the
electric field into account self-consistently is a severe com-
plication of the problem.

C. Slab geometry

We consider the slab geometry of Fig. 1, consisting of a
semiconductor aligned along the x axis with uniform cross-
sectional area A. A nonfluctuating potential difference V is
maintained between the metal contacts at x=0 and x=L,
with the current source at x=0. The contacts are in equilib-
rium at temperature 7. It is convenient to integrate over en-
ergy and the coordinates r, perpendicular to the x axis.
We define the linear charge density p(x,f)= [dr, p(r,t)
and the currents I(#)=fdr, [dej,(r,e,t) and &J(x,t)
=[dr, [de 6] (r,e,t). The current / is x independent in the
zero-frequency limit because of the continuity equation (2.5).
We also define the electric-field profile E(x,f)
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=A"!{dr, E (r,t). The vector r, of transverse coordinates
has d— 1 dimensions. The physically relevant case is d=3,
but in computer simulations one can consider other values of
d. For example, in Ref. 12 the case d=2 was also studied,
corresponding to a hypothetical “‘fatland.””* To compare
with the simulations, we will also consider arbitrary d.

For any d the fluctuating Ohm-Fick law (2.8) takes the
one-dimensional form

7
I(t)=—5—)-c-f erf deD(g)p(r,e,t)

d
+E(x,t)j drlf dsf(r,e,t)gcr(e)+5j(x,t),

(2.13)

where we used that the averages of 7 and E depend on x
only and neglected terms quadratic in the fluctuations. The
Poisson equation (2.12) becomes

d
KA ;?;E(x,t)=p(x,t)~Apeq, (2.14)

and the correlator (2.11) becomes

8J(x,t) 6T (x",t")

=2A5(t—t')5(x-—x')Jdso*(s)j-"(x,e). (2.15)

Our problem is to compute from Egs. (2.13)~(2.15) the shot-
noise power (I.1).

D. Energy-independent scattering time

The Ohm-Fick law (2.13) simplifies in the model of an
energy-independent scattering time 7(g)=7. Then the de-
rivative of the conductivity do/de=euv(e) is proportional
to the density of states and contains the energy-independent
mobility u=e7/m. Equation (2.13) becomes

d
1(t)=—5;f drlee D(e)p(r,e,t)

+up(x,0)E(x,t)+ 6J(x,1). (2.16)

The drift term now has the same form upE as for inelastic
scattering.’* This simple form does not hold for the more
general case of energy-dependent elastic scattering.

III. SPACE-CHARGE LIMITED CONDUCTION

For a large voltage drop V between the two metal contacts
and a high carrier density p.. in the contacts, the charge in-
jected into the semiconductor is much higher than the equi-
librium charge pgq, which can then be neglected. For suffi-
ciently high V and p,, the system enters the regime of space-
charge limited conduction,® defined by the boundary
condition
x=0.

E(x,t)=0 at (3.1)

Equation (3.1) states that the space charge Q= [ 3p(x)dx in
the semiconductor is precisely balanced by the surface
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chaige at the current drain The accuracy of this boundary
condition at finite V and p,. 15 examined in Sec IV E At the
diam we have the absotbing boundary condition
p(x,)=0 at x=L (32)

This 1s the diffusion approximation to the condition of zero
flux mcident from the current drain Here we neglect the
small thetmal contribution to the noise from carrieis that are
myected and collected at the dram at kinetic eneigies ~k7,
as well as the negligible fiaction ~exp(—eV/kT) of carriers
myjected fiom the drain that can overcome the potential bai-
rier

To deteimine the electric field mside the semiconductoi,
we proceed as follows The potential gain —e @(x,) (with
E=~3d¢/dx) dommates over the mitial thermal excitation
energy of order k7 (with Boltzmann’s constant k) almost
thioughout the whole semiconductor, only close to the cur-
tent source (in a thin boundary layer) this 1s not the case We
can therefore approximate the kinetic eneigy e~—ed
and mtroduce this mto D(e) and do/de We assume a
power-law energy dependence of the scattering time 7
=758 Then D(e)=27y/md)e® 1~ —(2uy/d)
(—e)?¢**! and dolde=Qa+d)(ry/md)e’s®v(e)~
—Qat+d) (! d)(—e)* ' ¢p%v(e), where we have defined
Mmo=eTy/m Substituting into Eq (2 13) and using the Pois-
son equation — kA 8% ¢/ dx>=p, we find the third-orde1, non-
lmear, mhomogeneous differential equation

a¢)2 p) [92¢)

J
o | T A at+l "
(2atd)¢ &x( ox 4<9x ( ¢ ox?

2d
A[I(t)—&](x,t)] (33)

T (—e)or

for the potential profile ¢(x,t)
Since the potential difference V between source and diain
does not fluctuate, we have the two boundary conditions
d(x,1)=0 at (34

x=0,

d(x,t)=—V at x=L (35)
Equations (3 1) and (3 2) imply two addinonal boundary

conditions

d
—a—;d)(x,t)=0 at x=0, (36)

2

%d)(x,t):O at x=L 37

We will now solve this boundary value problem for ¢

=+ 8¢, first for the mean and then for the fluctuations, m
both cases neglecting terms quadratic in §¢p The case «
=0 of an energy-independent scattering time 1s considered
first, in Sec IV The more complicated case of nonzeio « 1s
treated in Sec V
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IV. ENERGY-INDEPENDENT SCATTERING TIME
A. Average profiles

For =0 the averaged equation (3 3) can be mtegiated
once to obtain the second-order differential equation

d3\® 4_a*¢ 2l
(7) Ta% 5 T A @1

for the mean potential @(x) In thus case of an energy-
independent scattering time 7(g)=7, we may identify wu,
with the mobility pw=e7/m mtioduced 1 Sec IID No inte-
gration constant appears 1 Eq (4 1), since only then the
boundary conditions (3 4) and (3 6) at x=0 can be fulfilled
simultaneously In Ref 13 the second term on the left-hand
side of Eq (4 1) (the diffusion teim) was neglected 1elative
to the first texm (the drift term) This approximation 1s 11gor-
ously justified only m the formal lmmitt d—o° It has the
diawback of reducing the order of the equation by one, so
that no longer can all boundary conditions be fulfilled Al-
though the solution in Ref 13 violates the absoibing bound-
ary condition (3 7), the final result for the shot-noise power
turns out to be close to the exact result obtained here
Before solving this nonlinear differential equation ex-
actly, we discuss two scaling propetties that help us along

the way Note first that the current I can be scaled away by
the substitution

172

o1 .
B ==\ x| X (42)
Second, each solution y(x) of
dx\? 4 d%*
) “3)

[the rescaled Eq (4 1)] generates a one-paiameter famly of
solutions N ¥2y(x/\) Thus, if we find a solution that fulfills
the three boundary conditions x(0)=0, x’(0)=0, x"(1)
=0 (primes denoting differentiation with 1espect to x), then
the potential

(44)

solves Eq (4 1) with boundary conditions (3 4), (3 6), and
(37) The remaming boundary condition (3 5) determines
the current-voltage characteristic
1% “KA( v )2 “5)
~ 213 \x(D)
The quadiatic dependence of T on V 1s the Mott-Gurney law
of space-chaige limited conduction 26

We now constiuct a solution x(x) One obvious solution
15 xo(x) =aox*?, with

46
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This solution satisfies the boundary conditions at x=0, but
Xo(x)#0 for any fimte x Close to the smgular pownt x=0
any solution will approach yq(x) provided that d>4/3 Let
us discuss first this range of d, contamung the physically
relevant dimension d=3

We substitute into Eq (4 3) the ansatz

=1

xu»:g%aﬂﬂ+”, @7

consisting of xo(x) tumes a power series m x?, with 8 a
positive power to be determined This ansatz proves fruitful
since both terms on the left-hand side of Eq (4 3) give the
same powers of x, staring with order x' 1 comcidence with
the right hand side Power matching gives Eq (4 6) for a,
and for /=] it gives the conditions

I
E blmamal—m:O7 (4 8)
m=0

9 3 8 4% 5, )
b"”“Z‘Iﬁ 3—5 mpB— H_E m=B +mip

(49)

The relation with /=1 15 special It determunes the power 3,

3 3 9
BZ+B<2———d)+———d=O, (4 10)

4 2 8

but leaves the coefficient a; as a free parameter [to be deter-
mined by demanding that x”"(1)=0] The positive solution
of Eq (4 10) 1s

3 | Q—
3=§d—1+§er+pu—32

We find B=(\/13~1)/4 for d=2 and B=3/2 for d=3 Fo
[=2 we solve for a; to obtain the i1ecursion relation

@11)

-1
2 blmamal-‘m

m=1

—_— 412
(by+blag (412)

a;=—
Interestingly enough, the power series tetminates for d
=12/5, and the solution for this dimension 1s y(x)=x?
—Lx°? For arbitrary dimension d>4/3, the coefficients a;
fall off with /, the more rapidly so the laiger < 1s We find
numerically that the solution with x”(1)=0 has a;
=0 3261 for d=2 and a;=0 1166 for d=3

For d<<4/3 we substitute nto Eq (4 3) the ansatz

=]

xm=§qﬂm“w, (4 13)

with y=(4—-3d)/(4—d) Now the coefficient ¢y 1s free
Power matching gives, further,

d

4y(y+1)’ (4 14)

6'1:_

and the recursion 1elation
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d=1
d=2 - e
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A
d=00 e 0~ e
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2
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]
a

x/L

FIG 2 Profile of the mean electrical potential ¢ [in units of
(2TL3/ ukA)Y] the electric field E [in umts of (2TL/uxA)¥?]
and the charge density p [mn umts of (2Tx/uLA)Y?] following
from Eq (4 1) for different values of 4 The dnft approximation of
Ref 13 corresponds to the case d=o 1 this plot

-1
2 dlmcmcl~m
m=1

—_— 415
(dy+dp)co (#15)

c=—

dlm =

2200 2 416)
ym 5 y(l~m) Zym|, (
for coefficients with [=2 For d=1 the solution with
x"(1)=0 has cy=13628

In Fig 2 the profiles of the potential ¢y, the electric

field Eccx’, and the charge density pecx” are plotted for d
=1, 2, and 3 We also show the result for d=c0, corie-
sponding to the drift approximation of Ref 13 The coeffi-
cient x(1) appearing in the curient voltage characteristic
(4 5) can be read off from this plot We find y(1)=8/9 for
d=1, x(1)=08180 for d=2, and x(1)=07796 for d=3
The limiting value foi d=e 15 x(1)=2/3

B Fluctuations

For the fluctuations 1t 18 again conventent to work with the
1escaled mean potential (4 2) We rescale the fluctuations n
the same way

N AL
Op(x,t)=—| ——- P(x,t)

A @ 17)



5844 H SCHOMERUS, E G MISHCHENKO, AND C W ] BEENAKKER

We linearize Eq (3 3) with @=0 around the mean values
and itegrate once to obtain the second-order inhomoge-
neous linear differential equation

4 \g? dy\o 4 d*y
E["”]z‘(d_*)'ﬂl*(zdf) ; (d 0 )"”

_ dexlél(t)— 8J(x',t)

— (4 18)
0 I

The integiation constant vamishes as a consequence of the

boundary condition

x=0

W(x,t)=0 at (4 19)

and the requirement that the fluctuating electric field d/dx
stays finite at x=0 [The latter condition actually imphes
dYldx=0 at x=0 ] We will solve Eq (4 18) with the addi-
tional condition of a nonfluctuating voltage,

Y(x,t)=0 at x=L (4 20)
The remaining constraimnt
(92
x=L 421)

;z—w(x,t)=0 at

(the absoibing boundary condition) will be used later to 1e-
late 61 to &J

We need the Gieen function G(x,x"), satisfying for each
x' the equation L[ G(x,x")]=8(x—x") Inview of Eq (4 3)
for the mean potential one recognizes

(422)

d
() =3X(0) = 2% =x(x)

as a solution L[ ¢,]=0, which alieady sausfies Eq (4 19)
Using a standard presciiption,?” we find from (x) a sec-
ond, independent, homogeneous solution

d/Z( /)
Px")
which fulfills Eq (4 20) The Wionskian 1s

Ur(x) = g (x) f a2 423)

108) ()~ )~y ()=~ X Px) (424)
1 dx 2 2 dx 1

The Green function also contains the factor —4x/d that ap-
pears in Eq (4 18) m front of the second-order derivative of
¢ We find

d
G(x,x")= W[(@(X‘X')lﬁz(ﬂ Py(x")

TOG —x) iy (x)¢hr(x")], (425)

where @ (x)=1 for x>0 and @(x)=0 for x<<0
The solution of the mhomogeneous equation (4 18) with
boundary conditions (4 19), (4 20) 1s then

PRB 60

8L = SI(x",
‘ﬂ(x’l)Zfode’G(x,x’)fO dx”_u_t)_

i
(4 26)
From the extra condition (4 21) we find
SI(ty=C"! f Ld; 8J(x,1)G(x), (427)
0
with the definitions
3 d x"(L) x(x)
32
€= (ZX(L) L ) FNT fo dde/2+1(x)’
{4 28)
3x(L) d X‘”Z(L) _h(x)
9lx)= ( 2L \/—L_)+ Y2y
(4 29)

Equation (4 27) 1s the relation between the fluctuating total
current 6/ and the Langevin curient 8J that we need to com-
pute the shot-noise powel

C. Shot-noise power

The shot-noise power 1s found by substituting Eq (4 27)
mto Eq (11) and mvoking the correlator (2 15) for the
Langevin curtent This 1esults 1n

2
P=2f0de(g(CX)) H(x),

'H(x)=2AJ deo(e)Fx,e)

(4 30)

431)

In order to detetmine the mean occupation number Fix,e)
out of equltbtium, 1t 1s convenient to change variables from
kinetic energy ¢ to total energy u=e+ep(x,t) In the new

variables x and « we find from the kinetic equations (2 5) and
(28),

J_
5J(x,u)=0, 432)

7(x,u ——-—o'[u e¢(x)]—.7:(x u) (4 33)
The dertvatives with respect to x are taken at constant # The

solution 1s

~ _ L dx’
./’T(x,u)=ej(u)f‘ m,

where we used the absorbing boundary condition (3 7)
[which imphes F(L,u)=0]

As before [n the dervation of Eq (3 3) from Eq (2 13)]
we approximate u—e ¢(x)~ —ep(x) m the aigument of o

(This 15 justified because 0<u=<kT<eV ) Then F(x,u) fac-
torizes mto a function of x times a function of u, and Eq
(431) gives

(4 34)
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FIG 3 Shot-noise power P for an energy independent scatter-
ing rate as a function of d The exact result (solid curve) 1s com-
pared with the approximate result (1 2) (dashed curve) Both curves
approach 4/5d for d—oo The data points are the results of numer:-
cal simulations (Ref 12)

H(x)=2eTx¥*(x") dex’X'dlz(x’), (4 35)

whele we expiessed the result in terms of the iescaled po-
tential y In this equation we recognize the Poissoman shot-
noise powel Ppoon=2¢1

The mtegrals in the expiessions (4 28), (4 29), and (4 35)
for C, G, and H can be performed with the help of the fact
that x solves the differential equation (4 3) In view of this
equation,

4 d
—di2_ __ _ " (. 1=d2 n
X Pt A O (4 36)
xx’ __24d i
Xd,zﬂ—“za(x X', (437)
xwl __4 d 12 i ny ., —di2
W—ga[(xx —xx'—xxx")x"7], (438)
resulting m
C=3x(L), (439)
4 "
H(x)=PP01sson2X(x)X (x), (4 40)
1 XL\ 3x(L)
gx=—3x”x—’2x(
0= ZBx 0 =x 0\ 5]+ or
(441)
Our final expression for the shot-noise power 1s
pep 32 1 de ) d*
= Poxsson'z;z_(—L_) 0 xG (x)X(x>dx2X(x)
(4 42)

The scaling properties of y umply that this 1esult does not
depend on the length L For d=1, 2, and 3 1t evaluates to
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06857 for d=1
04440 for d=2
03097 for d=3

P/Pl’msson2 (4 43)

In Fig 3 we plot Eq (4 42) as a function of the dimension d
and compare 1t with the approximate formula (1 2), obtamed
m Ref 13 by neglecting the diffusion term i Eq (4 1) The
exact result (4 42) 1s smaller than the approximate result
(12) by about 10%, 15%, and 25% fo1 d=3, 2, and 1,
respectively For d— o, the diift approximation that leads to
Eq (12) becomes stuctly justified, and P/Ppggon ap
proaches 4/5d The data pomts m Fig 3 are the 1esult of the
numerical simulation 2 The agreement with the theoiy pre-
sented here 15 quite satisfactory, although our findings do not
support the conclusion of Ref 12 that P=§ Ppgson 10 thiee
dimensions

D. Capacitance fluctuations

The fluctuations 8I(¢) m the curtent [(¢) are due 1n part to
fluctuations i the total chaige Q(#)=fdx p(x,t) m the
semiconductor The contitbution from this source to the cur-

1ent fluctuations 15 6I,=(5Q/Q)I Fluctuations mn the car-
1ier velocities account for the 1emaining curient fluctuations
8ly= 61— 351y Smce the fluctuations m Q could be mea-
suted capacitatively, 1t 15 of mterest to compute their magni-
tude separately Because we have assumed that there 18 no
chaige present m equilibrium 1 the semconductor, Q(t)
=C(¢)V 15 duectly propottional to the applied voltage V
The proportionality constant C(¢) 1s the fluctuating capaci-
tance of the semiconductor (The voltage does not fluctuate )

With the Poisson equation (2 14) and the boundary con
dition (3 1) we have

C(z)=%E(L,t) (4 44)
The cortelator of the capacitance fluctuations,
Pc=2 f :dtm, (4 45)
1s related to the correlator of &7 0>
Py=2 f :dtm, (4 46)

by Po=( ,UJVZ/2KA LYP. We also define the conelators

P‘,=2f_oo dt81,(0) 81 (1), (4 47)

pQV=4f dt815(0)1,(1), (4 48)

such that P=Py+Py+Pyy

In view of Eqs (3 3), (4 18) and the boundary conditions
(35), (37), one obtamns E(L) and SE(L,t) as a function of
81 and &6/, and hence
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FIG 4 Contribution P, from charge fluctuations to the shot-
noise power P The correlator P of the capacitance fluctuattons 1s
related to Py by Po=(4ekAL/ uV?)P 5/ Pposson

1 Ldx
SIy(t) =~ 51(;)—f —S5I(x,1) ), (4 49)

2 o L

1 Ldx
Sly(t)== 5I(t)+f —8J(x,1) (4 50)

2 o L

With the help of Eq (4 27) we find

Pe=5(P+P,;—2Py), (451)
Py=%5(P+P,;+2P;), 4 52)
Pey=13(P—Py), (4 53)

2

16 Ldx a
P[J—mmessonfo Tg(x)X(x);iX(x)’ (4 54)

8 Ldx d?
f (4 55)

P;=—P — x(x)—
J d Poisson 0 L2 X(x)dxz)((-x)

The 1ntegrals can be evaluated by using that x(x) solves Eq
(4 3), with the result

481732y (L)—d—36

P=4 (d+4)(1—54) Ppoisson's (4 56)

2L7x(L) -1

= = (457)

Poisson

In Fig 4 the correlator of the capacitance fluctuations 1s
plotted as a function of d For d=3 we find P,
=00284exAL/puV?* The corresponding contribution Py
=00071Ppysson 15 relatively small, being less than 3% of
the contribution from the velocity fluctuations Py
=03076Pposson  (Incidentally, we find that charge and ve-
locity fluctuations ale anticorrelated,
~00049P poieson ) Our calculation thus confirms the numer:
cal finding of Ref 12, that the charge fluctuations are
strongly suppressed as a result of Coulomb repulsion How-
ever, we do not find the exact cancellation of Py and Pyy
surmmsed 1n that paper

PQV=

E. Effects of a finite voltage and carrier density

For comparison with realistic systems and with computer
simulations, one has to account for a finite voltage V and a
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finite carrier density p, in the metal contacts The density p,
is the charge density at the semiconducting side of the inter-
face with the metal contact It depends on tempeiature ac-
cording t0% p.=2e(mkTRah>)>* exp(—WIKT), where W 1s
the work function of the interface The relevant parameters
are the ratios L, /L and L,/L, with L.=(«kT/ep.)'? the
Debye screenmg length in the contact and L,=(«V/p)'"?
the screeming length in the semiconductor The theory of
space-charge limited conduction applies to the regime L
>L>L, (or kT<eV and p,>«V/L*—the combination
«V/L?* chaiacterizing the mean charge density in the semi-
conductor) In this section we will show that, within this
regime, the effects of a finrte voltage and carrier density are
1estricted to a narrow boundary layer near the current source
We will examine the deviations from the boundary condition
(3 1) and compaie with the numerical simulations '

To investigate the accuracy of the boundary condition
(3 1), we start fiom the more fundamental condition of ther-
mal equilibrium,

_ Ap.v(e)exp(—elkT)
p(x,e)= F

at x=0

de'v(e Yexp(—e'/kT)
0
(4 58)

We keep the absoibing boundary condition p(L,&)=0 at the
current drain, since thermally excited carriers mjected from
the contact at x=L make only a small contribution to the
current when eV>kT To simplify the problem, we assume
that all carriers at the current source have the same kinetic
energy 3dkT, 1n essence replacing the Boltzmann factor
exp(—e/kT) m Eq (4 58) by a delta function at e =(d/2)kT
We 1estrict ourselves to the physically relevant case d=3
and substitute e =2kT—ed(x) m the argument of D(g) m
Eq (2 16) Repeating the steps that resulted m Eq (4 1), we
arrive at the differential equation

(x=§ (459

(das)z 4_ kT)dza_ 27
—(3 e

dx —-_—dxl_,uKA

In comparison to Eq (4 1), an mtegration constant ¢ appears

now on the 1ight-hand side This constant and the current 7
have to be determuned from the fow boundary conditions
$(0)=0, kF"(0)==p,, (L)=—V, and $"(L)=0

We have mtegrated Eq (4 59) numerically In Fig 5 we
show the electric field foor d=3 and paiameters as m the
simulations of Ref 12, corresponding to L/L.=489 and
(L,/L.)*=eV/kT 1anging between 40 and 300 We find ex-
cellent agreement, the better so the larger e V/kT 1s, without
any adjustable parametei

The boundary condition (3 1) of zeto electric field at the
current source assumes that the surface charge in the current
dram 1s fully screened by the space charge n the semicon-
ductor With mcreasing e V/kT for fixed L/L, one observes

m Fig 5 a transition from oveiscreenmng (E=0 at a pomnt
nside the semiconductor) to underscreening (E extrapolates
to zero at a pomnt mnside the metal contact) We can approxi-
mate E(x) = — ¢o(x— &), where ¢ solves Eq (4 1) with the
boundary conditions of space-charge limited conduction
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FIG 5 Electric-field profiles for e V/kT =40, 60, 80, 100, 200,
and 300, at parameter values d=3, T=300K, p,/e=10%m 3,
L=200 nm, and =117k, (with xq the dielectric constant of
vacuum) The solid curves follow from Eq (4 59) The data points
are the result of numerical simulations (Ref 28) There are no fit
ting parameters in this comparison

This 1s an excellent approximation fo1 eV/kT=200 (&/L
=002) and eV/kT=300 (&/L=-0004), practically mdis-
tguishable fiom the curves m Fig 5 (top panel)

To demonstrate analytically that space-chaige limited
conduction 18 chaiacterized by the conditions L>L > L,
we will now compute the width of the boundary layer and
show that 1t becomes <L in this 1egime We need to distin-
guish between two length scales £ and &’ to fully character-
1ze the boundary layer The length ¢ deteimunes the shift in
the asymptotic solutton

(7’dsym(x):§_50(x—§)+3k772€, (4 60)

while the size £’ chaiactelizes the 1ange O<sx=< ¢’ whete the
exact solution ¢(x) deviates substantially fiom @,sym(x)

The values of £ and ¢’ are found by comparing Eq (4 60)
with the Taylo1 seties

2 3
Bx)=—Epr="CT 4o +0GY)  @o)

The coefficients in the Taylor seties ate determmed fiom Eq
(4 59),

gl Lo 2 462
0 e kK “uxA’ (4 62)
E p”+2kT _ 2 463
370« e ¢3_,U,KA’ (4 63)

whete 27/ uxA =~ V?/L? up to a coefficient of order unity [cf
Eq (45)]

We match the two functions (4 60) and (4 61) at x=¢§°,
demanding that potential and electiic field aie continuous at
x=¢" These two conditions deteimine £ and & Within the
regime L>L . >L  we find two subiegimes, depending on
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the relative magnitude of L, /L and (L,/L)* Overscreening
occurs when L /L>(L,/L)* Then Eq~—(2kTp, lex)'?,
D3~(2e/9%T)*(p, 1k)*?, and €~¢'=0(L,) The differ-
ence &' —&=0(LYL%<¢ At the matching pomt, &

=0(kTle), E=0(V?k/p L%, and p=0(p,) Under-
screening  occurs  when L./L<(L,/L)* Then E,
=0(V?klpLH)<VIL, d1=0(p; L >V?), £=

—O(L{IL%), and ¢'=0O(L}/L3) At the matching pomnt,
=0(V*K31p2L%, E=0(Ey), and p=0(p,) In between
these two subregimes, when Lf/L3L( 1s of order umty, &’

vanishes and <7>dsym(x) becomes an exact solution of Eq
(4 59), which also fulfills all boundary conditions In the
same range, £ changes sign from positive to negative values

We conclude that the width of the boundary layer 1s of

order max(L.,L%/L3) At the matchimg pomt, E<V/L The
boundary condition (3 1), used to calculate the shot-noise
power P, ignores the boundary layer This 1s justified be-
cause P 15 a bulk piopeity We estimate the contribution to
P/Pposson comung fiom the boundary layer to be of oider
max(L./L,(L;/L)*) (possibly to some positive power),
hence to be <1 m the 1egime of space-charge limited con-
duction

V. ENERGY-DEPENDENT SCATTERING TIME

We consider now an energy-dependent scatteting time
We 1estrict ouiselves to d=3 and assume a power-law de-
pendence 7(g)=7ye® The eneigy-dependence of the rate
I/7 1s goveined by the product of the scattering cross section
and the density of states For shoit-range impuiity scattering
the cioss section 15 eneigy independent, hence a=-—1/2
This applies to unchaiged impuiities in sericonductois For
scattering by a Coulomb potential, the cross section 1s o & ~2
hence «=3/2 This applies to scattering by chaiged impuri-
ties i semiconductots 2 The case =0 considered so far
lies between these two extiemes *° We have found an exact
analytical solution for the case of shoit-tange scattering, to
be presented below The case of long-range impurity scatter-
mg remains an open pioblem, as discussed at the end of this
section

For shoit-range impurity scattering, the technical steps are
similar to those of Sec IV We first determune the mean

potential ¢(x) The scaling propeities of Eq (3 3) ae ex-
plorted by introducing the 1escaled potential y(x), with

3¢

2 puokA GD

e
$(x)= *( ) x(x/L)

In this way we eliminate the dependence on the curient 7 and
the length of the conducto: L The 1escaled potential fulfills
the differential equation

2 3
1 1/2% f_)_( _ 1/z_d_X

2 dx gx? dx? =L 52
with boundary conditions x(0)=0, x'(0)=0, and ¥"(1)
=0

We substitute
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FIG 6 Profile of the mean electrical potential ¢ [in units of
L*3eY TRugcA)?], the electnic field E [in unts  of
L(3eTR2uyxA)??], and the charge density p [in units of

(3 T k212 4A)*?] for a three-dimensional conductor with short-
range 1mpurity scattering, computed from Eq (5 2)

x(x) =2, gix™*? (53)
mto Eq (52) Power matchmg gives in the first order gg
=272 The second order leaves g, as a free coefficient, but
fixes the power 7=( JV13—1)/2 The coefficients g, for I
=2 are then determined recursively as a function of g,
From the condition x"(1)=0, we obtain g;=—0 1808 The
resulting series expansion converges rapidly, with the coef-
fictent g, already of order 102

The averaged potential and 1ts first and second derivative
are plotted 1n Fig 6 The electric field e y' (x) mcreases now
Iinearly at the current source, hence the charge density
o x”(x) remams finite there The current-voltage character-
18tIC 1S

7 Z/LOKA( 1% )3’2
T 3e2p3\ x(1))

with x(1)=04559 Thus 1s a slower increase of / with V than
the quadratic mcrease (45) i systems with energy-
mdependent scattering

The rescaled fluctuations ¢(x,t), introduced by

(54)

273

U(x/L,t),

3e'2L3T

2 uoKA (53)

Sp(x,t)=—

fulfill the linear differential equation

53 1 ' 62
A S
X 302 12 4.2
ax X ox

1 X/XII X’”
_Z( N +2F ¥

1 XI/ (?l//
2 XI/’ Ix

_ 51(t)—75./(x,t) 56)

The solution of the inhomogeneous equation 1s found with
the help of the three independent solutions of the homoge-
neous equation L[ ¢]=0,

d
Yi(x)= = x(x), (57)
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Pao(x)= X(x)— = —X(x) (58)

_ LX) ()

lﬂz(X)—l,ln(X)L dx W

LX) g (x)
— () J o 69
where we have defined

W(x) =y (x) by (x) — 1 (x) Pra(x) (5 10)

The special solution which fulfills ¢(0,6) =" (0,1)=(1,1)
=0 1s

Yl(x,t)= J

1/2( r

O(x—x"V i (x)hr(x")

W3 x')

+O(x' —x) g (x')galx) - Zlﬁ 1; Ua(x) (")

ij'dx”él(t)——éj(x”,t) Wx") 5 11)
0 1 x(x")

The condition ¢”(1,t) =0 relates the fluctuating curient
ol to the Langevin current 8/ The 1esultng expiession is
again of the form (4 27), with now

1
C=f dx G(x), (512)
0

x'*(1)

Wix)
200

x(x)

1720 1 '
0e) = X g (x >)

W3(x")

(5 13)

The shot-noise power 1s given by Eq (4 30) with H(x) as

defined 1 Eq (4 31) and the mean occupation number F still
given by Eq (4 34) Instead of Eq (4 35) we now have

- 1 i
Hx) =2elx(x)f dx'X

(x")
=PP01ssonXU2(x)X"(x)» (5 14)
where we mtegrated with the help of Eq (52) and used

x"(1)=0
Collecting 1esults, we obtain the shot-noise suppression
factor

P/PPoxsson:0 3771, (5 15)

which 1s about 20% larger than the result obtained i Sec IV
for an energy-independent scattering time n thiee dimen-
sions Equation (515) can be compared with the
a-dependent 1esult 1n the diift approximation

6(a—1)(a+2)(16a*+36a—157)
52a—5)(8a—17)(13+8a)

P/PPolsson:
(5 16)
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For «a=-—1/2 the dnft approximation gives P
=04071Ppygson, about 10% larger than the exact result
(5 15)

We now turn biiefly to the case of long-range impurity
scattering The kinetic equation (3 3), on which our analysis
1s based, predicts a logarithmically diverging electiic field
«—1In'Bx at the current sowice for =1 In the range o
> 1, which ncludes the case a=3/2 of scattering by charged
imputities, we could not determine the low-x behavior [A
behavior ¢ Cx? 1s ruled out because Eq (3 3) cannot be
satisfied with a real coefficient C ] In the drift appioximation,
the shot-noise power (5 16) vanishes as a— 1 Presumably, a
nonzeio answel for P would follow for =1 1f the nonzero
thermal energy and finite chaige density at the cunent source
1s accounted for This remains an open problem

VI. DISCUSSION

We have computed the shot-noise power m a nondegen-
erate diffusive semiconducto, in the regime of space-charge
Iimited conduction, for two types of elastic impurity scatter-
g In thiee-dimensional systems the shot-notse suppression
factor P/Ppygsson 15 close to 1/3 both for the case of an
ene1gy-imdependent scattering 1ate (P/Ppgsson=03097) and
for the case of shoit-1ange scattering by unchaiged impurities
(P! Ppygeon=03777) (The latter case also applies to quasi-
elastic scattering by acoustic phonons, discussed below ) Our
results are m good agreement with the numerical simulations
for energy-independent scattering by Gonzélez et al '2 The
results 1 the diift approxmmation'? are about 10% laiger We
found that capacitance fluctuations are strongly suppressed
by the long-range Coulomb nteraction We discussed the
effects of a nonzeio thermal excitation energy and a finite
carrier density in the current source and determied the re-
gime L>L . >L. for space-chaige limuted conduction (L,
and L. being the screening lengths m the semiconductor and
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current source, respectively) Two subregimes of overscreen-
mg and underscreening were dentified, again m quantitative
agreement with the numerical simulations 12

Let us discuss the conditions fo1 experimental obse1vabil
ity We have neglected inelastic-scattering events These
dirve the gas of charge carriers towards local thermal equi-
Iitbirum and result in a suppiession of the shot noise down to

thermal noise, P=8kTd1/dV '* Inelastic scattering by opti-
cal phonons can be neglected for voltages V<<kTp/e, with
T the Debye temperature Scattering by acoustic phonons 1s
quasielastic as long as the sound velocity v, 1s much smaller
than the typical election velocity v~(eV/m)"* For large
enough temperatwes 7> muvv,/k, the elastic-scattering tume
Toc g™ 12 depends on eneigy n the same way as for short-
range 1mpurity scattering |

All requirements appear to be realistic for a semiconduct-
g sample with a sufficiently low carrier density The elec-
tron gas 1s degenerate even at quite low temperatutes (a few
Kelvin) Short-1ange election-electron scattering 1s rare due
to the diluteness of the camiers Scatteting by phonons 1s
predomunantly elastic If the dopant (charged impurities) is
sufficiently dilute, the impurity scattering 1s predorunantly
shott 1anged Under these conditions we would expect the
shot-noise power to be about one-thud of the Poisson value
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