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The conductance G of a quantum dot with single-mode ballistic pomt contacts depends sensitively on
external parameters X such äs gate voltage and magnetic field We calculate the jomt distnbution of
G and dG/dX by relating it to the distnbution of the Wigner Smith time delay matnx of a chaotic
System The distnbution of dG/dX has a smgularity at zero and algebraic tails While G and
dG/dX are correlated, the ratio of dG/dX and -jG(l — G) is independent of G Coulomb interactions
change the distnbution of dG/dX by mducing a transition from the grand canonical to the canonical
ensemble All these piedictions can be tested in semiconductor microstiuctures or microwave cavities
[S0031 9007(97)037447]

PACS numbers 73 23 -b 05 45 +b 42 25 Bs 85 30 Vw

Parametric fluctuations m quantum Systems with a
chaotic classical dynamics are of fundamental importance
foi the charactenzation of mesoscopic Systems The
fluctuating dependence of an energy level Et(X) on an
external parameter X, such äs the magnetic field, has
received considerable attention [1] A key role is played
by the "level velocity" dEj/dX, descnbmg the response
to a small perturbation [2-4] In open Systems, the role of
the level velocity is played by the "conductance velocity"
dG/dX Remaikably little is known about its distnbution

The mterest m this problem was stimulated by expen-
ments on semiconductor microstructures known äs quan-
tum dots, m which the election motion is ballistic and
chaotic [5] A typical quantum dot is confined by gate
electrodes, and connected to two election reservoirs by bal
hstic pomt contacts, thiough which only a few modes can
propagate at the Fermi level The parametnc dependence
of the conductance has been measured by several groups
[6-8] In the single-mode hmit, parametnc fluctuations
are of the same ordei äs the aveiage, so that one needs
the complete distnbution of G and dG/dX to character
ize the System Knowing the average and vanance is not
sufficient Analytical results are available for pomt con
tacts with a large number of modes [9-15] In this paper,
we present the complete distnbution in the opposite hmit
of two single-mode pomt contacts and show that it differs
stnkmgly from the multimode case consideied previously

The mam differences which we have found are the fol-
lowing We consider the jomt distnbution of the conduc-
tance G and the derivatives 3G/3V, dG/dX with respect
to the gate voltage V and an external parameter X (typi-
cally the magnetic field) If the pomt contacts contain a
large number of modes, P(G, 3G/3V, dG/dX) factonzes
mto three independent Gaussian distnbutions [9-12] In
the single-mode case, in contrast, we find that this distn-
bution does not factonze and decays algebraically rather
than exponentially By integratmg out G and one of the
two derivatives, we obtain the conductance velocity distn-
butions P(dG/dV) and P(dG/dX) plotted m Fig l Both

distubutions have a smgularity at zero velocity, and alge
braic tails A remaikable piediction of our theory is that
the correlations between G, on the one hand, and dG/dV
and d G / d X , on the other hand, can be transformed away
by the change of variables G = (2e2/h) sin2 Θ, where θ is
the polar coordmate mtroduced in Ref [13] The deriva-
tives dO/dV and 3Θ/ΘΧ are statistically independent of θ
Theie exists no change of variables that transforms away
the correlations between dG/dV and 3G/dX

Anothei new feature of the smgle mode case concerns
the effect of Coulomb mtei actions [16,17] In the simplest
model, the strength of the Coulomb repulsion is measured
by the ratio of the chaiging eneigy e1 /C (with C the ca-
pacitance of the quantum dot) and the mean level spacing
Δ In the regime e2/C » Δ, where most expenments
are done, Coulomb interactions suppress fluctuations of
the Charge Q on the quantum dot äs a function of V 01
X, at the expense of fluctuations in the electncal potential
U Since the Fermi level μ in the quantum dot is pinned
by the reservoirs, the kmetic energy E = μ — U at the
Fermi level fluctuates äs well Fluctuations of E cannot
be ignored, because the conductance is determmed by E,
and not by μ An ensemble of quantum dots with fixed
Q and fluctuating E behaves effectively äs a canonical en-
semble—rather than a grand-canonical ensemble In the
opposite regime e2/C «. Δ, the energy E does not fluctu-
ate on the scale of the level spacing The ensemble is now
truly grand-canonical Fluctuations of E on the scale of
Δ can be neglected in the multimode case, so that the dis-
tinction between canonical and grand-canonical averages
is irrelevant In the single-mode case the distinction be-
comes important We will see that the distnbution of the
conductance velocities is different in the two ensembles
(The distnbution of the conductance itself is the same)
The difference between grand-canonical and canonical av
erages has been studied extensively in connection with the
problem of the persistent current [18-20], which is a ther-
modynamic property Here we find a difference in the case
of a transport property, which is more unusual [21,22]
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FIG l Distnbutions of conductance velocities m a chaotic
cavity with two smgle-mode pomt contacts [mset in (a)],
computed from Eq (10) Dashed curves are for β = l (time-
reversal symmetry), solid curves for β = 2 (no time-reveisal
symmetry) (The case β = 4, which is similar to β = 2, is
omitted for clanty ) The distribution of A<3G/d£ (grand
canomcal ensemble) is shown in (a) and the distnbution of
dG/dQ (canomcal ensemble) is shown in (b) (The conduc-
tance G is measured in units of 2e2/h, the Charge Q in units of
e ) In (c) the distnbution of XodG/dX is shown for the grand-
canonical ensemble (the canomcal case being nearly identical
on a linear scale) The mset compares the canomcal (C) and
grand-canomcal (GC) icsults for β — 2 on a loganthmic scale

To denve these results, we combine a scattenng formal-
ism with random-matnx theory [23] The 2 X 2 scattenng
matnx 5 determmes the conductance

G = \SU\\

and the (unscreened) compressibilities [ 17]

(1)

"^ _ -* , o-f "" ">£ __ -* . r,f "*-* x ~ x

dE ~ 2ττι dE ' dX 2πι dX

(We measure G in units of 2e2/h and Q in units of e )
Grand-canomcal averages { )oc and canomcal averages
( )c are related by

< }c = Δ{ Χ dQ/dE)GC (3)

The factor dQ/dE is the Jacobian to go from an average
over Q in the canomcal ensemble to an average over E in

the grand-canomcal ensemble Conductance velocities in
the two ensembles are related by

dG

dX

dG

dX

dG dQ fdQ

dE dX V dE
(4)

where \Q and |E indicate, respectively, derivatives at con-
stant Q (canomcal) and constant E (grand-canomcal)
Derivatives dG/dV with respect to the gate voltage are
proportional to dG/dQ in the canomcal ensemble and to
dG/dE m the grand-canomcal ensemble (The propor-
tionality coefficients contam elements of the capacitance
matnx of the quantum dot plus gates ) The two derivatives
are related by

dG _ dG idQ

aß ~ d£ V dE
(5)

The problem that we face is the calculation of the jomt
distribution of S, dS/dE, and dS/dX In view of the
relations (3)-(5) it is sufficient to consider the grand-
canomcal ensemble This problem is closely related to
the old problem [24] of the distribution of the Wigner-
Smith delay times r\, ,TN, which are the eigenvalues
of the N X N matrix — iS^dS/dE (The eigenvalues are
real positive numbers ) Interest in this problem has been
revived m connection with chaotic scattenng [25-28]
The rates jn = l/r„ are distributed according to [28]

This distribution is known m random-matnx theory äs the
Lagueire ensemble, because the correlatton functions can
be wntten äs senes over (generahzed) Laguerre polynomi
als [29] For N = l we lecover the lesult of Refs [25]
and [27] In our case N = 2

To compute the conductance velocities it is not suffi-
cient to know the delay times r„ , but we also need to know
the distnbution of the eigenvectors of the time-delay ma-
tnx — i S ^ d S / r ) E Furthermore, we need the distribution
of — iS^ dS/dX The general result contaimng this infoi-
mation is [28]

P(S,TC,TX) α r +

X (detT£)

BS

 s 1/2
3£

-2ßN + 3(ß-2)/2
(7)

(8)

The matrix TC has the same eigenvalues äs the time-delay
matrix, but it is more convement because it is uncoi-
related with S, while the time-delay matrix is not By
integratmg out TE and rx from Eq (7), we obtam a uni-
form distnbution for S, äs expected foi a chaotic cavity
[30] The resultmg distribution of the conductance [31],
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P(G) °c G 1+ß/2, is the same in the canomcal and grand-
canomcal ensembles, because S and dQ/dE are uncor-
related [cf Eq (3)] By mtegrating out S, τχ, and the
eigenvectors of TE, we obtain the distnbution (6) of the
delay times The distnbution of τχ at fixed τ E is a Gauss-
lan The scale of this Gaussian is set by the parameter XQ,
which has no universal value [32]

We are now ready to compute the distnbution of the
conductance velocities Derivatives with respect to E and
Q are related to the delay times by

dG

dE
— = C(T, - τ2)λ/ο(1 - G),

- = LTTC
dQ

τ ι τ2

+ T2

-G),

(9a)

(9b)

where c G [— l, 1] is a number that depends on the phases
of the matnx elements of S and on the eigenvectors of τ Ε

Its distnbution P(c) °c (l - c2) 1+/3/2 is mdependent of
TI, τ2, and G The derivative 3G/dX has a Gaussian
distnbution at a given value of S and TE, with zero mean
and with vanance

dG

dX

dG_

dX

= a

-<""><«'-

PGC(G,GE,GX) — —

PC(G,GQ,GX) = ̂  f dx f
Z Jo JGI

dy

[yG - Gß/(l

f(x) = 8ß~l[xG(l - G) + 2G|], g(x) =

Z = 3β^β~[Τ(β/2)Γ(β)Γ(3β/2)

where we have abbreviated a = 4Δ2/ττ2Χ2,β Because
the vanance of 3G/3X depends on 9G/3E or 3G/dQ,
these conductance velocities are correlated

From the distnbution (6) of TI, τ2, and the mdependent
distnbutions of G and c, we calculate the jomt distnbution
of G and its (dimensionless) derivatives GX = XodG/dX,
GE = (A/27r)aG/d£, and Gß = (1/2π)<3Ο/θβ The
result m the grand-canonical and canomcal ensembles is

(10a)

(l Ob)

(10c)

- G)g(x)
exp

G) - G 2

Q ] ,

By mtegratmg out G and one of the two deiivatives from
Eq (10), we obtain the conductance velocity distnbutions
of Fig l (The case β = 4 is close to β = 2 and is
omitted from the plot for clarity ) The distnbutions have
a singulaiity at zeio denvative A cusp for β = 2 and 4,
and a loganthmic divergence for β = l The tails of the
distnbutions of dG/'dX are algebraic m both ensembles,
but with a different exponent,

PGC(dG/dX)

Pc(dG/dX)

(dG/dX) ß 2,

( S G / d X ) 2ß '

(l l a)

(Hb)

The distnbution of dG/3E (grand-canomcal ensemble)
also has an algebraic tail [°c (dG/dE)~ß~2], while the
distnbution of 8G/8Q (canomcal ensemble) is identically
zero for |öG/ö<2l > π In both ensembles, the second
moment of the conductance velocities is fimte for β = 2
and 4, but infinite for β = l [33]

In conclusion, we have calculated the jomt distnbu-
tion of the conductance G and its parametric derivatives
for a chaotic cavity, coupled to electron reservoirs by
two smgle-mode balhstic point contacts The distnbution
is fundamentally different from the multimode case, be-
ing highly non-Gaussian and with correlated deiivatives
(Correlations between G and the parametric derivatives

can be transfoimed away by a change of variables ) We
account toi Coulomb mteractions by usmg a canomcal
ensemble mstead of a grand-canomcal ensemble Our re-
sults foi the canomcal ensemble are relevant for the analy-
sis of recent experiments on chaotic quantum dots, where
the conductance G is measured äs a function of both the
magnetic field and the shape of the quantum dot [8] The
grand canomcal results are relevant for experiments on
microwave cavities [34,35] Together with the theory pro-
vided here, such experiments can yield Information on the
distnbution of delay times m chaotic scattering that can-
not be obtamed by other means
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