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The conductance G of a quantum dot with simgle-mode ballistic point contacts depends sensitively on
external parameters X such as gate voltage and magnetic field We calculate the joint distribution of
G and dG/dX by relating 1t to the distribution of the Wigner Smith time delay matrix of a chaotic

system The distribution of dG/dX has a singularity at zero and algebraic tails

While G and

dG/dX are correlated, the ratio of dG/dX and /G(1 — G) 1s independent of G Coulomb mnteractions
change the distribution of dG/dX by inducing a transition from the grand canonical to the canomical

ensemble
[S0031 9007(97)03744 7]

PACS numbers 7323 —b 0545 +b 4225Bs 8530 Vw

Parametric fluctuations 1 quantum systems with a
chaotic classical dynamics are of fundamental importance
for the characterization of mesoscopic systems The
fluctuating dependence of an energy level E,(X) on an
external parameter X, such as the magnetic field, has
recelved considerable attention [1] A key role 1s played
by the “level velocity” dE,/dX, describing the response
to a small perturbation [2—4] In open systems, the role of
the level velocity 1s played by the “conductance velocity”
dG/dX Rematkably little 1s known about 1ts distribution

The 1nterest 1 this problem was stimulated by experi-
ments on semiconductor microstructures known as quan-
tum dots, in which the election motion 1s ballistic and
chaotic [5] A typical quantum dot 1s confined by gate
electrodes, and connected to two election reservoirs by bal
listic point contacts, thiough which only a few modes can
propagate at the Ferm level The parametiic dependence
of the conductance has been measured by several groups
[6—8] In the single-mode limit, parametric fluctuations
are of the same order as the average, so that one needs
the complete distribution of G and dG/dX to character
ize the system Knowing the average and variance 1s not
suffictent  Analytical results are available for point con
tacts with a large number of modes [9—-15] In this paper,
we present the complete distribution 1n the opposite limit
of two single-mode point contacts and show that 1t differs
strikingly from the multimode case consideied previously

The main differences which we have found are the fol-
lowing We consider the joint distribution of the conduc-
tance G and the denvatives dG/3V, 3G /93X with respect
to the gate voltage V and an external parameter X (typi-
cally the magnetic field) If the point contacts contain a
large number of modes, P(G,3G/aV,3G/9X) factorizes
nto three independent Gaussian distributions [9-12] In
the single-mode case, 1n contrast, we find that this distri-
bution does not factorize and decays algebraically rather
than exponentially By integrating out G and one of the
two derrvatives, we obtain the conductance velocity distri-
butions P(3G/3V) and P(dG/dX) plottednFig 1 Both
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All these predictions can be tested in semiconductor microstiuctures or microwave cavities

distiibutions have a singularity at zero velocity, and alge
braic taills A remaikable prediction of our theory 1s that
the correlations between G, on the one hand, and 0G/aV
and dG/dX, on the other hand, can be transformed away
by the change of variables G = (2¢2/h) sin? 8, where 6 15
the polar coordinate mtroduced in Ref [13] The deriva-
tives 96/9V and 88/9X are statistically independent of 6
Thete exists no change of variables that transforms away
the correlations between dG/3V and 3G /94X

Another new feature of the single mode case concerns
the effect of Coulomb 1nteractions [16,17] In the simplest
model, the strength of the Coulomb repulsion 1s measured
by the ratio of the charging eneigy ¢2/C (with C the ca-
pacitance of the quantum dot) and the mean level spacing
A In the regime ¢2/C > A, where most experiments
are done, Coulomb interactions suppress fluctuations of
the charge O on the quantum dot as a function of V o1
X, at the expense of fluctuations 1n the electrical potential
U Since the Fermi level w 1n the quantum dot 1s pinned
by the reservorrs, the kinetic energy £ = u — U at the
Fermi level fluctuates as well Fluctuations of E cannot
be ignored, because the conductance 1s determined by E,
and not by u  An ensemble of quantum dots with fixed
Q and fluctuating E behaves effectively as a canonical en-
semble—rather than a grand-canonical ensemble In the
opposite regime e>/C << A, the energy E does not fluctu-
ate on the scale of the level spacing The ensemble 18 now
truly grand-canonical Fluctuations of E on the scale of
A can be neglected 1n the multimode case, so that the dis-
tinction between canonical and grand-canonical averages
1s rrelevant  In the single-mode case the distinction be-
comes important We will see that the distribution of the
conductance velocities 1s different 1n the two ensembles
(The distribution of the conductance itself 1s the same )
The difference between grand-canonical and canonical av
erages has been studied extensively 1n connection with the
problem of the persistent current [18—20], which 1s a ther-
modynamuc property Here we find a difference 1n the case
of a transport property, which 1s more unusual [21,22]
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FIG 1 Diustributions of conductance velocities in a chaotic
cavity with two single-mode point contacts [mset m (a)],
computed from Eq (10) Dashed curves are for 8 = 1 (time-
reversal symmetry), solid curves for 8 = 2 (no time-reversal
symmetry) (The case 8 = 4, which 1s simular to 8 = 2, 13
omutted for clanty)  The distribution of AdG/JE (grand
canomical ensemble) 1s shown mn (a) and the distiibution of
4G /30 (canonical ensemble) 1s shown 1 (b) (The conduc-
tance G 15 measured 1n units of 2¢?/k, the charge O m umts of
e) In (c) the distribution of X,0G/dX 15 shown for the grand-
canonical ensemble (the canonical case being nearly identical
on a linear scale) The mset compares the canonical (C) and
grand-canonical (GC) tesults for 8 = 2 on a loganthmic scale

To derive these results, we combine a scattering formal-
1sm with random-matrix theory 23] The 2 X 2 scattering
matrix S determines the conductance

G = ISnl, (1
and the (unscreened) compressibilities [17]
90 _ 1 435 80 _ 1 08

2
E  om T GE ax am ™ ax @

(We measure G 1 units of 2¢?/h and Q m units of ¢ )
Grand-canonical averages ( )¢ and canonical averages
( )¢ are related by

( Ye=A( X dQ/dE)sc €))

The factor dQ/dE 1s the Jacobian to go from an average
over  1n the canonical ensemble to an average over E 1n

914

the grand-canonical ensemble Conductance velocities mn
the two ensembles are related by

0G| 96| 960 (30Y

ox |- )
o 0X|p OE 39X \OE

where | and |g indicate, respectively, derivatives at con-
stant 0 (canonical) and constant E (grand-canonical)
Dervatives 9G/dV with respect to the gate voltage are
proportional to dG/dQ 1n the canonical ensemble and to
dG/JE 1n the grand-canonical ensemble (The propor-
tionality coefficients contain elements of the capacitance
matrix of the quantum dot plus gates ) The two derivatives
are related by

G _ G (@)‘1 5

90  9E \OE

The problem that we face 1s the calculation of the joint
distribution of §, 8S/9E, and d5/0X In view of the
relations (3)—(5) 1t 1s sufficient to consider the grand-
canonical ensemble This problem 1s closely related to
the old problem [24] of the distnibution of the Wigner-
Smith delay times 7y, , 7Ty, which are the eigenvalues
of the N X N matrix —:S19S/9E (The eigenvalues are
real positive numbers ) Interest in this problem has been
revived in connection with chaotic scattering [25-28]
The rates y,, = 1/7, are distributed according to [28]

NI2 B
PAyad) = [Ty — B [T7EY e 80/ (6)

<<y k

This distributton 1s known in random-matrix theory as the
Laguetre ensemble, because the correlation functions can
be wiitten as seties over (generalized) Laguerre polynomi
als [29] For N = 1 we 1ecover the 1esult of Refs [25]
and [27] Inourcase N = 2

To compute the conductance velocities 1t 15 not suffi-
cient to know the delay times 7,, but we also need to know
the distribution of the eigenvectors of the time-delay ma-
tux —:ST9S/0E  Furthermore, we need the distribution
of —1ST9S/6X The general result contamnimg this nfor-
mation 1s [28]

T 0.
P(S,Tr, Tx) « exp[—[a’tr(X g+ 4A20 (TElTx)2>:'

X (det 7g) T2ANTIE=2)/2, (7)
S S
— _ o—l2 g 12 — 5712 -1/2
TE B E ’ X ! ax >
(8)

The matrix 71 has the same eigenvalues as the time-delay
matrix, but it 18 more convenient because 1t 1s uncoi-
related with S, while the time-delay matrix 1s not By
mtegrating out 7g and 7y from Eq (7), we obtain a uni-
form distribution for §, as expected for a chaotic cavity
[30] The resulting distribution of the conductance [31],
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P(G) « G~'*B/2 15 the same 1 the canonical and grand-  Tts distribution P(c) « (1 — ¢2)~'*A/2 i independent of
canonical ensembles, because S and dQ/dE are uncor- 71, T2, and G The derivative dG/9X has a Gaussian
related [cf Eq (3)] By integrating out S, 7x, and the distribution at a given value of S and 7, with zero mean
eigenvectors of 7z, we obtain the distribution (6) of the and with vanance
delay times The distribution of 7y at fixed 7 1s a Gauss-
A\ 1 (9G\?

which has no umversal value [32] X E) > o a[G(l —Gmm + b} (ﬁ) J’

We are now ready to compute the distribution of the

1an The scale of this Gaussian 1s set by the parameter X, < ( G
3G |\ 1 (4GY?
conductance velocities Derivatives with respect to E and =arm Gl -G - —|—) |,

Q are related to the delay times by 0X lo 4m2\9Q
G where we have abbreviated o = 4A2/72X{B Because
3E c(r1 — 12)G(1 - G), (9a)  the vaniance of 9G/3X depends on dG/9E or 3G/4Q,
these conductance velocities are correlated
G TL — T2 | — From the distribution (6) of 7}, 72, and the independent
30 2me T+ 7 Gl = 6), (Ob) distributions of G and ¢, we calculate the joint distribution

of G and 1ts (dimensionless) denvatives Gy = Xo0G/0X,
where ¢ € [—1, 1] 1s a number that depends on the phases ~ Gg = (A/27)dG/JE, and G = (1/27)dG/9Q The
of the matrix elements of S and on the eigenvectors of 7 | result 1n the grand-canonical and canonical ensembles 1s

1 f‘*’ f [YG — G3/(1 — G)]"1+A/2x~2728 [ 28 G%}
P6c(G,Gg,Gx) = — | d N E T
6c(G. GO = 7 | 5 | ™ Jr 060 —orw P Y

f(x)
(10a)
2 ! [yG = Go/(1 — GO)TM*AR ' oy G}
Pel.6e.60 = 5 |, dx]ca/[cu—cn T B EG - Gz x| Ty g(x)}’ (1o
f&x) =8B7[xG(1 —= G) + 2G;],  glx) =8(*B)'[G(1 - G) — G,
Z =3B FT'T(B/T(BT(3B/2) (10¢)

!

By ntegrating out G and one of the two derivatives from ~ can be transformed away by a change of variables ) We
Eq (10), we obtain the conductance velocity disttibutions  account for Coulomb interactions by using a canonical
of Fig 1 (The case § =4 15 close to B = 2 and 18 ensemble 1nstead of a grand-canonical ensemble Our re-
omitted from the plot for clarity ) The distiibutions have  sults for the canonical ensemble are relevant for the analy-
a singulanty at zeio deuvative A cusp for 8 = 2 and 4, sis of recent experiments on chaotic quantum dots, where
and a logaiithmic divergence for § = 1 The tails of the  the conductance G 1s measured as a function of both the
distributions of G /09X are algebraic in both ensembles,  magnetic field and the shape of the quantum dot [8] The

but with a different exponent, grand canonical results are relevant for experiments on
5 2 microwave cavities [34,35] Together with the theory pro-
PGc(9G/9X) = (0G/0X) > (11a) vided here, such experiments can yield information on the
Pc(3G/9X) « (3G /aX) 28 ! (11b)  distribution of delay times 1n chaotic scattering that can-

not be obtained by other means
The distribution of dG/9E (grand-canonical ensemble) This problem was suggested to us by C M Marcus

also has an algebraic tail [« (dG/dE)"P72], while the =~ We acknowledge support by the Dutch Science Founda
distribution of 8G/8Q (canonical ensemble) 1s 1dentically tion NWO/FOM and by the European Community (pro-
zero for [0G/3Q| = = In both ensembles, the second  gram for the Training and Mobility of Researchers)
moment of the conductance velocities 1s finite for 8 = 2
and 4, but infinite for 8 = 1 [33]

In conclusion, we have calculated the joint distribu-
tion of the conductance G and its parametric derivatives
for a chaotic cavity, coupled to electron reservoirs by

*Present address Laboratoire de Physique Quantique,
UMR 5626 du CNRS, Universite Paul Sabatier, 31062
Toulouse Cedex 4, France
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