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Quantum-limited linewidth of a chaotic laser cavity
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A random-matnix theory 1s presented for the linewidth of a laser cavity i which the radiation 1s scattered
chaotically The linewidth 1s enhanced above the Schawlow-Townes value by the Petermann factor X, due to
the nonorthogonality of the cavity modes The factor K 1s expressed in terms of a non-Hermitian random
matnx, and 1its distribution 1s calculated exactly for the case m which the cavity 1s coupled to the outside via
a small opening The average of K s found to depend nonanalytically on the area of the opening, and to greatly

exceed the most probable value

PACS number(s) 42 65 Sf, 05 45 Mt, 42 50 Lc, 42 60 Da

I. INTRODUCTION

It has been known since the conception of the laser [1]
that vacuum fluctuations of the electromagnetic field ulti-
mately limit the narrowing of the emission spectrum by laser
action This quantum-limited linewidth, or Schawlow-
Townes linewidth,

Sw=15T%1, (1)

1s proportional to the square of the decay rate I" of the lasing
cavity mode [2], and inversely proportional to the output
power I (in units of photons/s) Many years later 1t was re-
alized [3,4] that the fundamental limit 1s larger than Eq (1)
by a factor K that characteiises the nonorthogonality of the
cavity modes This excess noise factor, or Petermann factor,
has generated an extensive literature (see recent papers
[5-9], and references therem), both because of 1ts fundamen-
tal significance and because of its practical importance

Theories of the enhanced linewidth usually factorize K
=K,K, mto longitudinal and transverse factors, assuming
that the cavity mode 1s separable into longitudinal and trans-
verse modes Since a longitudinal o1 transverse mode 18 es-
sentially one dimensional, that 1s a major simplification
Separability breaks down 1f the cavity has an mrregular shape
o1 contains randomly placed scatterers In the language of
dynamical systems, one ciosses over from integrable to cha-
otic dynamics [10] Chaotic laser cavities have attiacted
much mterest recently [11], but not in connection with the
quantum-hmited linewidth

In this paper we present a geneial theory for the Peter-
mann factor 1 a system with chaotic dynamics, and apply 1t
to the simplest case of a chaotic cavity radiating through a
small opening Chaotic systems require a statistical treat-
ment, so we compute the probability distribution of K 1n an
ensemble of cavities with small vaniations 1n shape and size
We find that the average of K— 1 depends nonanalytically
«TIn7T ' on the transmussion piobability 7 through the
opening, so that 1t 1s beyond the 1each of simple pertuibation
theoty The most probable value of K—1 1s « T, hence 1t 1s
patametrically smaller than the average
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II. RANDOM-MATRIX FORMULATION

The spectral statistics of chaotic systems 1s described by
random-matrix theory [10,12] We begin by reformulating
the existing theories for the Petermann factor [8,9] mn the
framework of random-matrix theory Modes of a closed cav-
1ty, 1n the absence of absorption or amphfication, are eigen-
values of a Hermitian operator Hy For a chaotic cavity, H,
can be modeled by an M XM Hermitian matrix with mde-
pendent Gaussian-distributed elements (The limit M —oo at
fixed spacing A of the modes 1s taken at the end of the
calculation ) The matrix elements are real because of time-
teversal symmetry (This s the Gaussian orthogonal en-
semble [12] ) A small opening in the cavity 1s described by a
treal, nontandom M X N coupling matiix W, with N the num-
ber of wave channels trtansmitted thiough the opening (For
an openmg of area A, N=2mwA/A? at wavelength \)
Modes of the open cavity are complex eigenvalues (with a
negative mmagmary part) of the non-Hermitian matrix H
=H,—1wWWT The scattering matix S at frequency  1s
related to H by [13]

S=1-2mWl(w—H)"'W )

It 1s a unitary and symmetric, iandom N XN matrix, with
poles at the eigenvalues of H

We now assume that the cavity 1s filled with a homoge-
neous amphfying medium (amplification rate 1/7,) This
adds a tetm /27, to the eigenvalues, shifting them upwards
toward the 1eal axis The lasing mode 1s the eigenvalue
—1I'/2 closest to the 1eal axis, and the laser threshold is
teached when the decay 1ate I' of this mode equals the am-
plification rate 1/7, [14] Near the laser threshold we need to
retamn only the contribution from the lasing mode (say mode
number [) to the scattering matrix (2),

Som=—2m(WIU) (0= Q+: 2= 127,) " (U 'W),,.
(3)

whete U 1s the matiix of eigenvectors of H Because H 1s a
1eal symmetuic matiix, we can choose U/ such that U~
=UT, and wiite Eq (3) 1n the form

S”m=anO‘,n(w-—Q+zF/2—1/27,,)_l, 4)
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where o, =(—2m1) Y (WTU),, 1s the complex coupling con-
stant of the lasing mode [ to the nth wave channel
The Petermann factor K 1s given by

N

1
N

\ IO'”l2=(U1U)” (5)

n=

The second equality follows from the definition of o, [15],
and 1s the matrix analogon of Siegman’s nonorthogonal
mode expression [4] The first equality follows from the defi-
nitton of K as the factor multiplying the Schawlow-Townes
linewidth [16] One verifies that K=1 because (UTU) T
=(UTU)=1

III. SINGLE-CHANNEL CAVITY

Relation (5) serves as the starting point for a calculation
of the statistics of the Petermann factor in an ensemble of
chaotic cavities Here we restrict ourselves to the case N
=1 of a single-wave channel, leaving the multichannel case
for future investigation For N=1 the coupling matrix W
reduces to a vector a=(W;,, Wy, ,Wy) Its magnitude
la|*=(MA/ 7w, where we[0,1] 15 related to the trans-
mission probability T of the single-wave channel by T
=4w(l+w) % We assume a basis in which H 1s diagonal
(e1genvalues w,)

If the opening 1s much smaller than a wavelength, then a
perturbation theory mn @ seems a natural starting pomt To
leading order one finds

2

K=1+Q2ma)?2, —Oﬁ——z (6)
a7l (w;— w,)

The frequency €} and decay rate I' of the lasing mode are

given by w; and 27ra12 , respectively, to leading order in a
We seek the average (K)q 1 of K for a given value of () and
I' [17] The probability to find an eigenvalue at w,, given
that there 1s an eigenvalue at w,, vamshes linearly for small
|a)q~w, , as a consequence of eigenvalue repulsion con-
strained by time-reversal symmetry Since expression (6) for
K diverges quadratically for small qu—w,l, we conclude
that (K)q r does not exist in perturbation theory This se-
verely complicates the problem

We have succeeded i obtaming a finite answer for the
average Petermann factor by starting from the exact relation

Uqlzl==quql—z7Taqz apUpl (7)
b

between the complex eigenvalues z,, of H and the real eigen-
values w, of H, Distingwishing between g=/ and ¢ #1, and
defining d,= U, /U,;, we obtam two recursion relations

zl‘—“wl-—mra,z-—mrozlz a,d,, (8a)
q#1
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_ ’7Ta’q
e ( a,+§l apdp) (8b)

The Petermann factor of the lasing mode ! follows from

(143, 14,

-1

9

1+ d?
q#l

We now use the fact that z; 1s the ergenvalue closest to the
real axi1s We may therefore assume that z; 1s close to the
unperturbed value w,;, and replace the denominator z;— w,
m Eq (8b) by w;—w, That decouples the two iecursion
relations, which may then be solved 1n closed forms

u=w—imai(l+imA)~!, (10a)

Ta,Q; -
———(1+17A)
wl——w(]

id, =

. (10b)

We have defined A :Eq#af](m,— w,)”" The decay rate of
the lasing mode 18

I'=-2Imz;=2ma;(1+7?A%)"! (11)

Since the lasing mode s close to the real axis, we may hn-
earize expression (9) for K with respect to [,

(27T/A)B

K=1+4 Imd ) =1+ , 12
flzll( q) + A% (12)

with B= AE(]#,a(ZI(wl" wq)~2
The conditional average of K at given I' and ) can be
written as the ratio of two unconditional averages

(K)o r=1+Q2aT/ANB(1+72A%)"12)/(Z), (13a)

Z=8(Q—w) T —2mai(1+7%4%)~"y  (13b)

In principle one should also require that the decay 1ates of
modes g#! are larger than I', but this extra condition be-
comes Iirrelevant for I'—0 For M - the distribution of a,
1s Gaussian o exp(—%ﬁaiﬂz/wA) [12] with B=1 The aver-
age of Z over a; yields a factor (14 m2A2)!2,

(B(1+ %A%~ 17
<(1+7T2A2)1/2> ’

(K)q r=1+(27T/A) (14)

where only the averages over «
fixed w; =)

The problem 15 now reduced to a calculation of the joint
probability distubution P(A,B) This 1s a technical chal-
lenge, simular to the level curvature problem of random-
matrix theoty [18,19] The calculation 1s given mn the Appen-

dix, with the result
w [ A2 1
-3 "

1 7 wA T+ w?
P(A,B)—-E VE;_——BW exp

o and w (g #!) reman, at

(15)
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FIG 1 Average Petermann factor K for a chaotic cavity having
an opening with transmission probability 7 The average is per-
formed at a fixed decay rate I" of the lasing mode, assumed to be
much smaller than the mean modal spacing A The solid curve 18
the result [Eq (16)] in the presence of time-reversal symmetry, and
the dashed curve 1s the result [Eq (20)] for broken time reversal
symmetty For small 7, the solid curve diverges « In 77! while the
dashed curve has the finite limit of /3 For T=1 both curves reach
the value 27/3

Together with Eq (14), this gives the mean Petermann factor

(K)or=1-

in terms of the 1atio of two Meyer G functions We have
plotted the result in Fig 1, as a function of T=4w(l
+w) 2

The non-analytic dependence of the average K on T (and
hence on the area of the operung [20]) 1s a striking featute of
our result For 7<€1, the average 1educes to

- ——In— (17)

The nonanalyticity 1esults from the relatively weak eigen-
value 1epulsion in the presence of time-reversal symmetry If
time-reversal symmetry 1s broken by a magneto-optical ef-
fect (as i Refs [21,22]), then the stronger quadiatic repul-
ston 1s sufficient to overcome the » > divergence of pertur-
bation theoiy, and the average K becomes an analytic
function of T For this case, we find, instead of Eq (14), the
simpler expression

(B)

<1+7r2A2> (18)

<K>Q I‘=1+(27TF/A)

Using the joint probability distribution (see the Appendix)

(77'2A2-i-wz)2 w [ m2A>
e exp| = | 1
w2

T exp

P(A,B)= , (19)

we find the mean K,
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FIG 2 Probability distribution of the rescaled Petermann factor
k=(K—1A/I'T for T=1 and T<1 The solid curves follow from
Eqgs (21) and (22) The data points follow from a numerical simu-
lation of the random-matrix model

' 47w

-+ K m, (20)

(K)ar=1

shown by the dashed lime m Fig | It 1s equal to (K)q
=] ++7TT/A for T<1

So far we have concentrated on the average Petermann
factot, but from Eqs (11), (12), and (15) we can compute the
entire probability distuibution of K at fixed I' We define «
=(K—1)A/I'T A simple iesult for P(«) follows for T=1,

2

47 __
P(K)ZTK "exp(— 7/ k), 21

and, for T<€1,

T T
= — - =
P(x) & ( 1+ 2K)exp( wldk), kT=1 (22)

2
K

As shown 1n Fig 2, both distributions are very broad and
asymmetric, with a long tail toward large « [23] The most
probable (o1 modal) value of K—1=TI/A 1s parametrically
smaller than the mean value [Eq (17)}] for T<%1

To check our analytical results, we have also done a nu-
merical simulation of the random-mati1x model, generating a
laige number of 1andom matrices H, and computing K from
Eq (5) As one can see from Fig 2, the agreement with Eqs
(21) and (22) 1s flawless

IV. CONCLUSIONS

In conclusion, we have shown that chaotic scattering
causes laige statistical fluctuations 1n the quantum-hmited
linewidth of a laser cavity We have examined 1 detail the
case that the coupling to the cavity 1s via a single-wave chan
nel, but owr random-matrix model applies more generally to
coupling via an arbitrary number N of wave channels We
have computed exactly the distribution of the Petermann fac
tor for N=1 It remains an open problem to do the same fo
N>1 This problem 1s 1elated to seveial recent studies of the
statistics of eigenfunctions of non-Hermitian Hamiltonians
[24,25], but 1s complicated by the constraint that the corre
sponding eigenvalue 1s the closest to the 1eal axis Our study
of a system with a fully chaotic phase space complements
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previous theoretical work on systems with an integrable dy-
namics Chaotic laser cavities of recent experimental interest
[26] have a phase space that includes both integrable and
chaotic regions The study of the quantum-limited linew1idth
of such mixed systems 1s a challenging problem for future
research
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APPENDIX: CALCULATION OF P(4,B)

The jont probability distribution of the eigenvalues w, of
Hy 1s given by the Gaussian ensemble of random-matrix
theory

B o
P({wq})“g] |@,— )| Pexp| ~ 7=+ ; wk} (A1)

The level spacing 1n the center of the semicircle has been set
to unity We assume that the lasing level 1s at w;=0 (other
choices just renormalize the level spacing) The eigenvalue
distribution (A1) of the M-dimensional matrix H then factor-
1zes 1nto the distribution of a (M — 1)-dimensional matrix H'
and the product I ;| w,|#=|detH'|#

The jomt probability distribution of A and B,

2
o
B-2, —3)> :
#1
7#1 Wy {ag w,)

(A2)

2
P(A,B)=< 5(A—E 51)5

l]#l w(]

1s obtamed by averaging over the variables a, and w,.q
# | Founer transformation of Eq (A2) with respect to A and
B gives

det H'?# A3)
detlH' 2+ 2itw(xH' +y)/ m*B]P"? H,,

ﬁ(x,y)fx<

after averaging over {@,} The remaining average 1s over the
Gaussian ensemble of H' matrices The determinant in the
denominator can be expressed as a Gausstan integral,

2

- o T
P(x,y)Mf dzj dH'’ detH’?‘Bexp[——ivtrH’z—zT

X , (A4)

' 21w ,
H +E~E(XH +y) |z
T

where the M — 1 dimensional vector z 1s real (complex) for

=1 (2)

We now decompose the matrix H' as

H" h
H'=

b (A5)
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The (M —2)X (M —2) matnix H" 1s distributed accoirding to
the Gaussian orthogonal ensemble, g 1s a scalar, and the
(M —2)-dimensional vector h consists of Gaussian random
variables with variance

R = g~ | 1= ] (49
CEN T S Biwr UM 2\ MB

We can always choose a basis i which z pomnts n the di
rection of the last basis vector, so that z'H'z=|z|?g Going
back fiom Eq (A4) to P(A,B) by Fourier transformation,
two & functions appear, allowing to integrate over g and h
The result can be expressed as an average over H” and h

242
w TA
P(A,B)Q BP*Zexp —%(H‘ e ) . (A7)
A 26
0p= detH"w(E—th”h) > (A8)
h HN
For =1 one has now to consider
A2
0=\ detH"™| — +h*{(rH""")2+2t0 H"%}| )
B HII
(A9)

where only the even terms 1n H" have been kept The ratio of
coefficients 1 this polynomial in A/B can be calculated from
the autocorrelator [27]

(det(H"+E)(H"+E"))
(det H"?)

G\(E.E")=

3 d smwmx
=——_ (A10)

mix dx  mx e EE"

of the secular polynomial of Gaussian distributed real matri-
ces H” This 1s achieved by expressing the products of traces
and determinants through secular coefficients, and these then
as deirvatives of the secular determinant Equations (A6) and
(A10) yield

(Al1)

Insertion 1nto Eq (A7) and restoration of the normalization
constant gives result (15)
For B=2 we have, after averaging over h, the expression

A4 A?

oncEJrqlh“EJrqzhs, (A12a)

g;=6{detH"™*[(c H" Y2 +tr H""*]) v, (A12D)
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g2={det H"*[(r H") *+ 6t H" " *(tr H"~')?
+8tr H  Mr H" 73+ 6tr H' 4+ 3(tr H" %)) o
(A12¢)

The coefficients can now be computed from the four-point
correlator of the Gaussian unitary ensemble [28], yielding
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g,=27"* and g,=?, thus
0,% 07 (A13)

Combining the results and restoring the normalization con-
stant, we arrive at Eq (19)
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