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Quantum-limited linewidth of a chaotic laser cavity
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A random-matnx theory is presented for the linewidth of a laser cavity in which the radiation is scattered
chaotically The linewidth is enhanced above the Schawlow-Townes value by the Petermann factor K, due to
the nonoi thogonahty of the cavity modes The factor K is expressed in terms of a non-Hermitian random
matnx, and its distribution is calculated exactly for the case in which the cavity is coupled to the outside via
a small opening The average of K is found to depend nonanalytically on the area of the openmg, and to greatly
exceed the most probable value

PACS number(s) 42 65 Sf, 05 45 Mt, 42 50 Lc, 42 60 Da

I. INTRODUCTION

It has been known smce the conception of the laser [1]
that vacuum fluctuations of the electromagnetic field ulti-
mately hmit the narrowing of the emission spectram by laset
action This quantum-hmited linewidth, 01 Schawlow-
Townes linewidth,

(D

is proportional to the square of the decay rate Γ of the lasmg
cavity mode [2], and mversely proportional to the Output
power / (in units of photons/s) Many years later it was re-
ahzed [3,4] that the fundamental limit is larger than Eq (1)
by a factor K that charactenses the nonorthogonahty of the
cavity modes This excess noise factor, or Petermann factoi,
has generated an extensive literature (see recent papers
[5-9], and references theiem), both because of its fundamen-
tal sigmficance and because of its practical importance

Theones of the enhanced linewidth usually factonze K
— K[K, mto longitudmal and transverse factors, assuming
that the cavity mode is separable mto longitudmal and trans-
verse modes Smce a longitudmal 01 transverse mode is es-
sentially one dimensional, that is a major simplification
Sepaiabihty breaks down if the cavity has an irregulär shape
01 contams randomly placed scattereis In the language of
dynamical Systems, one ciosses over from mtegrable to cha-
otic dynamics [10] Chaotic lasei cavities have attiacted
much mterest recently [11], but not in connection with the
quantum-hmited linewidth

In this papei we present a geneial theory for the Petei-
mann factor in a System with chaotic dynamics, and apply it
to the simplest case of a chaotic cavity radiatmg through a
small opening Chaotic Systems require a statistical treat-
ment, so we compute the probability distribution of K in an
ensemble of cavities with small vai lations m shape and size
We find that the aveiage of K— l depends nonanalytically
^ΤΊηΤ^1 on the transmission piobabihty T through the
openmg, so that it is beyond the leach of simple pertuibation
theoiy The most probable value o f K — l is <*T, hence it is
paiametncally smallei than the average

II. RANDOM-MATRIX FORMULATION

The spectral statistics of chaotic Systems is descnbed by
random-matnx theory [10,12] We begm by reformulatmg
the existmg theones for the Petermann factoi [8,9] m the
framework of random-matnx theory Modes of a closed cav-
ity, in the absence of absorption or amplification, are eigen-
values of a Hermitian operator H0 For a chaotic cavity, H0

can be modeled by an MX M Hermitian matrix with inde-
pendent Gaussian-distnbuted elements (The limit M—>°° at
fixed spacmg Δ of the modes is taken at the end of the
calculation) The matnx elements are real because of time-
icveisal symmetry (This is the Gaussian orthogonal en-
semble [12]) A small openmg m the cavity is described by a
leal, nomandom MX N couplmg maüix W, with N the num-
ber of wave channels tiansmitted thiough the opening (Foi
an opening of area A, Ν—2ττΛ/λ2 at wavelength λ )
Modes of the open cavity are complex eigenvalues (with a
negative imagmary part) of the non-Hermitian matrix H
= H0 — nrWWT The scattenng matnx S at frequency ω is
related to H by [13]

(2)

It is a umtary and Symmetrie, landom NX N matrix, with
poles at the eigenvalues of H

We now assume that the cavity is filled with a homoge-
neous amphfymg medmm (amplification rate 1/τη) This
adds a teim ι/2τα to the eigenvalues, shiftmg them upwaids
toward the ical axis The lasmg mode is the eigenvalue O
— ιΓ/2 closest to the leal axis, and the laser threshold is
leached when the decay täte Γ of this mode equals the am-
plification rate 1/τα [14] Near the laser threshold we need to
retam only the contnbution from the lasmg mode (say mode
numbei /) to the scattenng matrix (2),

(3)

wheie U is the matnx of eigen vectors of H Because H is a
leal symmetnc matnx, we can choose U such that £/"'
= UT, and wnte Eq (3) m the form

(4)
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where cr„ = ( — 2tn)l/2(WTU)ni is the complex couplmg con-
stant of the lasing mode / to the nth wave channel

The Petermann factor K is given by

2_
(i/1 U) u (5)

The second equality follows from the defimtion of σ,, [15],
and is the matnx analogon of Siegman's nonorthogonal
mode expression [4] The first equality follows from the defi-
mtion of K äs the factor multiplymg the Schawlow-Townes
Imewidth [16] One venfies that K^l because (

III. SINGLE-CHANNEL CAVITY

Relation (5) serves äs the starting pomt for a calculation
of the statistics of the Petermann factor m an ensemble of
chaotic cavities Here we restnct ourselves to the case N
= l of a smgle-wave channel, leaving the multichannel case
for future mvestigation For N= l the couplmg matnx W

reduces to a vector a = (Wn,W2i, , WM l ) Its magnitude
\a 2 = (M Δ/ TT2)w , where we[0,l] is related to the trans-
mission probability T ot the smgle-wave channel by T
= 4w(l +w) ~2 We assume a basis m which HQ is diagonal
(eigenvalues ω g)

If the openmg is much smaller than a wavelength, then a

perturbation theory m a seems a natural starting pomt To
leading Order one finds

(6)
(ω,-ω,,)2

The frequency Ω and decay rate Γ of the lasing mode are

given by ωι and 2 ττα2, respecüvely, to leading order in a
We seek the average (K)^ r of K for a given value of Ω and
Γ [17] The probability to find an eigenvalue at ωη, given
that there is an eigenvalue at ω ;, vamshes hnearly for small
ω9-ω;|, äs a consequence of eigenvalue repulsion con-

stramed by time-reversal symmetry Smce expression (6) for
K diverges quadratically for small |ω? — ω,\, we conclude
that (K)Ω r does not exist m perturbation theory This se-
verely comphcates the problem

We have succeeded in obtainmg a finite answer for the
average Petermann factor by starting from the exact relation

(7)

between the complex eigenvalues zq of H and the real eigen-
values ωη of H0 Distinguishmg between q = l and q=£l, and
definmg d(I=Utli/Un, we obtam two recursion relations

ζ / = ω / α d„, (8a)

p p

The Petermann factor of the lasing mode / follows from

K 2 "

(8b)

(9)

We now use the fact that z( is the eigenvalue closest to the
real axis We may therefore assume that z ι is close to the
unperturbed value ω ;, and replace the denommator Ζ;-ω9

m Eq (8b) by ω{— ωη That decouples the two lecursion
relations, which may then be solved in closed forms

/ = ω ι — ι τται ( l +1 π A)"

παααι
«—

', (lOa)

1 (10b)

The decay rate of

i 2)" 1 (n)

Smce the lasing mode is close to the real axis, we may lin-
eanze expression (9) for K with respect to Γ,

We have defined A =
the lasing mode is

;— u>q)

,̂
£=1+42

(2ττΓ/Δ)β

2 2TT2A
(12)

2

The conditional average of K at given Γ and Ω can be
wntten äs the ratio of two unconditional averages

, (13a)

(13b)

In pnnciple one should also require that the decay lates of
modes q=t=l are larger than Γ, but this extra condition be-
comes irrelevant for Γ— »0 For M-^°° the distnbution of aq

is Gaussian « expC-ljßa^/wA) [12] with ß- l The aver-
age of Z over a, yields a factor ( l + π2Α2) 1/2,

04)

where only the averages over aq and u>q(q=f=l) remam, at
fixed ω ι = Ω,

The problem is now reduced to a calculation of the jomt
probability distnbution P (A, B) This is a techmcal chal-
lenge, similar to the level curvature problem of random-
matrix theoiy [18,19] The calculation is given in the Appen-
dix, with the result

P(A,B)=-
2w B 7/2

-exp
w

2B

2 ^π Α

w

(15)
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FIG l Aveiage Petermann factor K for a chaoüc cavity havmg
an openmg with transrmssion probabihty T The average is per-
formed at a fixed decay rate Γ of the lasing mode, assumed to be
much smaller than the mean modal spacmg Δ The solid curve is
the result [Eq (16)] m the presence of time-reversal symmetry, and
the dashed curve is the result [Eq (20)] for broken time reversal
symmetiy For small T, the solid curve diverges κ In T~l while the
dashed curve has the finite hmit of π/3 For T= l both curves reach
the value 2 ττ/3

Togethei with Eq (14), this gives the mean Petermann factor

Γ 2ττ

0 0

Δ 3 _! ι Ν

2 2

-l 0;

(16)

FIG 2 Probabihty distnbution of the rescaled Petermann factor
κ=(Κ— l )Δ/ΓΓ for T= l and T<^ l The solid curves follow from
Eqs (21) and (22) The data points follow from a numencal Simu-
lation of the random-matnx model

Γ 4TTW
(20)

Δ 3 (1+νν 2 )

shown by the dashed hne in Fig l It is equal to
= 1 + 5 ττΤΤ/Δ for T<S l

So fai we have concentrated on the average Petermann
factoi, but from Eqs (11), (12), and (15) we can compute the
entire piobabihty distnbution of K at fixed Γ We define κ
= (ΛΓ-1)Δ/ΓΓ A simple lesult for Ρ(κ) follows for T= l,

Ρ(κ)=—-K~7/2exp(-7r//c), (21)

in terms of the latio of two Meijei G functions We have
plotted the result in Fig l, äs a function of T=4w(l
+ w)~2

The non-analytic dependence of the aveiage K on T (and
hence on the area of the openmg [20]) is a stnking featui e of
our result For T<\, the aveiage leduces to

and, foi T<^ l,

7Γ 7Τ 16
(17)

The nonanalyticity lesults from the relatively weak eigen-
value lepulsion in the presence of time-reversal symmetry If
time-reversal symmetry is broken by a magneto-optical ef-
fect (äs m Refs [21,22]), then the strongei quadiatic repul-
ston is sufficient to overcome the ω~2 divergence of peitur-
bation theoiy, and the average K becomes an analytic
function of T For this case, we find, instead of Eq (14), the
simpler expression

(18)

Usmg the jomt piobabihty distnbution (see the Appendix)

(7T2A2 + w2)2

3 w B5
-exp

w l ττ2Α 2

~B \~^~'
, (19)

77 7Γ

2/c
exp(-ir/4/c), <1 (22)

we find the mean K,

As shown in Fig 2, both distnbutions aie very bioad and
asymmetnc, with a long tail toward large κ [23] The most
probable (01 modal) value of K— l — 7Τ/Δ is parametncally
smallei than the mean value [Eq (17)] for Γ<11

To check our analytical results, we have also done a nu-
mencal Simulation of the random-mati ix model, generating a
laige numbei of landom matnces H0 and Computing K from
Eq (5) As one can see from Fig 2, the agreement with Eqs
(21) and (22) is flawless

IV. CONCLUSIONS

In conclusion, we have shown that chaotic scattermg
causes laige statistical fluctuations m the quantum-hmited
hnewidth of a laser cavity We have exammed in detail the
case that the couplmg to the cavity is via a smgle-wave chan
nel, but oui random-matnx model apphes more generally to
couplmg via an arbitrary number N of wave channels We
have computed exactly the distnbution of the Petermann fac
toi foi Λ/= l It remains an open problem to do the same foi
/V> l This problem is lelated to seveial recent studies of the
statistics of eigenfunctions of non-Hermitian Hamiltonians
[24,25], but is complicated by the constramt that the corre
spondmg eigen value is the closest to the leal axis Our study
of a System with a fully chaotic phase space complements
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previous theoretical work on Systems with an mtegrable dy-
namics Chaotic laser cavities of recent expenmental mterest
[26] have a phase space that mcludes both mtegrable and
chaotic regions The study of the quantum-lirmted Imewidth
of such mixed Systems is a challengmg problem for future
research
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APPENDIX: CALCULATION OF P(A,B)

Thejomt probability distnbution of the eigenvalues wq of
H0 is given by the Gaussian ensemble of random-matnx
theory

Κ-ω/exp (AI)

The level spacmg in the center of the semicircle has been set
to unity We assume that the lasmg level is at ω; = 0 (other
choices just renormahze the level spacmg) The eigenvalue
distnbution (AI) of the M-dimensional matrix H then factor-
izes mto the distnbution of a (M— l)-dimensional matrix H'
and the product β- detH'\ß

The jomt probability distnbution of A and B,

, , _ r2^
P(A,B) = \

is obtamed by averaging over the variables aq and ωη, q
Φ l Founer transformation of Eq (A2) with respect to A and
B gives

det H'2/3

'2 + 2 i w ( x H ' + y ) / T T 2 ß ] f i / 2 / H,'
(A3)

after averaging over {«,} The remammg average is over the
Gaussian ensemble of //' matrices The determmant m the
denommator can be expressed äs a Gaussian integral,

P(x,y)°r~ tr//'2-z t

X (A4)

where the M — l dimensional vector z is real (complex) for
ß= l (2)

We now decompose the matrix H' äs

H' =
H" h

(A5)

The (M-2)X(M-2) matrix H" is distnbuted accoidmg to
the Gaussian orthogonal ensemble, g is a scalar, and the
(M —2)-dimensional vector h consists of Gaussian random
variables with vanance

l w

-π' B/w + l/M

w

~MB
(A6)

We can always choose a basis in which z pomts m the di
rection of the last basis vector, so that z t//'z= z\2g Gomg
back fiom Eq (A4) to P (A,B) by Founer transformation,
two δ functions appear, allowing to integrale over g and h
The result can be expressed äs an average over H" and h

2B

Qß=
2/3

W

h H"

(A7)

(A8)

For ß=l one has now to consider

,= det//"'
H"

(A9)

where only the even terms m H" have been kept The ratio of
coefficients in this polynomial m AI B can be calculated from
the autocorrelator [27]

„ , „ „ „ <det(//"+E)(/r + £')>

{det//"2)

3 d simrx

TTX
(A10)

of the secular polynomial of Gaussian distnbuted real matn-
ces H" This is achieved by expressing the products of traces
and determmants through secular coefficients, and these then
äs deiivatives of the secular determmant Equations (A6) and
(A 10) yield

A
(All)

Insertion mto Eq (A7) and restoration of the normahzation
constant gives result (15)

For yS = 2 we have, after averaging over h, the expression

A4

B*
(A12a)

(A12b)
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(A12c)

The coefficients can now be computed from the four-pomt
correlator of the Gaussian unitary ensemble [28], yieldmg

and q2 — TT2, thus

(A13)

Combmmg the results and restormg the normahzation con-
stant, we arnve at Eq (19)
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