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Introduction. It is well known that K_ of an arbitrary field is generated by sym-

bols {a, b). In this note we prove the curious fact that every element of K2 of

a global field is not just a product of -Symbols, but actually a symbol. More precisely,

we have:

Theorem. Let F be a global field, and let G c K2(F) b.e a finite subgroup. Then

G c {a, F*} = {{a, b> | b e F*} for some a e F*.

The proof is given in two - sec.tions . In section l we prove the analogous assertion for

a certain homomorphic image- a£ K„(F), by a rearrangement of the proof of Moore 's

theorem given by Chase and Waterhouse [3]. In section 2 we lift the property to K2(F),

using results of Garland and Täte.

1. A sharpening of Moore 's theorem, Let F be a global field, i. e., a finite ex-

tension of Q or a function field in one variable over a finite field. The multi-

plicative group of F is denoted by F , the group of roots of unity in F by y,

and its finite order by m. By a prime v of F we shall always mean a prime divisor

of F which is not complex archimedean · If v is non-archimedean, then we also use

the symbol v to denote the associated normalized exponential valuation. For a prime

v of F, let FV be the completion of F at v. The group of roots of unity in

F is'called μ., and its finite order m(v) . The m(v)-th power norm residue symbol

F* x FV -»- μν is denoted by ( , )v> For all but finitely many v this map is given

by the so-ealled "tarne formula", cf. [l, sec. 1], This formula implies that, for those

v, and for all a, b e F · with v(a) «= 0, the symbol (a, b) is the unique root
/*!·. \

of unity in F which modulo the maximal ideal is congruent to a It follows

that, for any a, b e F , we have (a, b) = l for almost all v. Thus a bimulti-

plicative map

rr φί F* x F* -> φ u , <Ka, ,b) = ((a, b) )
γ V V

is induced; here v ranges over the primes of F. The image of φ is, by the m-th

power reciprocity law, contained in the kernel of the homomorphism

defined by

ψ(ζ) - π '£(ν)/η. ς- (ζν).

We need the following converse, which is a sharpening of Moore 's theorem [3].



Proposition. Let H be a finite subgroup of the kernel of ψ. Then H c φ (a, F*)

{φ(β, b) | b e F } for some a e F

The proof is a bit technical. The ingredients are taken from [3], but the strengthened

conclusion requires a reorganization of the argument which does not add to its trans-

parency. The reader may find the table at the end of this section of some help.

groof of the proposition. We begin by selecting four finite sets S, T, U, V of

primes of F.

For S we take the set of real archimedean primes of F. It can be identified

with the set of field orderings of F. If F is a function field it is empty.

For T we take a finite set of non-archimedean primes of F containing those

v for which at least one of (1), (2), (3), (4,) holds:

(3) ζγ * l for some ζ = (ζ ) e H;

(2) v(h) > 0, where h is the order of H;

(3) v(m) > 0;

(4) ( » ) is not tarne.

Note that in the function field case (2), (3) and (4) do not occur.

If F is a function field, then choose an arbitrary prime v of F which is

not in T, and put U = {v̂ }. In the number field case let U = 0.

The selection of V requires some preparation. Let R c F be the Dedekind domain

R = {x e F| v(x) > 0 for all primes v i S u U}. Every prime v i S u U corresponds

to a prime ideal of R, denoted by P . For any rational prime number £ dividing

the order h of H, consider the abelian extension F .c F(n ), where η denotes
Λ Af

a primitive £m-th root of unity. Clearly, F * F(n ), and the extension F c Γ(η )
Xj Xr

is unramified at every v i S u T. So for every v ^ S u T u U the Artin Symbol

(PV, F(n£)/F) e Gal(F(n£)/F) is defined. By Cebotarev's density theorem, cf. [2, p. 82],

it assumes every value infinitely often. Hence we can choose a finite set V of primes,

disjoint from S u T u U, 'such that

(5) for every rational prime £ dividing h there exists u e V

with (P, F(n.)/F) * 1.
u x/

Next, using the approximation theorem, we choose a e F .such that

(6) a < 0 for every ordering of F,

(7) v(a) = l for all v e T,

v(a) = 0 for all v e U,

a ~ l at all v e V

(here "~" means "dose to") . We claim that this element a has the required property.

Before proving this, we split the remaining primes of F in two parts:



W = { v | v < f S u T u U u V , v(a) * 0}

X = {v| v «i's u T u U u V, v(a) = 0}.

Thus, we .are in the Situation described by the first two columns of the table. Notice

that W is finite.

Now let ζ = (ζ ) € H be an arbitrary element. To prove the proposition, we must

find an element b e F* such that ζ = <|>(a, b), i. e., ζ = (a, b)v for all v.

By (6) and (7) we can find, for each v e S u T, an element cy e F̂  with

(a, c ) - ζ , cf. [4, lemma 15.8]. Choose c e F* close to GV at all v ε S υ Τ

and close to l at all v e W u U. Then for v e X the tarne formula teils us that

(a, c) is the unique root of unity which modulo the maximal ideal is congruent to
f ^ V

av^ . For the value of (a, c) if v i X, see the table.

We fix, temporarily, a rational prime number £ dividing h. We make some choices

depending on £. First, using (5), choose u ε V such that (PU> F(nÄ)/F) * 1. Next,

choose k e {0, 1} such that the fractional R-ideal

Q = Pk-II v PV(C)
^ u veX v

satisfies (Q, F(n )/F) * 1. Finally, using a generalized version of Dirichlet's
]Li

theorem on primes in arithmetic progressions [2, pp. 83-84], we select a prime w e X

such that

(8) P -Q = (d) (äs fractional R-ideals)

where d satisfies the following conditions:

(9) d > 0 for every ordering of F,

(10) d ~ l at all v e T,

(11) v(d) = 0 mod N, where N = m(v)-[F(n ):F], for all v e U,
Χ»

d ~ l at all v e W.
·>,

Then d has the properties indicated in the sixth column of the table, and (a, d)

is given by the seventh column. Also, (9), (10) and (11) imply that ((d), F(n )/F) = l,
Λ*

so (8) and the choice of Q give

(Pw, F(nÄ)/F) = (Q, Fin̂ /F)'1 * 1.

Therefore, P does not split completely in the extension F c Γ(η ), which is easily

seen to be equivalent to

m(w)/m ?? 0 mod £.

The table teils us that (a, c/d)v = ζγ for all v " w, so

φ(α, c/d) = ζ·θ

where θ = (θ ) is such that θ = I for all v # w. Since ζ and <f>(a, c/d) are

in the kernel of ψ, the same must hold for Θ. That means θ = l, so

4>(a, (c/d)m(w)/m) - ?m(w>/m.



We conclude that for every rational prime £ dividing h we can find a positive

integer n(£) = m(w)/m and an element b(£) = (c/d)n̂ £' of F* such that

φ(β, b(£)) - ζη(£), n(£) t 0 mod £.

Clearly, if £ ranges over the rational primes dividing h, the numbers n(£) have

a greatest common divisor which is relatively prime to h. Hence we can choose integers

k(£) with Σ£ k(£)n(£) = l mod h, and putting b = Π£ b(£)k'̂  we find

*<a. b) - π Φ(β. b(£))k(£) = ζΣ k(£)n(£) - ς.
£

This proves the proposition.

The table:

ve a ζν c (a,c)v d (*,<% (a,c/d)v

S <0 (a,c ) ~c (a,c ) >0 l (a,c )
v v v ' v v v v

T v(a)=l (a,c ) ~c (a,c ) ~1 l (a,c )
v v v v v v v

U v(a)=0 l ~1 l N|v(d) l l

V ~1 l - l - ] l

W v(a)*0 l ~1 l ~] l l

X v(a)-0 l - =av<c> v(d)=v(c) =av(d) l

2. Proof of the theorem. We preserve the notations of section l. There is a group

homomorphism

λ: K (F) -*· φ y
*· v ^

sending {a, b} to φ(3, b), for a, b e F*. A theorem of Bass, Täte and Garland

[l, sections 6 and 7] asserts that

(12) Ker(X) is finite.

Further, Täte [l, sec. 9, cor. to th. 9] has proved that

(13) Ker(A) c (K„(F))P' for every prime number p.

From (12) and (13) it is easy to see that there exists a finite subgroup A c K (F)

such that Ker(X) c Ap for each prime number p.

We turn to the proof of the theorem. Let G c K„(F) be a finite subgroup.

Replacing G by G-A we may assume that

(14) Ker(X) c Gp for every prime number p.

By the proposition of section l, applied to H = X(G), there exists a e F* such that

X(G) c X({a, F*}). We claim that G c {a, F*}.

To prove this, let N = {a, F*} n G. Then X(G) = X(N) so G = N-Ker(X), and

using (14) we find

(G/N) - (N-Ker(X))/N c (N-GP)/N - (G/N)P



for every prime number p. Thus, the finite group G/N is divisible, and consequently

G/N = {!}. It follows that G = N, so G c {a, F*}.

This concludes the proof of the theorem.
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