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Introduction. It is well known that K2 of an arbitrary field is generated by sym—
bols {a, b}. In this note we prove the curious fact that every element of K2 of
a global field is not just a product of -symbols, but actually a symbol. More precisely,

we have: .

Theorem. Let F be a global field, and let G c KZ(F) bg{a.finite subgroup. Then
G c {a, F'} = {{a, B}] b € F*} for some a e F. i

The proof is given in two.sections. In section | we prove the analogous assertion for
a certain homomorphic image- of KZ(F),' by a rearrangement of the proof of Moore's
theorem given by Chase and Waterhouse [3]. In section 2 we lif§ the property to KZ(F)’

using results of Garland and Tate. : .

1. A sharpening of Moore's theorem, Let F be a global field, i. e., a finite ex-

tension of Q or a function field in one variable over a finite field. The multi-
plicative group of F is denoted by F*, the group of roots of unity in F by y,
and its finite order by m. By a prime v of F we shall always mean a prime divisor
of F which is not complex archimedean. If v is non-archimedean, then we also use
the symbol v to denote the associated normalized exponential valuation. For a prime
v of F, let Fv be the completion of F at v. The group of roots of unity in

Fv is'called By and its finite order m(v). The m(v)-th power norm residue symbol
*

F, x F: >, is denoted by ( , )v. For all but finitely many v this map is given
by the so-talled "tame formula", cf. [1, sec. 1]. This formula implies that, for those
v, and for all a, b ¢ F:- with v(a) = 0, the symbol (a, b)v is the unique root
of unity in F: which modulo the maximal ideal is congruent to av(b). It follows

‘Ehat, for any a, b ¢ F*, we have (a, b)v =1 for almost all v. Thus a bimulti-

™

fﬁicative map
FeFE x FT = @, ¢(a, b) = ((a, b))
v

8 induced; here v ranges over the primes of F. The image of ¢ 1is, by the m-th

powet reciprocity law, contained in the kernel of the homomorphism
w='€% B, M
defined by

cm(v)/m

v =Tz, z=(z,).

We need the following converse, which is a sharpening of Moore's theorem [3].



Progosition.“ Let H be a finite subgroup of the kernel of . Then H c ¢(a, F*) =
{¢(a, B)| b € F*} for some a e F. -

The proof is a bit technical. The ingredients are taken from [3], but the strengthened
conclusion requires a reorganization of the argument which does not add to its trans-

parency. The reader may find the table at the end of this section of some help.

Proof of the proposition. We begin by selecting four finite sets S, T, U, V of
primes of F,

For 8 we take the set of real archimedean primes of F. It can be identified
with the set of field orderings of F. If F 1is a function field it is empty.

For T we take a finite set of non-archimedean primes of F containing those

v for which at least one of (1), (2), (3), (4) holds:

(1 t, * 1 for some f = (;v) € H;

(2) v(h) > 0, where h is the order of H;
€)) v(m) > 0;

(4) («, )v is not tame.

Note that in the function field case (2), (3) and (4) do not occur.

If F is a function field, then choose an arbitrary prime v of F which is
not in T, and put U = {v_}. In the number field case let U = @.

The selection of V requires some preparation. Let R ¢ F be the Dedekind domain
R={xeF| v(x) 20 for all primes v ¢ S u U}. Every prime v ¢ S U U corresponds
to a prime ideal of R, denoted by Pv. For any rational prime number £ dividing

the order h of H, consider the abelian extension F c F(nl), where denotes

n
a primitive fm-th root of unity. Clearly, F = F(nz), and the extension zF < Fln,)

is unramified at every v ¢ S U T. So for every v ¢ S u T u U the Artin symbol

(Pv' F(nz)/F) € Gal(F(nl)/F) is defined. By Cebotarev's density theorem, cf. [2, p.82],
it assumes every value infinitely often. Hence we can choose a finite set V of primes,

disjoint from S u T u U, 'such that

(5 for every rational prime & dividing h there exists u e V
with (Pu, F(nz)/F) = 1,

Next, using the approximation theorem, we choose a ¢ F* _such that

(6) a < 0 for every ordering of F,
€ v(a)
v(a)

1 for all v e T,

0 for all v ¢ U,
a~1 at all v eV

(here "~" means "close to"). We claim that this element a has the required property.

Before proving this, we split the remaining primes of F in two parts:



We{viveSuTuUuV, v(a)= 0}
X={v]v é.S uTuUvuV, v(a) =0}.

Thus, we are in the situation described by the first two columns of the table. Notice
that W is finite.

Now let [ = (;v) € H be an arbitrary element. To prove the proposition, we must
find an element b e F* such that t = ¢(a, b), i. e., Cv = (a, b)v for all wv.

By (6) and (7) we can find, for each v ¢ S u T, an element c_ € F: with
(a, cv)v =T, cf. [4, lemma 15.8]. Choose ¢ ¢ F* close to c, at all veSuT
and close to 1 at all v e Wu U. Then for v € X the tame formula tells us that
(a, ¢)_ is the unique root df unity which modulo the maximal ideal is congruent to
av(c).v For the value of (a, c)v if v ¢ X, see the table.
We fix, temporarily, a rational prime number & dividing h. We make some choices

depending on &. First, using (5), choose u € V such that (P, F(ﬂz)/F) # 1. Next,

choose k ¢ {0, 1} such that the fractional R-ideal

- pK, v(c)
Q Pu gex Pv

satisfies (Q, F(nl)/F) # 1. Finally, using a generalized version of Dirichlet's
theorem on primes in arithmetic progressions [2, pp. 83-84], we select a prime w ¢ X
such that

(8) PQ= (d) (as fractional R-ideals)

where d satisfies the following conditions:

9) d > 0 for every ordering of F,
(10) d ~1 at all v eT,
(11) v(d) = 0 mod N, where N = m(v)-[F(nz):F], for all v ¢ U,

d~1 at all v e W,

Then d has the properties indicated in the sixth column of the table, and (a, d)v
is given by the seventh column. Also, (9), (10) and (11) imply that ((d), F(nz)/F) =1,
so (8) and the choice of Q give

(_, FD/F) = (@, Fi )/ = 1.

Therefore, Pw does not split completely in the extension F ¢ F(nz), which is easily

seen to be equivalent to

m(w)/m # O mod %.

"

The table tells us that (a, c/d)v =T, for all v #w, 8o
¢(a, c/d) = -0

where 8 = (ev) is such that ev =] for all v #w. Since ¢ and ¢(a, c¢/d) are

em(w)/m -

in the kernel of ¢, the same must hold for 6. That means =1, 80

$(a, (c/nM/my o @) /o



We conclude that for every rational prime g dividing h we can find a positive

integer n(%) = m(w)/m and an element b(L) = (c/d)n(z) of F* such that
$(a, b(R)) = cn(l), n(2) # 0 mod 2. ~

Clearly, if 2 ranges over the rational primes dividing h, the numbers n(2) have

a greatest common divisor which is relatively prime to h. Hence we can choose integers

k(2 .
k(L) with Z, k(2)n(2) = 1 mod h, and putting b = I, b(L) ) we find
z k(2 2
é(a, b) = 2 i (a, b(R))k(z) - ¢ (2)n(2) _ L.
This proves the proposition.
The table: .
ve a T, c (a,e), d (a,d), (a,e/d)
S <0 (a,cv)v ~e, (a,cv)v >0 1 (a’cv)v
T v(a)=1 (a,cv)v ~e (a,cv)v ~1 1 (a’cv)v
U v(a)=0 1 ~1 1 Niv(d) 1 !
v ~] 1 - 1 - 1 1
1Y) v(a)=0 1 ~1 1 ~1 1 1
X v(a)=0 I - 2@ @) =" @ 1
(vzw) (vzw)

2. Proof of the theorem. We preserve the notations of section 1. There is a group

homomorphism
b KZ(F) — G% u,
sending {a, b} to ¢(a, b), for a, b e F'. A theorem of Bass, Tate and Garland
[1, sections 6 and 7] asserts that
(12) Ker(A) 1is finite.
Further, Tate [1, sec. 9, cor. to th. 9] has proved that
(13) Ker(}) c (KZ(F))p‘ for every prime number p.

From (12) and (13) it is easy to see that there exists a finite subgroup A c K2(F)
such that Ker(A) c AP for each prime number p.

We turn to the proof of the theorem. Let G c KZ(F) be a'finite subgroup.
Replacing G by G-A we may assume that

(14) Ker(A) c G for every prime number p.

. *
By the proposition of section 1, applied to H = A(G), there exists a e F  such that
A(G) < r({{a, F*}). We claim that G < {a, F*}.
' To prove this, let N = {a, F*} n G. Then A(G) = A(N) so G = N-Ker()), and

using (14) we find

(G/N) = (N-Rer(M))/N ¢ (N-GP)/N = (G/N)P



for every prime number p. Thus, the finite group G/N is divisible, and consequently

G/N = {1}. It follows that G =N, so G c {a, F*}.

This concludes the proof of the theorem.
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