15 î The direction of the proper motion of Grb 34 as given by PORTER has been corrected by $+^{\circ}$ 4 for orbital motion (A. N. 4543, 190, 117; 1911) supposing the primary to have double the mass of the secondary. The motion of α Aquilae has already been compared with that of the Hyades by HERBERT C. WILSON (*Lick Bull.* 214, 7, 64; 1912), but the point of convergence adopted gave too great a difference between calculated and observed direction of the proper motion. ## On the motion of the clusters χ and h Persei, by Einar Hertzsprung. In A. J. 648, 27, 187; 1913 W. S. Adams and A. Van Maanen have determined the radial velocities of 14 stars in or near the clusters χ and h Persei. They found that 9 out of these 14 stars have radial velocities of about $-43 \ km/s$ and therefore probably are physically connected. They further state that: "Two of the stars B. D. + 56°438 and B. D. + 56°593 show rather a large deviation from the mean, but perhaps no larger than might be expected for observations on faint stars having spectra of the type B 8." Nevertheless it is of interest to see, to which consequences we are lead by supposing that the 9 stars really move parallel to each other and that the discordances found in the radial velocities are due to perspective effect. A least square solution thus gave the following calculated value of the radial velocity in an arbitrary direction $$V = -299$$ 0 sin $\delta + 604$ 9 cos $\delta \cos \alpha$ - 240.7 cos $\delta \sin \alpha km/s = C_2$ corresponding to a total motion of about 700 km/s in the direction $22\frac{1}{2}h$, $+25^{\circ}$. There are too few observations to judge of the value of this somewhat improbable result. It may be wholly illusory. But still it contains a strong TABLE 1. | BD | α (1900) | 9 (1900) | O | 0—43·4 | C ₂ | O-C ₂ | |--|--|--|---|--|---|--| | + 57 494
56 438
56 470
56 522
56 530
56 568
56 593
55 612 | h m s 2 I 4I 2 4 3I 2 9 47 2 9 52 2 I2 3 2 I2 I2 2 I4 5I 2 I5 55 2 I8 I2 | + 57 56·9
57 10·4
56 33·8
56 35·4
56 40·4
56 42·4
56 47·1
56 55·8
56 9·4 | - 36·3
- 40·2
- 41·3
- 43·1
- 44·6
- 47·4 *)
- 51·4 | km/s
+ 2·3
+ 7·1
+ 3·2
+ 2·1
+ ·3
- 1·2
- 4·0
- 8·0
- 1·4 | km/s 41·3 38·0 39·4 39·7 43·2 43·7 47·7 50·3 46·9 | km/s
+ '2
+ 1'7
- '8
- 1'6
+ '1
- '9
+ '3
- 1'1
+ 2'1 | invitation to take the question up for further investigation, because, as shown in Table 1, the supposition that all the 9 radial velocities ought to be equal gives $19.2 = (\pm 4.4 \text{ km/s})^2$ for the mean square of O-C, while this square is reduced to $2.1 = (\pm 1.45 \text{ km/s})^2$ when perspective effect is assumed. TABLE 2. | BD | α(1900) | g (1900) | vis.
mag. | spectrum <i>H.D.</i> | |---|---|---|--|--| | + 56° 424
58 397
57 519
57 522
57 526
56 475
56 478
55 588
56 591
54 539
56 621
57 568
57 576
57 582
57 594
59 535 | h m I 594 2 60 66 79 89 100 102 138 158 183 192 196 228 246 289 363 | + 56 50
58 20
58 6
58 I
57 50
56 19
55 27
56 47
54 48
56 47
57 14
57 22
57 15
57 38
59 24 | m
8:0
8:2
6:50
7:65
7:8
7:7
8:9
6:84
7:46
7:51
7:42
7:30
7:20
7:98 | B8 ac A 2 ac A 0 p c B 9 A 0 p c B 2 p c B 8 c? B 9 p c A 0 ac B 1 c? A 2 p c B 3 A 0 p ac B 9 p c | | 57 634 | 40.0 | 57 15 | 8.0 | B c | Table 2 contains a list of 17 stars recommended in this connection for determination of their radial velocities. If e.g. the star $B.D.+57^{\circ}568$ to the northeast of χ and h Persei proves to have a radial velocity about 10 km/s more negative than the mean of the 9 stars (i. e. of about -53 km/s) then the probability that the stars belonging to the clusters show appreciable perspective change in radial velocity is considerably increased. Similarly the star $B.D.+56^{\circ}424$ should have a radial velocity about 10 km/s more positive than the mean (i. e. of about -33 km/s). Finally attention may be called to the following 3 stars of similar peculiar spectrum, viz. B 5p with narrow lines, lying within 1° from each other and about 7° from χ and h Persei: | B. D. | α (1900) | g (1900) | vis. magn. | |----------|-------------------------|----------|------------| | + 63°274 | h m 1 55.6 2 7.6 2 11.1 | + 63°54′ | 5.62 | | + 63°310 | | 63 34 | 8.0 | | + 63°315 | | 63 58 | 7.05 | ^{*)} Mean with PLASKETT'S value.