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Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo
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2Budker Institute of Nuclear Physics 630090 Novosibirsk Russia
(Recerved 19 July 2001 published 15 October 2001)

The overlap of two wave packets evolving 1 time with slightly different Hamultonians decays exponentially
e, for perturbation strengths U greater than the level spacing A We present numenical evidence for a
dynamical system that the decay rate y 1s given by the smallest of the Lyapunov exponent A of the classical
chaotic dynamucs and the level broadenmg U%/A that follows from the golden rule of quantum mechanics This
mmplies the range of validity U> VAA for the perturbation-strength independent decay rate discovered by
Jalabert and Pastawski {Phys Rev Lett 86, 2490 (2001)]
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The search for classical Lyapunov exponents 1n quantum
mechanics 1s a celebrated problem mn quantum chaos [1]
Mouvated by NMR experiments on spin echoes [2], Jalabert
and Pastawski [3] have given analytical evidence, supported
by computer simulations [4], that the Lyapunov exponent
governs the time dependence of the fidelity

M(t)=|(lexp(tHt)exp(—1Hot)| )], €))

with which a wave packet ¢ can be reconstructed by mvert-
g the dynamics with a perturbed Hamiltoman H=H,
+H; They have called this the problem of the ‘‘quantum
Loschmidt echo *’ The fidelity M (¢) can equivalently be -
terpreted as the decaying oveilap of two wave functions that
start out wdentically and evolve under the action of two
slightly different Hamiltonans, a problem first studied in
perturbation theory by Petes [5]

Perturbation theory breaks down once a typical matrix
element U of H; connecting different eigenstates of H, be-
comes greater than the level spacing A Then the eigenstates
of H, decomposed 1nto the eigenstates of H, contamn a large
number of non-negligible components The distribution p(E)
(local spectral density) of these components over energy has
a Lorentzian form

p(E)= @)

2m(EX+T%4)’

with a spreading width I'==U?/A given by the golden rule
[6,7] A simple calculation m a 1andom-matiix model gives

an aveiage decay Moexp(—T7) governed by the same
golden 1ule width This should be contrasted with the expo-

nential decay M ocexp(—N\f) obtamed by Jalabert and Pastaw-
ski [3], which 1s governed by the Lyapunov exponent \ of
the classical chaotic dynamics

Simce the tandom-matizx model has by construction an
mfinite Lyapunov exponent, one way to unify both results
would be to have an exponential decay with a 1ate set by the
smallest of I' and A We will m what follows present nu
metical evidence for this scenatio, using a dynamical system
m which we can vary the 1elative magnitude of I and A
Thete exists a third energy scale, the inverse of the Ehrenfest
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time 7, that 1s smaller than the Lyapunov exponent by a
factor logarithmic in the system’s effective Planck constant
In owt numerics we do not have enough orders of magnitude
between 1/7 and A to distingumish between the two, so that
our findings 1emamn somewhat inconclusive in this respect
Because I' cannot become bigger than the band width B
of Hy (we are mterested mn the regime H;<<H;), a conse-

quence of a decay M ocexp[ —¢ mun(\,I)] 1s that the regime of
Lyapunov decay can only be reached with increasing U 1f A
1s considerably less than B That would exclude typical fully
chaotic systems, in which N\ and B are comparable, and set
limits of observability of the Lyapunov decay

The cirossover from the golden rule regime to a 1egime
with a perturbation-strength ndependent decay, obtained
hete for the Loschmidt echo, should be distinguished from
the coriesponding crossover in the local spectial density
p(E), obtained by Cohen and Heller [8] The Fourser trans-
form of M(¢) would be equal to p(E) 1f ¢ would be an
eigenstate of H rather than a wave packet The choice of a
wave packet mstead of an eigenstate does not matter m the
golden rule regime, but 1s essential for a decay rate given by
the Lyapunov exponent

The dynamical model that we have studied 1s the kicked
top [9], with Hamultonian

Ho=(m/27)8, +(K/28)S?>, &(t—n7) (3)

It describes a vector spin (magmtude S) that undergoes a free
precession around the y axis perturbed pertodically (period
7) by sudden 10otations around the z axis over an angle pro-
pottional to S, The time evolution of a state after n periods
1s given by the nth power of the Floquet operator

Fo=exp[ —1(K/2S)S2]exp[ —i(7/2)S,] )

Depending on the kicking strength K, the classical dynamics
18 regular, paitially chaotic, o1 fully chaotic The dependence
of the Lyapunov exponent X on K 1s plotted i the inset to
Fig 1 (c¢f Ref [10]) The error bais ieflect the spread m A\ 1n
different 1egions of phase space, 1n particulai the piesence of
islands of stability For K=9 the enor bars vanish because
the system has become fully chaotic For the 1eversed time
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FIG 1 Decay of the average fidelity M for the quantum kicked
top with K=13 1 and §=500, as a function of the squared rescaled
time (t)> The perturbation strengths range between ¢=10"7 and
1076 The straight line corresponds to the Gaussian decay (6) valid
n the perturbative regime Inset Numerically computed Lyapunov
exponent for the classical kicked top as a function of the kicking
strength K Dots correspond to averages taken over 10* mitial con-
ditions (see Ref [10]) The error bars reflect different results ob-
tamned with different mitial conditions The vanishing of error bars
indicates the disappearance of 1slands of regular dynamics

evolution we troduce as a perturbation a pertodic rotation
of constant angle around the x axis, slightly delayed with
respect to the kicks H,,

H =¢8>, 8(t—nt—eé) (5)

The conesponding Floquet operator 18 F=exp(—1¢S,)Fy
We have set =1 and in what follows we will also set 7
=1 for ease of notation

Both H and H, conserve the spin magnitude We choose
the 1nitial wave packets as coherent states of the spin SU(2)
group [11], 1e, states that minimize the Heisenberg uncer-
tainty m phase space (in our case on a sphere of fixed radius)
at the effective Planck constant h.~S~! The conespond-
ing Ehrenfest time 1s 7p=\""In S [12] We take §=500 and
average M(t=n)=|(|(F")"F§|y}|* over 100 mitial coher-
ent states i

We first show results 1n the fully chaotic regime K>9,
where we choose the mrtial states randomly over the entire
phase space The local spectial density p(a) of the eigen-
states of F (in the basis of the eigenstates of Fy with eigen-
phases «) 1s plotted for three different ¢’s 1 the mset to Fig
2 The cuives can be fitted by Lorentzians fiom which we
extiact the spieading width I" (It 1s given up to numerical
coefficients by I'=U?/A, U=¢\/S, A=1/S) The golden
rule regime F'=A 1s entered at ¢, ~17X107* For ¢<d,
we aie 1 the pertutbative regime, wheie eigenstates of F do
not appieciably differ fiom those of F and eigenphase dif-
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FIG 2 Decay of M 1 the golden rule regime for kicking
strengths K=13 1, 17 1, and 21 1 as a function of the rescaled time
$%t Perturbation strengths range from ¢=10"% to 1073 Inset
Local spectral density of states for K=131 and perturbation
strengths ¢=2 5%1074,5%10 4,103 The solid curves are
Lorentzian fits, from which the decay rate I'=0 84q§2$2 1S ex-
tracted The solid line mn the mamn plot gives the decay M
ocexp(—T'7) with this value of I’

ferences can be calculated 1n fiist-order peiturbation theory
We then expect the Gaussian decay

Mocexp(—U?t?)=In Mo ( pt)* (6)

This decay 1s evident in Fig 1, which shows M as a function
of (¢1)? on a semilogarithmic scale for <1076 The decay
(6) stops when M approaches M= 1/2S, bemng the mverse
of the dimension of the Hilbert space This saturation 1eflects
the finiteness of the system and eventually prevails at long
times mdependently of the strength of the perturbation

For ¢> ¢. one enters the golden rule regime, where the
Lorentzian spreading of etgenstates of F over those of F
results m the exponential decay

Mocexp(—U?t/A)Y=1n Mo ¢t 7

The data presented m Fig 2 clearly confirm the valhdity of

the scaling (7) There 1s no dependence of M on K m this
regime of moderate (but nonpertuibative) values of ¢, 1¢e,
no dependence on the Lyapunov exponent (A varies by a
factor of 14 for the different values of K in Fig 2)

We cannot satisfy A<<I" m the fully chaotic regime, for
the 1eason mentioned 1n the Introduction The band width B
(which 1s an upper lmit for I') 1s B= /2 (m unuts of 1/7),
while A= 1 for fully developed chaos 1n the kicked top (see
the mset to Fig 1) For this 1eason, when the perturbation
stiength ¢ 1s further increased, the golden 1ule decay 1ate
saturates at the bandwidth — before 1eaching the Lyapunov
exponent This 1s shown m Fig 3 There 1s no tiace of a
Lyapunov decay m this fully chaotic 1egime
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FIG 3 Decay of M 1n the golden rule regime without rescaling
of time, for k=131, ¢=;%x10 3, (¢=1,152, 5) (sold
curves) and K=211, ¢=3x10"3 (arcles) Dashed and dotted
limes show exponential decays with Lyapunov exponents A=1 65
and 2 12, corresponding to K=131 and 21 1, respectively The
decay slope saturates at ¢~2 5X 1073, when I" reaches the band-
width

We therefore reduce K to values in the range 2 7=K
=42, which allows us to vary the Lyapunov exponent ovel
a widet range between 022 and 072 In this range the clas-
sical phase space 1s mixed and we have coexisting regulai
and chaotic tiajectortes We choose the n1tial cohelent states
m the chaotic region (1dentified numerically through the pai-
ticipation ratio) Because the chaotic region still occupies
more than 80% of the phase space for the smallest value of K
considered, nonuniversal effects (e g , nonzeto oveilap of our
mnrtial wavepackets with regular eigenfunctions of Fy or F)
should be negligible We expect a crossover from the golden
rule decay (7) to the Lyapunov decay [3]

M=exp(—\t)=>In M =\t, (8)

once I' exceeds N This expectation 1s botne out by our nu-
metical simulations, see Fig 4

In conclusion, we have presented numerical evidence for
the existence of thiee distinct regimes of exponential decay
of the Loschmidt echo the petturbative regume (6), the
golden rule 1egime (7), and the Lyapunov 1egime (8) The

]

5 10 15 20 25
At

FIG 4 Decay of M m the Lyapunov regime, for ¢
=21X1073, K=27,33,36,39,42 The time 1s rescaled with the
Lyapunov exponent A, ranging from 022-072 The straight solid
line 1ndicates the decay Mocexp(—Af) Inset M for K=42 and
different ¢=;x 10 4, ;=1,2,3,4,59,17,25 The decay slope satu-
rates at the value ¢p=~17X 1073 for which T'=~\, even though I’
keeps on increasing This demonstrates the decay law M
ocexp(—y) with y=mmn,\)

petturbation strength independent decay m the Lyapunov re-
gime 1s reached 1n our simulation 1f A<T", which prevents 1ts
occurrence for fully developed chaos in the model consid-
ered here Our numetics are limited by a relatively small
window between N\ and 1/7g (a factor In S~6) It temains to
be seen 1f the Lyapunov decay can be observed under con-
ditions of fully developed chaos and I'<<\ by mcreasing S so
that 1/7¢ becomes larger than I' It 1s noteworthy that for a

Lyapunov decay M oexp(—Af), the saturated fidelity M.,
=1/28 1s reached at the Ehrenfest time 7 (as can also be
seen 1 Fig 4), so that a Lyapunov decay for 1< 7¢ rules out
golden rule decay for later times Similar investigations 1n
strongly chaotic systems with small Lyapunov exponents
(like the Bummovich stadium with short straight segments)
are highly desitable
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