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We calculate the concentration-dependence of the short-time self-diffusion coefficient Ds for
sphencal particles m Suspension Our analysis is vahd up to high densities and fully takes mto
account the many-body hydrodynamic interactions between an arbitrary number of spheres. The
importance of these many-body interactions can be mferred from our calculation of the second vinal
coefficient of D,.

1. Introduction

It is well-known that properties of a Suspension of particles in a fluid (e.g.,
diffusion, Sedimentation, viscosity) are concentration-dependent, due to direct
interparticle interactions and due to a coupling of their motion via the fluid. This
coupling is called hydrodynamic interaction and is the subject of our investigation.

The influence of hydrodynamic interactions on properties of suspensions can be
studied conveniently by analyzing the concentration-dependence of the so-called
short-time self-diffusion coefficient of uncharged spherical particles in Suspension.
This quantity (which we denote by Ds) describes diffusion of a single "tracer"
particle on a time-scale, over which the spatial configuration of the particles is
essentially constant1·2). If the mobilities of the spheres are known-as a function
of their positions - it is possible to calculate Ds by means of a generalized Einstein
relation3), which relates Ds to an average of these mobilities over all the
configurations of the spheres. Experimentally the short-time self-diffusion
coefficient can be determined from dynamic light-scattering studies: the initial
decay of the auto-correlation function of the scattered field at large values of the
scattering vector yields values for Ds

4).
If the Suspension is sufficiently dilute we can assume the hydrodynamic

couplings to be pairwise additive, i.e. we need to consider only two-body
hydrodynamic interactions. Most theoretical treatments of properties of sus-
pensions are restricted to this low-density regime*: the linear density corrections

* An exception is formed by Muthukumar et al., who included many-body hydrodynamic
interactions in their analysis of Darcy-flow (cf. ref. 5 and the references therem).
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to the values at infinite dilution of Ds and of the bulk-diffusion coefficient were
calculated by Batchelor3) and by Felderhof6) and Jones7) Batchelor used gener-
ahzed Einstein relations for these coefficients, while Felderhof and Jones based
their analysis on a Fokker-Planck equation m the many-particle coordmate space
Their results were equivalent For the case of bulk-diffusion the value of this first
vinal coefficient has been confirmed by expenments8)

Recent theoretical results on many-body hydrodynamic mteractions9) (see also
ref 10) enabled us to extend the analysis of Batchelor3) to mclude second-order
density corrections As we reported in ref 11, we could conclude from our
calculations that three-body hydrodynamic mteractions may not be neglected if
the Suspension is not dilute (see m this connection also ref 12) At still higher
densities one will have to take mto account the füll many-body hydrodynamic
interaction Moreover, an expansion in the density (a "vinal expansion") is not
appropnate in this high-density regime

In the present work we present a theory for the concentration dependence of
the short-time self-diffusion coefficient Ds, which is vahd up to high densities and
which fully takes mto account the many-body hydrodynamic mteractions between
an arbitrary number of spheres In section 2 we summanze the expressions for the
many-sphere mobihties9) and denve a few formulae for later use, by means of an
Einstein relation1) we can express Ds m terms of these mobihties, cf eqs (3 2) and
(316)

In the latter equation the contnbutions due to hydrodynamic mteractions
between clusters of 2, 3, 4, 5, spheres are formally resummed In the sections
5, 6 and 7 we evaluate Ds äs the average of an expansion m powers of the
fluctuation m the concentration of the suspended particles The zeroth order
approximation (no density fluctuations) can be called an effective medium or
contmuum theory for the self-diffusion coefficient, which can then be expressed
m terms of an effective viscosityt We will mclude m our calculation of Ds the
lowest (second) order correction due to fluctuations m the concentration From
our numencal results we can conclude that this fluctuation expansion can descnbe
the concentration dependence of Ds reasonably well up to high densities

Eq (3 2) on the other hand is a suitable startmg pomt for a vinal expansion
in the volume fraction φ Details on the calculation of the second vinal coefficient
of Ds (i e the coefficient of the term of order φ2) are given m section 4 (cf ref
11 where also the bulk-diffusion coefficient was calculated to the same order in

0)
Fmally m section 8 we discuss our results and compare them with

expenments14)

t The Clausius-Mossotti formula for the dielectnc constant can similarly be regarded äs the zeroth
order result from a fluctuation expansion Bedeaux and Mazur13) have investigated m this context the
deviations due to density fluctuations
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2. Mobilities

Consider N equal-sized spherical particles with radius a and position-vectors R,
(i = \,2,.. . N), moving in an incompressible fluid with viscosity η, which is
otherwise at rest. We describe the motion of the fluid by the linear quasi-static
Stokes equation, supplemented by stick boundary conditions at the surfaces of the
spheres. The velocity «, of sphere i can be expressed äs a linear combination of
the forces Kp exerted by the fluid on each of the spheres j

«,= -£>„·*;, i = \,2,...N. (2.1)
;=i

The mobility tensors μν depend on the configuration of the N spheres; a term in
μν which depends on the positions of s spheres is said to reflect s-body
hydrodynamic interactions. In eq. (2.1) we have assumed that the fluid exerts no
torque on the spheres, i.e. each sphere can rotate freely.

The general expression for the mobilities, äs derived in ref. 9, has the structure
of an infinite series of reflections or scatterings from the spheres,

CG oo co cc N N

(6κηα)μυ=1δι] + Α^+Σ Σ Σ ··· Σ Σ Σ ···
5 - 1 / ί 7 [ = 2 η ΐ 2 = 2 mi = 2 7ι = l 72 = 1

J\*'Jl*J\

x Σ Λ<,';"·> Ο Α'"1""11''1 ΟΑ^Ο .. Q BÖ»"»·'*-1 Q Α%Λ),
Λ = Ι

Λ ^ Λ - υ

(2.2)

and is given äs a sum of products of tensors called connectors. The connector
A(y'm\i Φ]} is a tensor of rank n + m, which characterizes a hydrodynamic
interaction between a force multipole of order « on sphere i and a multipole of
order m on sphere j. This connector is a function of Ru = Rj — Rt of order
(a/\R,j\)"+m~l and hence, for large Separation of the spheres, low values of n and
m dominate. By defmition these connectors are zero for i =j. The tensor B(m-m'>~1

is a generalized inverse of a tensor B(m-m) of rank 2m, which does not depend on
the positions of the spheres. The notation A%'m)QB(m<m)~l prescribes an m-fold
contraction, with the convention that the last index of the first tensor is contracted
with the first index of the second tensor, etc.

The general expressions for the connectors are (cf. ref. 9)

XU"'m) = 0, (2.3)

Γ Γ
Α^ = dr \dr'S(R,-r)S(RJ-r')A(n-m\r'-r), i ¥=j, Rv\>2a, (2.4)
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with the connector field A<-nm\r) given by

/4 \ 9
'* '(ak)~2

sm(afc)

The tensor ß < 2 2 ) ~ ' is given by*

ß<22) l = _ 1^(22) (26)

The tensor £<"""> for m ^ 3 is defined, in terms of the connector field (2 5), äs

β (m m) = _ ^ (m m)(r = Q), W 3ϊ 3 (2 7)

The mverse of this tensor is evaluated exphcitly below
In the above equations (In - 1)" = l 3 5 (2n - 3) (2« - 1), k = \k\,

k = k/k The notation bp denotes an irreducible tensor of rank p, \ e , a tensor
traceless and Symmetrie in any pair of its mdices, constructed from a jp-fold
ordered product of the vector b (in the present context b Stands for d/d(ak)) For
p = l , 2, 3 one has (see e g ref 1 5)

frq = b„ b^bß = bj}„ - 5 δΛβ[) 2,

'bjbfi = bjbfa - ^ (V. + V/i + VJ*2

The tensor Δ (2 2) used in eq (2 6) belongs to a class of tensors /l (" "' of rank 2n,
which project out the irreducible part of a tensor of rank n

Λ<" "> O b" = A" Ο Λ (" "> = Ä"1 (29)

For n = l, 2 we have15)

Λ^"= {?}αί = ^ap, ^2 IQ)

^ = ̂ A+*M/H-5M*

The general expression for the mobihties äs a function of the positions of the
spheres (2 2) constitutes an expansion m the mverse interparticle distance \/R An
explicit evaluation up to and mcludmg terms of order (\/R)7 can be found in ref
9

Eqs (2 3)-(2 10) define m pnnciple all the quantities appeanng m the expression
(2 2) for the mobihties For later use it is convement to rewnte the connector field
(2 5) (from which connectors are formed accordmg to eqs (2 4) and (2 7)) in a

* The tensor ß(2 2) ' defined here corresponds to ß(l! ̂  ' m ref 9
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somewhat different form, using the identity

V/2

dk> k (2.11)

where Jp+\ß is the Besselfunction of order p + 1/2. Eq. (2.11) follows from the
definition16)

/ 2,/c \ - sin /c
p+l/2 \π) k

and the relation17) (which can be proven by induction)

If we now define a Fourier-transformed connector field

r
A(n-m)(k) = dr ^•'A("'m\i·), (2.14)

·/

we have, in view of eqs. (2.5) and (2.11),

A("'"'\k) = (-na2}-(2n - l)!!(2m - 1)!! (-i)"'-"-(a/c)-3

χ J„_l/2(ak)Jm_l/2(ak)k^(l - M)̂ .̂ (2.15)

The above relation may be used to evaluate the tensor B(m-m) explicitly for
m ^ 3, since (cf. eq. (2.7))

<»>.»>> = _ (2π)-3 U2 dfc akA{m'm\k\ m ̂  3 . (2.16)

The scalar part of the above Integration may be evaluated with help of the formula
(ref. 16, p. 679)

(2.17)

Using, for the angular Integration in eq. (2.16), the results given in appendix A
(see eq. (A.9)), we find the explicit expression

-
2 V "· ^ 2m + l

m- l , , nJ(»-l,m-l) o *-2 d («-l.«-l) ) W ^ 3 , (2.18)

2m — l
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where the symbol O' denotes an /-fold contraction. The tensor A(m~l-*d-m~v is a
tensor of rank 2m with elements

A(m-\,id.m-l) _ S A(m-\,m-\) (J 1 Q\
ä<H <*„, - l./W, < S m _ , - ö/fy^a, «„_ , ,« , Ä m _ | · l/- l yj

This tensor acts äs a unit tensor when contracted with a tensor 7(m) of rank m,
which is irreducible (traceless and Symmetrie) in its first m — l indices*

J (m - l id.», -1)Q 7-(m) _ y(m) _ (2.20)

The tensor B(m'm)~l (m > 3) appearing in eq. (2.2) is the generalized inverse of
ß(m,m) jn ̂  Space of tensors of rank m which are irreducible in their first m — l

indices. It is therefore determined by the equation

(2.21)

The result

- \)\(2m - 3)ü

o , „ _ 2 ^ ( m _ l m _ 1 ) ^ ^ ^ 3
m — 2 2w — l

may-with help of the formulae (A.3)-(A.5) in appendix A-be checked by
Substitution in eq. (2.21).

We recall that β<2·2>~' is defined in eq. (2.6).

3. Self-diffusion

The short-time self-diffusion coefficient Ds is related to the mobilities discussed
in section 2 by a generalized Einstein relation3)

Α (3.1)
i /

where { · · · ) denotes an average over all configurations of the ./V spheres inside
a volume K. We denote the temperature and Boltzmann's constant by T and kB,
respectively. The short-time self-diffusion coefficient Ds describes the diffusion of
a single "tracer" particle, over distances small compared to the interparticle
Separation (see in this connection the discussion in ref. 2). Combining eqs. (2.2)
and (3.1) we obtain (see also eq. (2.3))

* Notice that A(j"} is by definition irreducible m its first n - l and last m - l indices
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co α> Ν Ν Ν

Σ ··· Σ Σ Σ · · · Σ Α

Oßf"1!·"1''-' o A(™2
-m2)O · · · O ß(m"m'^' O A^'0 , (3.2)

where we have defined

l . (3.3)

Thus for isolated spherical particles Ds = D01, the familiär Stokes-Einstein result.
Eq. (3.2) will be the starting point for the virial expansion of Ds, evaluated up

to second Order in section 4. In order to study also the behaviour of Ds at higher
densities, we will cast this equation in a different form, which permits a formal
resummation. We first redefine the connector field in the following way

Ä("-'"\r) = A(n-m\r) i f r ^ O , Ä(n-m\r = 0) = 0 . (3.4)

If we now use definition (2.4), eq. (3.2) becomes

··· Σ f dr0 f dr , . . . f dr,
/«j = 2 J J Jτ = l m\ = 2

/ N N N

x( y ö(R, — rn) y δ (R, — r , ) . . . y\ /_, \ / U/ £j V 7| l/ /_,

χ^·(ΐ.»ι)(Γ, _r0) O ß(""·""'-' O ... O 4(l"-1)(ro-'-i)> . (3.5)

Note that the introduction of the modified connector field Ä("-m}(r) enabled us to
perform the summations over the particle indices without restriction. Due to
homogeneity of the Suspension, the integrand in eq. (3.5) is invariant under a
translation of the particle position vectors over r0. After a change of Integration
variables eq. (3.5) takes the form

00 00 00 Γ [" t"

DJD0 = 7 + «„-' Σ Σ · - · Σ dr, dr 2 . . . dr,
t = l m, = 2 m, = 2 J J J

x <n(r = 0)A(l-m<\ri)n(r]) Q β<"Ί·"Ί>-' Q Ä{m^'^(r2 - r,)

x «(1-2) O ... Oß('""'"l>"' Q^^'-'^-r,)) , (3.6)

where the microscopic density field, with average n0 = 7V/V, is given by

/ i ( r )= |a (Ä, - r ) . (3.7)

Eq. (3.6) may alternatively be written in operator notation

00 00 CO

DJD0=1+n0-
1 Σ Σ ··· Σ <{«^(1''"')«0ß(m"m')-'

s = l m\ = 2 '"5 = 2
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where n and Ä("'m) (written without argument) are linear integral operators with
kernels

n(r r') = n(r)ö(r' - r) , (3.9)

Ä("-m\r \ f ') = Ä(n-m\r' - r) . (3.10)

We see that in r-representation n is a diagonal operator and Al"'m) a convolution
operator. The notation { . . . }(0 | 0) prescribes an evaluation of the kernel of the
operator between braces at r =r' = 0.

Next we define matrices stf and 38 ~ ' with elements

·">, (3.11)

mB(m'm)~' (3.12)

and projection operators P and Q = l — P

(P}„.m = δη1δαί, {ß}„,m = önm - δαίδΜΐ . (3.13)

With these notations we may write e.g.,*

(3.14)
m = 2

and eq. (3.8) takes the form

00

DJD0= 1+n0~
l X /><{n^(«Qi?-Vy}(0|0)>P. (3.15)

This equation can formally be resummed to yield

DJD0= 7+/7<r1P<{n^(l-nö^^1^)"1}(0|0)>P, (3.16)

where we have used the fact that, in view of definition (3.4),

P({n^}(0 \ 0)>P = V^'V = 0) = 0 . (3.17)

We remark that it is possible to derive eq. (3.16) algebraically from eqs.
(5.2)-(5.5) of ref. 9, in a way which does not require a resummation. Eq.
(3.16)-which contains the füll hydrodynamic interaction of the N spheres-will
be the starting point for the expansion of £>s in correlations of density fluctuations,
performed in section 5.

4. The virial expansion

For a dilute Suspension it is appropriate to express the short-time self-diffusion
coefficient Ds äs a power series in the density n0 (a so-called virial expansion). We

* To be more precise: the r.h.s. of eq. (3.14) is a matrix with the l.h.s. äs the only non-zero element.
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shall evaluate this series up to and including terms of second order in the density.
Up to this order we need consider only two- and three-body hydrodynamic
interactions, since the probability that a given particle has s neighbours is of order
«o- The contributions to the virial expansion of Ds originating from two- and
three-body hydrodynamic interactions are discussed separately in subsections 4.1
and 4.2, respectively.

4.1. Two-sphere contributions

A restriction of μν to terms which depend on the positions of at most two
spheres has the following expansion in powers of 1/Ä18·9)

(67i??a)/<„(two-spheres) = 7 + £ ( - — }(a/Rlk)
4flkflk

* / < \ V

+ Σ ^(a/R,k)
6(l05flkf,k- l71) + (9(a/R)*. (4-1)

k*i 16

Here the vector R,k = Rk — R, has magnitude R,k = \R,k\ and direction flk = R,k/R,k.
Substitution of eq. (4.1) in eq. (3.2) yields for the two sphere contributions to Ds

r
DJD0 (two-spheres) = 7 + «0 d/?g(7?)

J

x f - — (a/R)'ff + — ( a / R ) 6 ( \ 0 5 f f - 1 7 7 ) ) , (4.2)
V 4 16 /

where g (R) denotes the pair-distribution function for two spheres separated by
R. Up to order «0 we have (see e.g. ref. 19)

0, if R < 2a ,
4 / ι \

l + -πα3«0 8 - 3R/a + — (R/a)3}, if2a^R^4a, (4.3)
3 V 16 /

1, i f ^ > 4 a .

An elementary Integration gives the required first and second order density
corrections to D0 due to two-body hydrodynamic interactions

Ds(two-spheres) = D01[\ — \.Τίφ — 0.93</>2 + @(φ3)], (4.4)

where φ is the partial volume or volume fraction of the spheres

φ=Ιπα\. (4.5)

4.2. Three-sphere contributions

Of the three-sphere terms in the expansion of μ,, in powers of l/R we have
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retained the dominant one (which is of order R ~ 7), evaluated in ref. 9,

(6ro/a)Al(three-spheres) = Σ £ -
k*il*i,k 1

(4.6)

where ξ, = »V/v, 4 = *V ^w* £/=^/, '% are direction-cosines. The three-sphere
contribution to Ds is obtained by averaging eq. (4.6) with the three-sphere
distribution function g(Rl2, RU, Ra), given in lowest order by

After three trivial angular integrations, we are left with a three-dimensional

integral over a complicated domain, determined by eq. (4.7). This integral was
evaluated numerically using Monte-Carlo techniques*. The resulting three-sphere
contribution to Ds is

Ds(three-spheres) = £>07[1.8002 + Θ(φ^)} . (4.8)

If we add eqs. (4.4) and (4.8) we obtain the virial expansion of Ds up to second
order in the density (communicated by us in ref. 11)

D,(two- and three-spheres) = D01[\ - 1.730 + 0.8802 + &(φ*)] . (4.9)

The term of order φ is well-known3·7). Batchelor3) used exact expressions for the
two-sphere mobility tensors and found — 1.830 for the correction of order φ.

Comparison with eq. (4.9) shows that the terms of order R ~8 and higher neglected
in eq. (4.1) are not very important. Concerning the three-sphere contributions
neglected in eq. (4.6) (of order R~9 and higher), we can say the following: a

calculation of the contribution to Ds due to one of the three-sphere mobility terms
of order R ~9 givesf about 1% of the value in eq. (4.8), which results from the only
term of order R ~7.

We defer a discussion of our result (4.9) to section 8.

* Use was made of the adaptive stratifled Monte-Carlo Integration program RIWIAD20)
t Using the notation of ref. 9 we found that the sequence of connectors

G(12s)(/f,)ß(2l2j)"' H(2sl>)(Ä12

contnbutes - Ο.ΟΙδφ2 to DS/O0.
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5. The fluctuation expansion

The fluctuations in the microscopic density field are defined by

The average (δη(r)) equals zero by definition, while21)

(ön(r)on(r')} = «0^(1·' - r) + n%g(\r' - r ) - 1], (5.2)

with g (r) the pair distribution function.
Our aim is to expand the expression between braces in eq. (3.16) in powers of

δη. This can be done most conveniently by using first the identity (A is an
arbitrary operator)

[l — («o + δη)Α]~ι = (l — n0/4)~'[l — δηΑ(\ — n0A)""']"' . (5-3)

Substitution of (5.1) in eq. (3.16) gives, with the aid of (5.3), the alternative
expression for Ds

where the renormalized matrix of connectors «s/„0 is defined äs

'j*]-1. (5.5)

This renormalization accounts for the fact that fluctuations in the concentration
of the spheres interact hydrodynamically via the Suspension rather than through
the pure fluid.

If we expand the expression between braces in eq. (5.4) in powers of δη, we
obtain an expansion of Ds in correlations of density fluctuations of higher and
higher order (a "fluctuation expansion")

(5.6)

where D^' contains terms of order ((<5ny).
The zeroth order term D<0) is given by

Df/A, = 7 +<'>('· =0), (5.7)

where the renormalized connector field A(^'"\r) is the kernel of the convolution
operator A(^m\ which in turn is an element of the matrix stfn<j

The renormalized connector field will be evaluated in the next section; an explicit
expression for D f } is given in section 7.

We will include in our calculation of £>s the lowest order correction to D f ] due
to fluctuations in the concentration of the suspended particles. This correction Dp'
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results from terms of Order {(δ«)2) in eq. (5.4) and is given by

(5.9)

or, written out explicitly,

D<2)/Z)0 = Σ A^m\r = °) O B('"'m}~1 QA%»(r = 0)

+ f «o [
m = 2 J

+ «2 dr
m = 2 k = 2 J

O ß("}" Ο Λ£»(- r')fe(|r' - r|) - 1] . (5.10)

Use has also been made of eq. (5.2). The contributions to D<2) result from
pair-correlations (the terms containing g (r) — 1) and from self-correlations which
would also be present in the hypothetical case of penetrable spheres.

6. Evaluation of the renormalized connectors

According to eqs. (5.5) and (5.8) the renormalized connector field A("^m\r) is
formally given by

4£m)(r)=<*<"'m)('-)+Z Σ . . . Σ «5 d r , . . .
t = l m, =2 m, = 2 J

Ο βί"*!."·!)-1 o Ä(m^\r2 - η) O . - . O S«"1··"1''-1 O 4(m-m)(r - rs) ,

(6.1)

cf. also the defmitions (3.10)-(3.13). We observe that we may replace Ä("'m\r)
under the integral in eq. (6.1) by A("~m\r), since these two connector fields differ
by a finite amount in a single point only, cf. eq. (3.4). Hence, in terms of the
Fourier-transformed connector field defined in eq. (2.14), eq. (6.1) takes the form

A^m\r) = Ä"'m\r) + f Σ ··· Σ «ο(2π)"3 dÄe-'*'rXl("'"'')(Ä)
s=\ m\=2 mv = 2 J

O ßC"..'».»-1 o X»(m"M2)(Ä) O ... O ß(m"m')~1 O A^'m\k) . (6.2)
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To proceed we make use of the formula (proven in appendix B)

(«/>) . ( P F ) " * . (P m) ("'«) 9

2 p

(6.3)

with the definition

e2 = 5/9, t„=\ (p>3). (6.4)

The volume fraction φ is defined in eq. (4.5). Using well-known formulae for
Bessel functions (cf. appendix C), we can analytically perform a summation over
p in eq. (6.3)

£ noA
M(k) Q fiep·'»-' o A^-^k) = - (t>S(ak)A(n-m\k), (6.5)

p = 2

where the function S(x) is given by

9
S(x) = - [Si(2x)x ~' + \ cos(2x)x-

2 + + sin(2x)x ~3

— (sin x)2x ~4 — 4(sin χ — χ cos x)2x ~6]. (6.6)

Here the sine-integral Si(2x) is defined by

Ix

Si(2*)= | s i n / / i d i . (6.7)
»/

o

For small values of x, S (χ) behaves äs

S(x) = 5/2 + &(x2). (6.8)

With the aid of formula (6.5) we can resum the formal expansion (6.2) to yield
the required expression for the renormalized connector field

) ] - 1 . (6.9)

We remark that äs a consequence of the expansion (6.8), we have for r large

A^m\r) =A^m\r)(\ +f^)-1[l + &(a/r)2]. (6.10)

We thus see that the ränge of a renormalized connector is the same äs the ränge
of an unrenormalized one, or, in other words, the hydrodynamic interaction is not
screened in the effective medium.

For the fluctuation expansion we need in particular the value A{"<m\r = 0) (cf.
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eqs. (5.7) and (5.10)). Using, for the angular Integration in eq. (6.9), the results
(A.9)-(A.l 1) from appendix A we find

00

A(„\, "(r = 0) = - 1 \akk-^J}l2(k)<i)S(k-)[\+<l>S(k)}~{ , (6.11)
J
0

ß(m "°~ ' O A<% ""(r = 0) O ß('"-mr '
00

r
= ß ( '"-" l )-'(2w~l) dfcfc-'y^p^SWn + ^SXÄ:)]-1, wi 2*2 , (6.12)

·/
0

A^'" + 2\r = 0) = XJ<;1 + 2m)(i- = 0) = - \(m + l)!(2w - l)!!^(m + 1 "! + 1)

CG

χ f dA * -'/„,_ 1/2(Λ M„ + ,ß(k)<l>S(k )[1 +</W(/:)r1 , (6.13)

o

4^"°(r =0) = 0 if Λ; ̂ w and « ?tw ±2, (6.14)

where ß(m 'm)~'(m > 2) is given by eqs. (2.6) and (2.22). The remaining one-
dimensional integrations in the above equations may be performed numerically.

7. Numerical results for the fluctuation expansion

In section 5 we have written the fluctuation expansion of the short-time
self-diffusion coefficient /?s in the form

Ö^Df + Df + . . . , (7.1)

where D[p] contains terms of order ((<5«y), i.e. correlations of density fluctua-
tions of order p.

From eqs. (5.7) and (6.11) we obtain for Df the expression
X

/ 2 Γ
Df = D07 l - - φ \dk (sin k/k)2S(k)[l +

l π

= 001 - \ dk (sin k/k)2[\ + 05(Jt)]-', (7.2)
π

where the function S (k) is defined in eq. (6.6). A numencal Integration* yields the
values listed in table I.

* We used an adaptive routme based on Gauss-quadrature rules22). This routine, together with an
dlgonthm for the evaluation of the sine-integral appeanng in definition (6.6), is part of the
NAG-library (Oxford)
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TABLE I
The fluctuation expansion (eq (7 1)) of D5 The
values under D f'/A and D *2'/A resu'' from eqs

(7 2) and (7 3), respectively

+ D <2>/Z>o = DJD0

000
005
0 10
0 15
020
025
030
035
040
045

1000
0896
0812
0743
0685
0636
0593
0556
0524
0495

+ 0000
+ 0005

0007
0024
0041
0057
0071
0083
0093
0102

1 00
090
080
072
064
058
052
047
043
039

With the aid of eqs (6 13) and (6 14) the expression (5 10) for D<2) reduces to

D P>/A) = A <'„ \r = 0) O B P 3> ' O A o "(r = 0)

m = 2

O fl(mm)-' Ο Λ£ "(- r)fe(r) - 1]

«g dr d»-'XI<1
0 '")(»-)Oß(m '") 10^^*)(»·'-'

m = 2 k = 2

-ι·|)-1] (73)

We have numencally evaluated all the terms m eq (7 3) not contammg connectors
A("a

m\r) with n or m larger than 2, i e restnctmg ourselves to corrections to D f }

due to monopolar and dipolar hydrodynamic mteractions between density
fluctuations The results can also be found m table I We approximated g (r) by
the solution of the Percus-Yevick equation for hard spheres, äs found by
Wertheim and Thiele23) Details of the calculations are given m appendix D

The concentration dependence of Ds given m table I will not be exact for two
reasons a) the values given for Z?P result from monopolar and dipolar terms in
eq (7 3) only, b) we have evaluated only the first two terms of the fluctuation
expansion (7 1) To obtain an estimate for the errors due to a) and b) we have
evaluated A) self-correlations (i e terms not contammg the pair-correlation
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function) in eq. (7.3) due to quadrupolar or even octupolar hydrodynamic
interactions between density fluctuations; B) self-correlations contributing to D^\
Since self-correlations give (for large φ) the dominant contribution to £)<2) (see
table II in appendix D), it seems fair to assume that the results from A) and B)
are reasonable estimates of the errors due to a) and b), respectively. We found:
A) higher multipole terms contribute χ 10 ~3 D0 to D<2) and can thus safely be
neglected; B) D<3) will be » 30% of D<2). Since £><2) in turn is less than 20% of D<0),
one might expect the fluctuation expansion (7.1) to converge sufficiently rapidly.

We conclude that the values for Ds given in table I should describe the
concentration dependence of the short-time self-diffusion coefficient reasonably
well up to high densities.

8. Discussion

We have calculated the concentration dependence of the short-time self-
diffusion coefficient Ds for spherical particles in Suspension.

For low values of the volume fraction φ a virial expansion is appropriate. We
found")

D, = D01[l -1.730 + 0.88φ2 + ß>(03)]. (8.1)

Only two-body hydrodynamic interactions contribute to the - well-known3·7) -
term of order φ, which dominates if the Suspension is very dilute. However,
many-body hydrodynamic interactions may not be neglected at higher densitiesf:
a neglect of three-sphere contributions would give a value of — 0.9302 instead of
+ 0.8802 for the term of order φ2 in eq. (8.1). In a concentrated Suspension it is
therefore essential to fully take into account the many-body hydrodynamic
interactions between an arbitrary number of spheresj.

The expansion of Ds in correlations of fluctuations in the concentration of the
suspended particles satisfies the above requirement. In fig. l we have plotted the
results from this fluctuation expansion, including terms of second order in the
fluctuation. At low values of φ we can compare these results with the virial
expansion of Ds (eq. (8.1)). We found from our fluctuation expansion a value of
— 1.96 for the first virial coefficient, in reasonable agreement with the value of
— 1.73 given in eq. (8.1), or with the exact value of —.1.83 calculated by
Batchelor3).

t The same is true for bulk-diffusion").
ί Var. Megen, Snook and Pusey24) have averaged the two- and three-sphere mobihties given m eqs

(4 I) and (4 6) with "exact" distnbutionfunctions (äs known from Computer simulations). The neglect
of hydrodynamic interactions between four and more particles m a concentrated Suspension can
however not be justified.
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0? 03 04

volume fraction φ

05

Fig l Density dependence of the short-time self-diffusion coefficient for sphencal particles m
Suspension The solid curve is accordmg to table I The datapomts with errorbars arc measured values

of Ds for a Suspension of sphencal colloidal latex particles (ref 14)

Pusey and van Megen14) have measured Ds for a concentrated Suspension of
colloidal latex particles, usmg dynamic light-scattenng techniques Their
datapomts are also plotted m fig l Unfortunately, a companson with the vinal
expansion (81) is not possible, since no measurements could be performed at
sufficiently low concentrations As we can see, the fluctuation expansion is m
reasonable agreement with the expenmental results for φ ^ 0 30 However, for
φ >; 0 35 the calculated values for Ds are much larger than the measured ones At
φ = 0 40 e g , expenment gives DJD0 = 0 29, while the fluctuation expansion
yields D^/D0 + Df/D0 = 0 52 - 0 09 = 0 43 In order to agree, higher order terms
in the expansion would have to contnbute 150% of the lowest order correction
D<2) In view of the discussion given at the end of section 7, this seems rather
unhkely One may wonder, on the other hand, whether at these high densities - for
which the typical distance between the centers of the particles is 2 5α - the system
studied m ref 14 may still be regarded äs a Suspension of hard spheres

We would hke to conclude with the followmg observation the zeroth order
result D(°} from the fluctuation expansion of D, (given by eq (7 2)) can, by means
of the expansion (6 8) be approximated by

The approximation in eq (8 2) amounts to a restnction of the hydrodynamic
mteraction to the dominant monopolar and dipolar terms As we can conclude
from a companson with the exact values of D<0) given m table I, the error in (8 2)
is less than 5% The expression η (l + §</>) m eq (82) comcides-up to terms of
order <^>2-with the effective viscosity of the Suspension In this sense the zeroth
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Order approximation D<0) can be called an effective medium theory for self-
difTusion.
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Appendix A. Formulae for irreducible tensors

We will use the following formulae (cf. ref. 15)

2« — l

7"O"?" = «!/(2«-l)!!, (A. 2)

A («,«) ο'" Δ (m-m) = Δ ("'"} ifm^n, (A.3)

Δ ("·"> O'" A ('"·'"' = 0 if m > n , (Α.4)

A (».«) o" + ' Δ ("·'0 = 2" + * Δ <"-'·"- D , (A. 5)
In — l

-'— dr = <5„„,«![(2« + l)!!]-' J'"·'0 . (A.6)
4π

•

Integrals of the form

J(n.m) = -L dr P-^C 7 - r7) P"-"·1, «, m ̂  2 (A. 7)
4κ «y

can now be evaluated using first eq. (A.l), and then eq. (A.6) and its corollary
(cf. defmition (2.19))

l Γ i -- 1 ι -- 1
— d f f " - { 1 f ' " - > = ö„m(n - l)![(2n - l)!!]-1^«"-1·"1·"-1) . (A.8)
4π
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The result is

«/<"·"> = (« - l)![(2n - 1)!!]-l

t". "> _ _!? _ L («-!·" ->) Q" ~2

(A.9)

J(n,n + 2)=J(n + 2,n)= _ („ + 1)![(2« + 3)!!] ~ ' Λ <" + ''" + " , (A. 10)

./<"·'"> = 0 i f n ^m o r n φ m ±2, (A. 11)

where we have made use of eq. (A.3) to simplify the expressions.

Appendix B. Proof of equation (6.3)

Every tensor of rank 2, constructed from the tensor 7 and the vector f, is
necessarily of the form α 7 + ßff, with scalars α and ß. Hence we can write

(7 -fT)p-?O"ß("·'0"' ©"^'(T - f f ) = a.1 + j5ir, « S* 3 , (B.l)

with β«"·")'1 (« ^ 3) given by eq. (2.22).

If we contract both sides of eq. (B.l) with f, we find

0 = (a+)8)r, (B.2)

hence, β = — α. Το determine α we take the trace of eq. (B.l)

Σ V λ f r «<"·"> ~ ' f f
L °f,'l'K · · · rf„fn *M- V 1 v» v» ' ' ' "2

Cl Cn vl vn

_/Γ^Τ0,β((,,»)-'0'.^7/: = 2α. (Β.3)

The l.h.s. of eq. (B. 3) can be evaluated with the help of the formulae (cf. eqs.
(A.1HA.5))

Σ Σ ^,.,^···^^ /.,.·, ./..·· -^=(2« + l) . " " . (B.5)
μι μ« ν, v„ (/« — U!!
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Σ V /S r t T*"·"'
L <Vl ΓΆ · · · Γί'η 1 l'n Cl ,»

r
Γ» ' ' ' "

(B.6)
\[(2n -3)!!]-',

(B.7)

l)!!]"1, (B.8)

" 1~(".n) rr\n fn-\f=p.fn-l fr*, n - 2 fn - l . f

~ 1 . (B.9)
2/7-3 ~ 2η - 3 v

In eqs. (B.6) and (B.9) we have used the abbreviation

J(„.n) = ^(n-1,«-D Q«-2 j (n - l ,n-1) _ (B.10)

Substitution in eq. (B.l) of the values for α and β which follow from eqs.
(B.2)-(B.10) yields

(1 - ff)f"-^ O" B("·"'~' O" r f"^ ] ( 1 - ff) = - [(2« - 3)!!]~2( 1 - ff) n > 3 .

(B.ll)

Since /? ( 2-2 )~' equals — yzl ( 2·2 ' (defmition (2.6)), a simple calculation gives

(1 - ff)f : ß<2 ·2^' : f ( 1 - ff) = -1(1 - ff). (B.12)

The eqs. (B.l 1) and (B.12) give, together with eq. (2.15) the required formula (6.3).

Appendix C. Derivation of equation (6.5)

We wish to calculate the sum

n = t n = 0

- x\J}ß(x) + J\ß(x) + 2J_ l/2(x)J3/2(x)], (C.l)

where we have used the recursion-relation16)

/2/7 —|— l ) J (y ^ — v / ( v ) l v· Λ (v ) ( C 1 2 i

In ref. 25 (§116) we find the useful formula

γ Λ

Σ J„+,(xVn+P(x) = xp-' r-"/ v_,(/)/,(/)dr, (C.3)
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for v and p real numbers If we take v = p = 5, we find

2v

co Λ

Σ ·/« + ι/2(*) = π-' s m i / / d i Ξπ-'8ι(2χ), (C 4)
n=0 J

0

while the choice v = 3/2, p = — 1/2 gives

1 = 0
0

Σ Λ + 3/2ΜΛ-ι/2(*) = *~ 2π-' i s m 2 f d/

(C 5)

Substitution of eqs (C 4) and (C 5) m the sum (C 1) yields the result

£ (2« + \)2J2

n+ 1/2(;t) = (2/π)[.χ2 Si(2;t) + \ sin 2x + \x cos 2.x - χ - ' sin2*]
« = l

(C6)

This is the formula we need m denvmg eq (6 5)

Appendix D. Calculation of

We can wnte the Integrals m eq (7 3) m terms of Founer-transformed

renormahzed connector fields A("m\k), which, according to eqs (2 14) and (6 9),

are given by*

A £ m\k ) = A <" ""(* )[\+<l>S(ak)]-1 (Dl)

Restnctmg ourselves to terms m eq (7 3) contammg only connectors with upper

mdices n, m ^ 2, the expression for D(^ takes the form

D »'/A, = «ο(2π) - 3 [ dÄ A <'o
 2\k ) B <2 * ' XI <2

0
 2>(r = 0)

·/

ß< 2 2 > ' X»i,22)(Ä') ß (22 '- ' A(k)v(k - ft') , (D 2)

* When >ljjra)(»·) dppears äs an mtegrand, we may m its representation (6 9) replace the modified
connectorfield Ä(" m\r) by the unmodified field A (° '"'(r), since these two fields differ by a finite amount
m a smgle point only (cf defimtion (3 4))
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where v (k) is the pair-correlation function in wave vector representation

Γ
v( fc)= dre'* Ig (r) -l] (D 3)

J

The first integral m eq (D 2) (due to self-correlations, cf section 5) can be
evaluated with the aid of eqs (2 6), (2 15) and (6 12)

00

135 Γ
£><2)(self-correlation) = - — πφ2Ώ0 1 αχ x~*J\ß(x)J}ß(x)

t/

(D 4)

A numencal Integration22) of these one-dimensional mtegrals yields the values
hsted in table II, column I The two remammg mtegrals m eq (D 2) contam the
pair-correlation function v (k) We have approximated v (k) by the solution of the
Percus-Yevick equation for hard spheres23)* Usmg eqs (2 6) and (2 15) we can
wnte the two terms m eq (D 2) contammg pair-correlations äs two three-
dimensional mtegrals These mtegrals were evaluated by Monte-Carlo
Integration20) The results can also be found m table II, columns II and III

TABLE II
Specification of the terms contnbutmg to
Df>/D0 = 1 + 11 + 111 The values under I, II and
III correspond to the first, second and third term,

respectively on the r h s of eq (D 2)

Φ
005
0 10
0 15
020
025
030
035
040
045

I

-0007
-0019
-0033
-0046
-0057
-0066
-0073
-0079
-0084

II

+ 0014
+ 0021
+ 0024
+ 0024
+ 0024
+ 0022
+ 0020
+ 0018
+ 0016

III

-0003
-0009
-0014
-0019
-0024
-0027
-0030
-0032
-0034
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