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Interplay of superconductivity and magnetism in strong coupling
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Institute Lorentz for Theoretical Physics, Leiden University, P.O.B. 9506, 2300 RA Leiden, The Netherlands

~Received 17 August 1999!

A model is introduced describing the interplay between superconductivity and spin ordering. It is charac-
terized by on-site repulsive electron-electron interactions, causing antiferromagnetism, and nearest-neighbor
attractive interactions, giving rise tod-wave superconductivity. Due to a special choice for the lattice, this
model has a strong-coupling limit where the superconductivity can be described by a bosonic theory, similar to
the strongly coupled negativeU Hubbard model. This limit is analyzed in the present paper. A rich mean-field
phase diagram is found and the leading quantum corrections to the mean-field results are calculated. The
first-order line between the antiferromagnetic and the superconducting phase is found to terminate at a tric-
ritical point, where two second-order lines originate. At these lines, the system undergoes a transition to and
from a phase exhibiting both antiferromagnetic order and superconductivity. At finite temperatures above the
spin-disordering line, quantum-critical behavior is found. For specific values of the model parameters, it is
possible to obtain SO~5! symmetry involving the spin and the phase sector at the tricritical point. Although this
symmetry is explicitly broken by the projection to the lower Hubbard band, it survives on the mean-field level,
and modes related to a spontaneously broken SO~5! symmetry are present on the level of the random phase
approximation in the superconducting phase.
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I. INTRODUCTION

Both for empirical and historical reasons, research on
perconductivity tends to be preoccupied with the weak c
pling limit. From a more general perspective, BCS theory
well as Gorkov-Migdal-Eliashberg theory correspond with
special case which in a sense is pathological. The emph
is completely on the amplitude of the order parameter wh
fundamentally superconductivity is about breaking of gau
symmetry, associated with the phase sector. The work
Schmitt-Rink and Nozieres1 revealed that the BCS theory fo
a s-wave superconductor can be smoothly continued to
strong coupling limit. It is generally recognized that it is f
easier to understand the vacuum structure of such a su
conductor in strong coupling. Amplitude fluctuations can
regarded as highly massive excitations and all what rem
is the phase sector described in terms of hardcore boson
alternatively in terms of pseudospin models.

In the context of high-Tc superconductivity one encoun
ters a far more complex physics. Abundant evidence is av
able for ad-wave superconducting order parameter. This
usually discussed in terms of weak-coupling theory with
d-wave nodal fermions while the more sophisticated
proaches start from this limit, attempting to penetrate
intermediate coupling regime using self-consistent pertur
tion theory.2 The obvious problem is that the coheren
length is rather short.3 At the same time, an interesting ca
has been presented claiming that much of the thermodyn
ics can be understood from phase dynamics alone,4 com-
pletely disregarding amplitude fluctuations. It would the
fore be useful to study strong coupling theories ford-wave
superconductors.

An even better reason to pursue a strong coupling p
spective is the growing evidence for the presence of w
developed antiferromagnetism coexisting with the superc
ductivity. Traditionally, this was approached within, aga
PRB 610163-1829/2000/61~5!/3676~15!/$15.00
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an implicitly weakly coupled perspective. The magnetic flu
tuations as seen in NMR and neutron scattering were
lieved to be due to the proximity to an amplitude driven sp
density wave transition.5 Recently, this perspective has bee
drastically changed due to the observation of strong st
antiferromagnetic order associated with the stripe phase
the La2CuO4 system.6 In the Nd doped samples where th
order is strongest the magnitude of the Ne´el order parameter
can be as large as 0.3mB ,7 while 0.1mB has been claimed in
‘‘pristine’’ La 1.88Sr0.12CuO4.8 It appears that this antiferro
magnetic order is in competition or even coexisting with t
superconducting order.8,9 Given that the stripe antiferromag
net should be strongly renormalized downward due to tra
versal quantum spin fluctuations10 the stripe antiferromagne
has to be strongly coupled. Given the strong similarities
tween the static order and the incommensurate spin fluc
tions which seem to be generic for all cuprate supercond
ors in the underdoped regime, a strong coupling perspec
on the antiferromagnetism should be closer to the truth e
if static order is not present, at least as long as the dopin
not too large.

Recently several theoretical attempts have been un
taken to shed light on this problem of strongly coupled s
perconductivity and antiferromagnetism. The simplest the
of this kind is Zhang’s SO~5! theory, where superconductiv
ity and antiferromagnetism are ‘‘unified’’ within a singl
larger symmetry.11 Given that no such symmetry is man
festly present at the ultraviolet of the problem, this mig
well be misleading and one would like to have a more g
eral framework in which this~near! SO~5! symmetry appears
as a special case. The manifest symmetry of the problem
U(1)3SU(2) ~superconducting phase- and spin, resp
tively!. The structure of the long wavelength effective theo
based on this symmetry principle has been analyzed rece
by one of the authors,12 including the charge order associate
with the stripe phase. These approaches are only truly m
3676 ©2000 The American Physical Society
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PRB 61 3677INTERPLAY OF SUPERCONDUCTIVITY AND . . .
ingful at long wavelength and a more complete understa
ing is in high demand. In fact, the only reasonably compl
theory is the one by Vojta and Sachdev,13 based on the large
N/small S saddle point of the Spl(2N) t2J model. How-
ever, in this largeN limit the antiferromagnetism is in the
strongly quantum disordered regime, and is therefore at
dual to the renormalized classical Ne´el order of the stripe
phases.

Here we will present an exceedingly simple toy mod
which seems nevertheless to catch much of the physics
cussed in the above. It is similar in spirit to the lattice-bos
description of superconductivity and magnetism discusse
Refs. 14 and 15. The pursuit is to construct a model whic
the same time describes localized magnetism and local p
ing superconductivity. The magnetism is undoubtedly rela
to strong, HubbardU type on-site repulsions. This prohibit
for obvious reasons on-site paring. The next microsco
length scale available on the lattice is the lattice cons
itself: the pairs causing the superconductivity live on t
links of the lattice.16 If such a link pair is occupied, the site
connected by this link are both occupied by a single electr
In the presence of on-site repulsions these electrons will t
to turn into a spin system. The number fluctuations impl
by the superconducting phase order correspond with suc
occupied link-pair becoming unoccupied, causing at
same time a dilution of the spin system.

On the square lattice a subtlety keeps a theory with th
link pairs as building blocks from being simple. Differe
from the largeN limit with its spin-Peierls order,13 the link
pairs cause both conceptual problems in describing the s
at half filling as well as serious technical problems. As w
be discussed in Sec. II, a consistent formulation requires
cal constraints to be added to the theory in order to excl
tilings of the lattice characterized by multiple occupancies
the sites. This is not necessarily fatal: the theory is boso
and it might well be that Jastrov projections cure the pr
lem. A central result of this paper is our discovery of a d
ferent lattice where these likely nonessential ‘‘correlatio
problems are absent: the 1/5 depleted lattice shown in Fig
The linkpairs live on the long bonds, while the short bon
only carry spin-spin interactions. As will be further di

FIG. 1. The 1
5 -depleted lattice. Dotted lines connect neare

neighbor horizontal and vertical bonds.
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cussed, this model is characterized by an unproblematic c
sical ~in fact, larged) limit. This allows us to derive in a
controlled way a complete semiclassical description.

As discussed in Sec. III, we find a surprisingly rich pha
diagram on the classical level containing all phases, wh
have been up to now suggested in this context, including
large N spin-quantum paramagnets. Perturbing around
classical limit, we address the structure of the semiclass
theory including the universality classes at the various ph
transitions~Sec. IV!. By fine tuning parameters, we find line
in the phase diagram where the SO~5! symmetry is ap-
proached. However, even at the most symmetric point SO~5!
is not reached: as we will show, the theory becomes SO~5!
symmetric on the classical level but the quantum correcti
destroy this symmetry again. As was already pointed ou
the context of the SO~5! symmetric ladders, fine tuning o
the on-site repulsions is required to stabilize the full symm
try ~Secs. V and VI!.

II. THE MODEL

A. Correlated superconductivity

For the strong-coupling description we are aiming at,
microscopic building blocks are electron link pairs, creat
by the operators

Li ,d
s1s2†5ci ,s1

† ci 1d,s2

† , ~1!

whered is a lattice unit-vector, whilei labels the sites. Such
a link-pair is the typical microscopic object in a stron
coupling theory ofd-wave superconductivity and the sma
est electron pair that can support spin degrees of freed
Two serious problems arise when trying to construct a mo
from these operators, one technical and one conceptual.
technical problem is related to the spatial structure of the l
pairs, which introduces correlations between pairs cente
on different bonds. These correlations show up in the co
mutation relations of the link operators. Operators along d
ferent bonds do not commute if their links share a comm
site. As a result, the dimension of the link-operator alge
grows with the system size. This makes a simple pseudo-
description of the charge sector impossible and not m
seems to have been gained by going to the strong-coup
limit.

This problem can be avoided by assuming that one
somehow keep track of which electrons belong to a parti
lar pair ~this can be ambiguous, for instance, in the case
four electrons sitting in a square!. If this is possible, the
link-pairs can be described by hardcore boson operators,
isfying bi ,d

s1s2b
i ,d8

s1s2 †
50 for dÞd8. Link bosons on different

bonds always commute, removing the problem of t
infinite-dimensional link algebra. The correlation effects th
show up in a different way, however. The hardcore li
bosons are spinful generalizations of the quant
dimers.17,18 It is well known that even the classical theory
the dimers is a complex combinatorics problem, which w
solved for the case of half filling,19 but not for general den-
sities. This problem seems unavoidable when one tries
construct a strong-coupling theory for electron pairs with o
or the other real space internal structure on the square lat

-
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The conceptual problem is related to the fact that our l
pairs carry spin. It concerns the state at half filling. On
square lattice, there are many ways in which the link pa
can be distributed over the lattice to obtain complete cov
ing. Since the half-filling state is a pure spin system, t
charge degree of freedom is superfluous. The link-pair mo
at half filling therefore suffers from a large degeneracy.

In the large-Nt-J model studied by Vojta and Sachdev,13

link pairing arises as a result of nearest-neighbor spin-sin
formation, and the pairs are in this case spin-zero dimers
a result, different link-pair configurations at half filling co
respond to different distributions of the singlet spin bon
over the square lattice. These configurations are there
physically distinct. The spin-Peierls order which is presen
half-filling singles out a particular link-pair configuration
breaking the degeneracy.

For a largeS type antiferromagnet, however, the spin se
tor cannot be used to break the degeneracy associated
half filling. Let us therefore consider a model where lin
pairing arises as a result of charge-charge interactions. In
case, link pairs can have both a singlet and a triplet s
component, allowing for the construction of a half-filling a
tiferromagnet. Consider a nearest-neighbor attractive inte
tion V, an on-site repulsive interactionU and a longer-range
repulsive interactionU8,

H5(
i

F2V(
d

nini 1d1Uni↑ni↓

1U8 (
d1 ,d2Þ2d1

nini 1d11d2G1hopping processes,

~2!

whered runs over all lattice unit vectors. The attractive i
teraction V promotes link pairing, while the longer rang
repulsive interactionU8 is needed to counteract phase se
ration in the strong-coupling limit.

At small electron densities, the strong-coupling limit
the above model describes a dilute gas of electron link pa
Near half filling, it describes a dilute gas ofhole link pairs,
moving through a spin background. Taking hole pairs a
spins, instead of electron pairs, as the elementary build
blocks in the strong-coupling limit near half filling, the larg
degeneracy in the description is avoided. Such a perspe
is not entirely satisfactory, however, since the spin secto
in this case represented in a first-quantized form.

The technical problems, related to the spatial correlati
between the link pairs, of course remain also for this mod
These correlations become important at finite densities a
from zero or half filling, severely complicating the stron
coupling analysis of this model. Moreover, the short-ran
attractive and long-range repulsive interactions will give r
to charge ordering phenomena at intermediate densities,
ther complicating the physics.

B. Depleted lattice

The complex spatial correlations between link pairs a
the tendency towards charge-ordering at intermediate de
ties as discussed in the previous subsection can be avo
by formulating the model not on the square lattice, but on
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1/5-depleted lattice, shown in Fig. 1. We arrive at this latt
by expanding the sites of a square lattice to form tilt
squares. Along the bonds of the original square lattice,
tractive charge-charge interactions are assumed, while
site repulsive interactions are introduced to promote anti
romagnetism. The electron Hamiltonian of such a mo
reads

H5(
i ,d

@2Vn1
i ,dn2

i ,d1U~n1↑
i ,dn1↓

i ,d1n2↑
i ,dn2↓

i ,d!#

1hopping processes, ~3!

where the indexi labels the square plaquettes, while (i ,d)
denotes the four bonds extending from these plaquettes.
two sites connected by each long bond are numbered 1 a
from left to right and from bottom to top. The hopping pro
cesses can include hopping along the long and the s
bonds, as well as longer-range hopping across the squa
the octagonal plaquettes~see Fig. 1!. In the largeV, largeU
limit, the above model reduces to one describing the phy
of spinful link pairs, which reside on the long bonds of th
1/5-depleted lattice. Note that the spatial correlations
tween these pairs are the same as between point particle
a square lattice. Since the link pairs on different long bon
do not share a common site, the algebra of the link pairs
different bonds decouples and a pseudospin type descrip
of the charge sector becomes possible. Admittedly,
amounts to a rather radical simplification as compared to
square lattice link-pair problem. However, the long wav
length physics we will derive for the depleted lattice mig
be of a greater generality because of the universality p
ciple. In fact, we suspect that the complexities discussed
the previous subsection will add only tendencies towa
charge ordering which can be to some extent discussed s
rately.

C. Pair-hopping and spin-spin interactions

Since the Hamiltonian Eq.~3! should be viewed as a to
model, there is no reason to explicitly derive the stron
coupling description by starting from this Hamiltonian an
integrating out the states with unpaired electrons. Instead
simply formulate another toy model, which describes gene
features of the dynamics of bound link pairs on the 1

FIG. 2. Hopping processes and spin-spin interactions inclu
in the model.
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PRB 61 3679INTERPLAY OF SUPERCONDUCTIVITY AND . . .
depleted lattice. We include the minimal number of pr
cesses needed to capture the physics of such a system,
ing sure that the interactions are consistent with
symmetries of the lattice.

An antiferromagnetic spin-spin interactionJ is assumed
along the long bonds and aferromagnetic interaction JF
along the short bonds~Fig. 2!. This choice allows for an
extension of the model to higher dimensions without int
ducing frustration into the spin system, making it possible
reach thed→` limit and check the mean-field results ther
For JF@J, the half-filled system becomes equivalent to
S52 antiferromagnet on a square lattice~or S5d on a
d-dimensional hypercubic lattice!. This property will be used
to obtain an estimate of the quantum corrections to
saddle-point results obtained in the next section.

A sublattice and an intersublattice hopping process
introduced, with amplitudest1 and t2. Both processes mov
a pair from a horizontal~vertical! bond to a nearest-neighbo
vertical ~horizontal! bond. Thet1 process respects the sp
ordering, keeping the electrons which form the pair on th
original sublattice. Thet2 process moves the electrons fro
one sublattice to another, thereby frustrating Ne´el order.

Including a chemical potentialm, we arrive at the Hamil-
tonian

H5(
i

F (
s1s2

$t1~Li ,dx

s1s2 †
2Li ,2dx

s2s1†
!~Li ,dy

s1s22Li ,2dy

s2s1 !

1t2~Li ,dx

s1s2 †
2Li ,2dx

s2s_†
!~Li ,dy

s2s12Li ,2dy

s1s2 !1H.c.%

2JF~sW1i ,dx
1sW2i ,2dx

!•~sW1i ,dy
1sW2i ,2dy

!

1 (
d5dx ,dy

~JsW1i ,d•sW2i ,d2mni ,d!G , ~4!

where the same notation has been used as in Eq.~3!. A
projection operatorPid5(12n1↑

id n1↓
id )(12n2↑

id n2↓
id ) has been

included in the definition of the link operatorsLid
s1s2 † , Eq.

~1!. This enforces the constraint of no double occupan
which is a result of the largeU limit in Eq. ~3!.

The Hilbert space on one long bond is spanned by
states: unoccupied (V), spin-singlet (A), and spin-triplet
(1,0,21). The operators acting on this space are 535 ma-
trices. Introducing the notation

~Gab! i j 5d i ,ad j ,b , ~5!

the pair creation operators can be written as

L↑↑
† 5G1V ,

L↓↓
† 5G21V ,

~6!

L↑↓
† 5

1

A2
~G0V2GAV!,

L↓↑
† 5

1

A2
~G0V1GAV!.

These operators are the equivalent of the pseudo-spins w
appear in the strong-coupling negativeU Hubbard model.20
-
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The operatorsGaV , GVa , and1
2 (na2nV) form anS5 1

2 spin
algebra (a51,0,21,A). Pseudospins with a different spi
index a do not commute. In Sec. V, the constraint of n
double occupancy is abandoned to allow for the construc
of an SO~5! symmetric version of this model. The operato
~6! then becomeS51 pseudospins and operators with a d
ferent indexa do commute in this case.

It is convenient to introduce the total spin and the Ne´el
moment of a link pair

SW i ,d5sW1i ,d1sW2i ,d ; S̃W i ,d5sW1i ,d2sW2i ,d , ~7!

which are given by

Sz5G112G2121 ,

S15A2~G101G021!,
~8!

S̃z52GA02G0A ,

S̃15A2~G1A2GA21!,

satisfying SO~4! commutation relations. After absorbing
factor (21)i x1 i y sgn(d) into the triplet states, which induce

a staggering ofS̃W and GaV (a51,0,21), the Hamiltonian
takes the form

H5(
i

(
d156dx
d256dy

F ~ t11t2! (
a51,0,21

~GaV
i ,d1GVa

i ,d21H.c.!

1~ t12t2!~GAV
i ,d1GVA

i ,d21H.c.!

2
JF

4
~SW i ,d1

1h i S̃
W

i ,d1
!•~SW i ,d2

1h i S̃
W

i ,d2
!G

1(
i

(
d5dx ,dy

F1

4
J~12nV

i ,d24nA
i ,d!2m~12nV

i ,d!G ,
~9!

whereh i5(21)i x1 i y is the AF staggering factor. Note that

cannot be absorbed intoS̃W i ,d , since (i ,dx) and (i 11,2dx)
label the same bond.

III. MEAN-FIELD ANALYSIS

A variational Hartree-Fock procedure is used for t
mean-field analysis. In the ansatz wave function, the N´el
vector is fixed in thez and the total spin in thex direction

(^SW &•^S̃W &50). The pseudospin degrees of freedom of t
charge/phase sector are described by anS5 1

2 spin coherent
state

uu,c;f̃y,x&5sinue2 icuV&1cosuuf̃y,x&, ~10!

while the spin degrees of freedom of the pair are containe
uf̃y,x&

uf̃y,x&5e2 i f̃yS̃y
~cosxuA&2sinxu0&). ~11!

uf̃y,x& is just the bilayer coherent state21 where the global
orientation of the two-spin system has been fixed.
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We list the expectation-value of a number of quantit
with respect to the variational state

n512^nV&5cos2u,

^Sx&5n sin 2x sinf̃y; ^Sy&5^Sz&50,

^S̃z&5n sin 2x cosf̃y; ^S̃x&5^S̃y&50, ~12!

^nA&5n cos2x cos2f̃y,

^GaV&5An~12n!e2 ic^f̃y,xua&,

where a51,0,21,A labels the four spin states. The ro
which the various parameters play can be determined f
this list: u fixes the pair density;f̃y determines the relative

magnitude of^SW & and ^S̃W &, while their total magnitude is
fixed by x; c represents the phase which orders in the
perconducting state.

The variational energy is given by

Evar~$u,c;f̃y,x% i ,d!5^$ i ,d%uHu$ i ,d%&, ~13!

where

FIG. 3. Mean field phase diagram ofJ versusm and n, for t1

.t1* (t150.4JF , t2520.1JF). Bold lines indicate first order tran
sitions. At the dotted line, transversal quantum spin fluctuati
destroy the antiferromagnetic order.

FIG. 4. Mean field phase diagram oft1 versusm and n, for J
,2JF and t2,J/8 (J5JF , t2520.1JF).
s

m

-

u$ i ,d%&5)
i ,d

uu,c;f̃y,x& i ,d . ~14!

In the mean-field analysis, it is assumed that the stagge
local magnetization and the charge density are uniform. T
phasec l is allowed to have a different value on horizont
(cH) and vertical bonds (cV). We then arrive at the follow-
ing mean-field energy:

EMF5NFsin2 2u~ t11t222t2 cos2 x cos2 f̃y!cos~cH2cV!

2
1

2
JF cos4u sin2 2x

1
1

4
J cos2u~124 cos2x cos2f̃y!2m cos2uG , ~15!

whereN denotes the number of long bonds. Minimizing E
~15!, a variety of mean-field ground states is obtained a
function of the various parameters. The results are sum
rized in Figs. 3–5 and in Table I. We focus here on the c
t1.0, for which the superconducting state is typically
d-wave type (cH2cV5p). The same phase diagram resu
for t1→2t1 and t2→2t2, but with s wave instead of

TABLE I. Mean-field results for the various phases.

Phase n cos 2x cosf̃y

Spin-liquid 1 1 1

Néel dSC
2J24m216t128Jt2164t2

2

4~128t1116t2
2!

J18t2~n21!

2n
1

Singlet dSC
4m116~ t12t2!13J

32~ t12t2!
1 1

Triplet dSC
J24m216~ t11t2!

4232~ t11t2!
0 0

AF 1 J

2
1

s

FIG. 5. Mean field phase diagram oft2 versusm and n, for J
,2JF and t1.(4JF

21J2)/32JF (t150.4JF , J5JF).
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PRB 61 3681INTERPLAY OF SUPERCONDUCTIVITY AND . . .
d-wave phase order. For simplicity,J, t1 , t2, and m are
expressed in units ofJF from here on.

At half filling, the physics is determined by the compe
tion between the antiferromagnetic and the ferromagn
spin-spin interaction. While the first promotes singlet form
tion along the horizontal and vertical bonds, the second
vors large local magnetic moments.J therefore tunes the
singlet density in the ground state at half filling. ForJ!1,

the system has full Ne´el order with^nA&5 1
2 , u^S̃W &u51. The

singlet density increases linearly withJ up to ^nA&51 at J
52, where the staggered magnetization vanishes in a se
order transition to a quantum paramagnet phase~Fig. 3!.

For densities smaller than one, the two hopping proces
begin to play a role. Since the case of a uniform cha
distribution is considered and since all electrons are paire
the strong-coupling limit, all variational states with a noni
teger electron density exhibit superconductivity. The sup
conducting order parameter depends on the electron de
as uDu;An(12n), see Eq.~12!.

The value of the hopping amplitudet1 determines the
nature of the transition from the antiferromagnetic insula
at half filling to the singlet superconductor at lower densiti
For smallt1, this transition is first order as a function ofm,
giving rise to a region of antiferromagnet/superconduc
phase separation in thet1-n phase diagram~Fig. 4!. At t1

5t1* 5 1
8 12t2

2, the first order line splits into two second o
der lines. A region opens up in which the system has b
antiferromagnetic spin order and superconductivity. In t
antiferromagnetic superconductor~AFSC! phase, the elec
trons which carry the superconducting order parameter a
the same time responsible for the antiferromagnetism. T
state is most easily visualized by thinking of a small dens
of nearest-neighbor hole pairs being doped into a half-fill
antiferromagnet. If these hole pairs are most mobile alo
the diagonals of the square lattice, where their movem
does not disturb the AF spin order, they can delocalize an
that way give rise to superconductivitywithout at the same
time destroying the antiferromagnetic order. The condit
that diagonal pair hopping has to dominate to get an AF
phase on the square lattice is reflected by the conditiot1

.t1* for the present model.
There are three ways in which the spin order paramete

the AFSC phase is suppressed through the doping with
pairs. The simplest one corresponds with the dilution of
antiferromagnet by the removal of spins. More interesting
the interpair spin-spin interactionJF scales with the pair-
density squared, while the intrapair spin-spin interactionJ
scales linearly withn. As a result, the ferromagnetic intera
tion is suppressed by a factorn relative toJ, pushing the ratio
J/JF closer to its critical value and reducing the magne
moment per pair. Finally, the hopping processt2 frustrates
the Néel order, provided that sgn(t2)52sgn(t1) ~the other
case is discussed below!. The increase of the singlet densi
per pair due to the last two processes results in a transitio
the singlet superconductor atn5nc5(J28t2)/(228t2).

Since thet2 process amounts to at1-type hop with an
additional interchange of the two electrons forming the p
it picks up a minus sign when acting on a pair in the an
symmetric spin-singlet state. Suppose thatt1 andt2 have the
same sign. A singlet pair, through thet2 process, then frus
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trates the phase ordering as favored by thet1 hop. To reduce
this frustration, the singlet content of the pairs is suppres
as t2 is increased, enhancing the spin ordering in the AF
phase. Eventually, a first order transition occurs to a fer
magnetically ordered triplet superconductor phase, where
singlet density is reduced to zero~Fig. 5!.

If t1 and t2 have opposite sign, thetriplet component is
suppressed through the same process and thet2 hop reduces
the spin-order in the AFSC phase. Note thatt2 causes a
positive shift of the critical valuet1* regardless of its sign
This reflects the fact that on-sublattice hopping must do
nate in order for an AFSC phase to occur (t1.t1* implies
t1>ut2u, where the equal sign occurs forut2u5 1

4 ).
It should be verified that the saddle-point solution b

comes exact in the limitd→`. To reach this limit, the
model has to be formulated in arbitrary dimension. T
d-wave phase order then posses a problem, since it cann
generalized to dimensions higher than 2. However,
Hamiltonian of the two-dimensional~2D! system is invariant
under a simultaneous sign change oft1 , t2, and GaV

i ,6dx ,
which implies thatd- ands-wave order are equivalent for th
2D model. We therefore flip the sign oft1 and t2 and study
thed→` limit for the s-wave ordered state. In order to ke
the energy finite,JF , t1, and t2 are scaled with 1/d while
taking the limit. The variation of the energy is found to be
order 1/d for the saddle-point solution. Since it vanishes
larged, the mean-field groundstate indeed becomes an eig
state of the system in this limit.

IV. TRANSVERSAL SPIN FLUCTUATIONS

In the AFSC phase, both the U~1! phase and the SU~2!
spin symmetry are spontaneously broken. As a result,
system has two spin-wave modes and one phase Golds
mode. These gapless modes dominate its long-wavele
physics. Since they decouple, the phase and spin degre
freedom of the system may be treated separately at s
ciently large length scales.

The physics of the phase sector is equivalent to that o
XY-spin model in an external magnetic field, which has
dynamical critical exponentz52. TheT50 system is there-
fore effectively at its upper critical dimensiond521z54.
Because of the high effective dimensionality, phase fluct
tions only give small correction to the zero-temperatu
mean-field results for the insulator-superconduc
transition.22

The long-wavelength behavior of the spin sector in t
AFSC phase is characterized by a critical exponentz51.
Hence, atT50, the spin sector lives effectively in thre
dimensions and fluctuation effects can be significant. T
long-wavelength spin physics is described by an effect
nonlinear sigma model.23,24 This model contains one cou
pling constantg0 which is a measure of the quantum flu
tuations in the system. At a critical value ofg0, the spin
system undergoes a quantum phase transition from a N´el
ordered state to a quantum paramagnet. For the pre
model,g0 is expected to diverge at the mean-field transitio
to the singlet superconductor and the paramagn
insulator.21 Transversal fluctuations are therefore expected
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significantly reduce the region in the phase diagram wh
AF order is stable.

The coupling constant of the effective non-linear sigm
model depends on the bare values of the spin stiffness
the perpendicular susceptibility, which are properties of
microscopic model. The mean-field expressions for th
quantities can serve as an estimate for their bare valu21

These expressions are derived below for the present mo
We define the perpendicular susceptibility as the indu

magnetization per square plaquette~containing four spins! by
a vanishing magnetic field applied perpendicular to the
rection of antiferromagnetic ordering. It is calculated by ad
ing a magnetic field term to the mean-field energy Eq.~15!,

H (
i ,d5dx ,dy

^Si ,d
x &5NH cos2u sin 2x sinf̃y ~16!

and subsequently minimizing the energy. This yields

x'5 lim
H→0

2^Sx&
H

5
2~12cos 2x!n

J28t2~12n!

⇒5
x'

AF 5
22J

J
,

x'
AFSC 5

n~228t2!2J18t2

J28t2~12n!
.

~17!

The susceptibility vanishes at the transitions to the quan
paramagnet and the singlet superconductor phase. It h
divergence atn512J/8t2, which is interrupted by the firs
order transition to the triplet superconductor phase~Fig. 5!
~the line wherex' diverges and the first-order line approa
each other for smalln).

For n51 andJF@J, the four spins around each squa
plaquette lock into a symmetric state. The spin operators
then be replaced by14 times the total spin operator on th
plaquette. The resulting Hamiltonian describes anS52 an-
tiferromagnet on a square lattice, with a spin-spin coupl
Jeff5

1
16 J. Such a system has a mean-field perpendicular

ceptibility x'51/8Jeff52/J23 ~where the lattice spacing, in
this case the distance between neighboring square plaqu
is set to one!. The above result for the susceptibility indee
reduces to this expression forn51 andJ!1.

To determine the spin stiffness, the configuration sho
in Fig. 6 is considered. It has a slow twist in the spin ord
parameter along thex1y direction. The stiffness gives th
lowest-order correction to the ground state energy due to
twist.25

At each antiferromagnetic bond along the direction of
twist, the spins have been rotated over an anglea df in the
XZ plane, at each ferromagnetic bond over an angle
2a)df. This configuration is described by the variation
state Eq.~10!, where the spin part is given by

ei l df SyUf̃y5
1

2
adf, x5xMFL , ~18!

with the indexl labeling the bonds along the twist.
The antiferromagnetic interaction energy of this state

given by @compare with last line in Eq.~15!#
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4
JN cos2uF124 cos2x cos2S 1

2
adf D G

.EAF~df50!1
1

4
JNa2df2cos2u cos2x, ~19!

while the ferromagnetic energy is simply reduced by a fac
cos(12a)df per twisted ferromagnetic bond. The phas
ordering energy also contributes to the spin stiffness. Alo
the twist, we have (d-wave order!

~20!

Taking these contributions together, the energy-increase
to the twist in the spin order-parameter is found to be

FIG. 6. A spin configuration with a twist along thex1y direc-
tion.
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DE5
1

8
Ndf2~2sin2 2u@~ t11t2!sin2x2t2a2 cos2x#

1sin2 2x cos4u~12a!212Ja2 cos2u cos2x!.

~21!

The distribution of the total twist over the two types
bonds is obtained by minimizing this energy with respect
a, which yields

a05
n~12cos 2x!

n~12cos 2x!1J24t2~12n!
. ~22!

For JF much larger thanJ and t2 ~or just J for n51), the
twist is entirely localized on the antiferromagnetic bonds,
expected. At the transition to the spin disordered phases,
localized on the ferromagnetic bonds.

The stiffness now follows from

DE~a0!5
N

2
df2rs . ~23!

For the half-filling antiferromagnet, we obtain

rs
AF5

1

8
J~22J!, ~24!

while for the AFSC phase the stiffness is given by
–
re

er
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e.

D
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rs
AFSC5

n~228t2!2J18t2

8J116n
$2Jn1J214~12n!

3@J~ t122t2!12t1n18t2
2~12n!#%. ~25!

As with the susceptibility, the stiffness vanishes at the tr
sition to a spin-disordered phase. It reduces to theS52,
Jeff5

1
16 J form for J@JF at half filling.

The bare coupling constant of the nonlinear sigma mo
is given byg05(rsx')21/2. As expected, it diverges at th
transitions to the singlet superconductor and quantum p
magnet, since both the susceptibility and the stiffness van
in these phases. In order to obtain a more precise estima
g0, its value is shifted by a constant factor such that it agr
with the result for theS52 antiferromagnet atn51, JF
@J. The bare coupling for the square latticeS52 antiferro-
magnet can be determined from spin-wave results for
renormalized spin-wave velocity and perpendicular susce
bility, using the one-loop expression24

g0

4p
5

1

114px'c/\L
, ~26!

whereL52Ap/a, with a the lattice spacing. Using the spin
wave results of Igarashi,25 we obtain

g0
S52.3.85. ~27!

For the half-filling antiferromagnet, the bare couplin
constant is given by

g05g0
S52 2

22J
, ~28!

while we find for the AFSC phase
g05g0
S52

2A~2n1J!@J28t2~12n!#

n~228t2!2J18t2

1

A2nJ1J214~12n!@J~ t122t2!12t1n18t2
2~12n!#

. ~29!
r of
ich

ua-

on-

The
The order-disorder transition atg05gc54p is indicated
by a dotted line in the mean-field phase diagrams, Figs. 3
It is found that transversal spin fluctuations significantly
duce the parameter range over which the Ne´el-ordered
phases are stable, without changing the topology of the z
temperature phase diagram.

At nonzero but low temperatures, the quantum nonlin
sigma model predictsz51 quantum critical behavior in a
parameter region around the AFSC to SC transition lin24

The width of this region grows asug024pu;T2n, with n
50.7 the correlation-length critical exponent of the 3
Heisenberg model. This type of finite temperature behav
where temperature becomes the only energy scale in the
tem, has been reported for the underdoped cuprates
number of authors.26–28

Finally, we note that in the present model the superc
ductivity onset temperature is completely determined
phase fluctuations. This is a trivial consequence of the
that we focussed on the strong-pairing limit. Nevertheless
is consistent with recent analyses of the dependence ofTc on
5.
-

o-

r

r,
ys-

a

-
y
ct
it

the zero-temperature phase stiffness and on the numbe
closely spaced layers in the superconductor material, wh
point to a dominant role of finite-temperature phase fluct
tions in determiningTc .29

V. SO„5… SYMMETRIC POINT

The AFSC phase has an interesting property. Let us c
sider the SO~5! superspin-vector11 for this model

NW P5S 1

2
~GAV1GVA!,

1

2
S̃W ,

1

2i
~GAV2GVA! D . ~30!

The label P indicates thatNW P is defined in the projected
Hilbert space, where double site-occupancy is forbidden.
mean-field expectation value ofNW P satisfies

]^NW P&
2

]n
U

t2521/4

50. ~31!
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Hence, at the mean-field level and for this particular cho
of t2, the AFSC phase can be characterized by an SO~5!
order parameter which has components both in the super
ducting and in the antiferromagnetic subspace, and whic
rotated from the AF to the SC direction as the hole densit
increased. As one approaches the tricritical point, the AF
states with differentn become degenerate~Fig. 3! and the
mean-field state becomes invariant under rotations ofNW P.
For t252 1

4 the tricritical-critical point is located att15t*
5 1

4 , m5m* 5J/4.
It should perhaps come as no surprise that we fin

‘‘mean-field SO~5! symmetry’’ for this model. The specia
lattice used here has two orbitals per unit cell, which see
to be one of the requirements for constructing an SO~5! sym-
metric model with short-range interactions.30 This can be
understood from the fact that the minimum number of si
required for the electron Hilbert-space in which an SO~5!
representation can be constructed is 2~since thep operators
are spin-1, charge 2 objects!. Two-leg spin ladders have
natural two-site unit, the rung, on which the SO~5! order
parameter can be defined. The lattice used here also has
a unit: the long bond. To formulate a short-range SO~5!
model on the square lattice, one either has to break the la
symmetry, or to involve a certain amount of coarse graini
which means that the resulting SO~5! description is effective
rather than microscopic.

In the following, an exact SO~5! symmetric point is de-
rived for the present model. The procedure used is simila
that for the SO~5! symmetric ladder.31 At the mean-field
SO~5!-point, the Hamiltonian is given by

H5H01H1 , ~32!

where

H052(
i

(
d156dx
d256dy

NW P
i ,d1

•NW P
i ,d22J(

i
(

d5dx ,dy

nA
i ,d,

~33!

H15(
i

(
d156dx
d256dy

1

4
@S̃W i ,d1

•S̃W i ,d2
1h i

3~SW i ,d1
•S̃W i ,d2

1S̃W i ,d1
•SW i ,d2

!#, ~34!

absorbing ad-wave staggering into theuVi ,d& state.
The second term,H1, is manifestly not invariant unde

rotations ofNW P . After decoupling the operators on differe
bonds with respect to the order-parameters for supercon
tivity and antiferromagnetism, this term vanishes and the
fore the symmetry breaking does not show up at the me
field level. As Ederet al. pointed out,14 the first and the
fourth component ofNW P are rotated into each other by tran
forming the zero-magnetization triplet stateu0& into the hole-
pair stateuV&. This transformation leaves the singlet dens
nA invariant. Since one may assume in mean-field that
components of̂ NW P& vanish except the first and the four
~spontaneous symmetry breaking selects a preferred dire
in the spin and phase sector! the decoupled mean-fiel
Hamiltonian is invariant under this transformation. This im
e
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plies that thed→` SO~5! symmetry is not only present in
the zero-temperature ground state, but also at finite temp
tures, where higher energy levels are thermally occupied

As a first step towards an SO~5!-symmetric Hamiltonian
H1 is subtracted fromH. This introduces second- and third
neighbor spin-spin interactions into the model.

The second term inH0 is SO~5! invariant ~this is dis-
cussed below!. The first term is invariant under rotations o
NW P , but this does not imply that it is SO~5! symmetric.
There is no representation of the SO~5! algebra on the pro-
jected Hilbert space under whichNW P transforms as a vector
The rotation symmetry is therefore broken at the quant
level. In a recent article,15 Zhanget al. show that mean-field
SO~5! symmetry always remains when a projection to t
lower Hubbard band is applied to a system with full SO~5!
symmetry. Here we work backwards: mean-field SO~5! sym-
metry being established, we deduce a model with full SO~5!
symmetry by lifting the constraint of no double site occ
pancy.

The basis of the single-bond Hilbert space is extended
include the doubly occupied stateuD&. It now consists of one
SO~5! singlet ~A! and one SO~5! quintet ~spin-triplet,D and
V). The details of this representation of the SO~5! algebra
are briefly discussed in Appendix A. We introduce an on-s
repulsionU( idnD id . The general Hamiltonian on the un
projected Hilbert space is given by

H5(
i

(
d156dx
d256dy

F4~ t11t2!(
a

pW i ,d1

a
•pW i ,d2

a

1~ t12t2!DW i ,d1
•DW i ,d2

1
1

4
~SW i ,d1

1h i S̃
W

i ,d1
!•~SW i ,d2

1h i S̃
W

i ,d2
!G

2 (
i ,d5dx ,dy

FJnA
i ,d1S J

4
2U1m DnD

i ,d2S m2
J

4DnV
i ,dG ,
~35!

whereDW 5(ReD,Im D), pW a5(Repa,Im pa) ~see Appendix
A!. The value ofU has to be fine-tuned in order to obta
SO~5! symmetry on a single bond. The resulting constrain
m5J/4 as before, but in additionU5J/2. Note that this is
more restrictive than the local constraint for the ladd
model,31 which leaves two free parameters. Since we o
consider states of paired electrons, this model has fewer l
SO~5! invariants than the ladder.

To establish SO~5! symmetry of the inter-pair interac
tions, one now has to taket152t25 1

8 . After subtraction of
H1, this yields the Hamiltonian

HSO(5)52
1

4 (
^ l ,m&

NW l•NW m2J(
l

nA
l , ~36!

wherel andm run over the square lattice spanned by the lo
bonds~dotted lines in Fig. 1!. The unprojected SO~5! super-
spinNW is given by Eq.~A1!. The local SO~5! invariantnA is
related to the length of the superspin throughNW 25114nA .
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Note that Eq. ~36! is not the most general SO~5!-
symmetric Hamiltonian which could be formulated. In pri
ciple, there can be an additional term of the form

l (
^ l ,m&

(
a,b

Lab
l Lab

m

5l (
^ l ,m&

F(
a

pW l
a
•pW m

a 1SW i ,d1
•SW i ,d2

1Qi ,d1
Qi ,d2G , ~37!

which is also an SO~5! invariant. The charge-charge intera
tion Qi ,d1

Qi ,d2
was omitted from the present analysis and

term of this form therefore does not appear at the symme
point.

The projected SO~5! @pSO(5)# symmetry at U→`
evolves from the true SO~5! symmetric point at fine-tunedU
in the following way. Let us assume we havet152t25t and
U5J/21Ū

H52 (
^ l ,m&

S 2tDW l•DW m1
1

4
S̃W l•S̃W mD1(

l
~ŪnD

l 2JnA
l !.

~38!

The superspin has no preferred global direction forŪ50, t
5 1

8 . Since the AF ground state does not have auD& compo-
nent, while the SC does, a small positiveŪ will flop the
superspin to the AF direction. The energy-difference
tween the AF and the SC state can be compensated b
increase int. For Ū→`, this procedure shifts the superspi
flop point from t5 1

8 to t5 1
4 , with the SC ground state now

having ^nD&50. The shift int is accounted for by the dif-

ferent relative normalization ofDW andS̃W in the definitions of
NW P andNW .

VI. COLLECTIVE MODES

In the above, it was shown that the intersublattice hopp
t2, which couples the spin and charge dynamics in
model, plays a crucial role in establishing the SO~5! symme-
try. This symmetry only emerges at the mean-field level fo
specific value oft2. To further investigate the role of thi
hopping process, the collective modes in the antiferrom
netic and spin-disordered phases are analyzed. Fort250, it
is found that a decoupled spin/charge perspective suffice
understand these modes, as one would expect. In this c
the superconductivity does not affect the collective s
modes of the system.

This changes for nonzerot2. Although the dispersion re
lations do not change qualitatively, the interpretation of
modes does. Most strikingly, the gapped spin-magnon m
of the singlet SC phase acquires ap-mode component. This
mode softens at the transition to the AFSC phase and
comes a pure, acousticp-mode as the system is tuned t
wards pSO~5! symmetry.

The mode spectrum for systems with pSO~5! symmetry
was analyzed by Zhanget al.15 We reproduce their result
for the present model and investigate the influence of furt
SO~5! symmetry-breaking terms.
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A. Random phase approximation

The collective modes of the system are studied in
random phase approximation~RPA!.34 They are obtained
from the equations of motion of the operatorsGab , which
are given by

i ] tGab
i ,d 5@Gab

i ,d ,H#. ~39!

The commutator in this expression contains products of
erators on different bonds (i ,d). These products are decou
pled in a mean-field fashion, yielding a set of coupled line
differential equations. After a transformation to frequen
and momentum space, it takes the form

vGab~kW ,v!5 (
a8b8

Mab
a8b8~kW !Ga8b8~kW ,v!. ~40!

The dispersion relations of the collective modes are obtai
from the eigenvalues of the dynamical matrixM, while its
eigenvectors give the operators which generate these mo

There is a problem with the above decoupling in the sp
ordered phases. As was discussed in Sec. IV, the low-en
fluctuations of the spin system behave differently at largeJF
and near the spin-disordering transition. ForJF!1, the spins
around each square plaquette are locked into a symm
state, forming one spin-2 object, and the low-energy de
mations of the spin-state are localized on the antiferrom
netic bonds. The above decoupling, which cuts across
ferromagnetic bonds, then becomes very poor. Near the s
disordering transition, the spins are rigidly coupled along
antiferromagnetic bonds and the low-energy transversal fl
tuations are localized on the ferromagnetic bonds. In t
case, the decoupling works well.

The crossover to spin-2 behavior at largeJF is driven by
the H1 spin-spin interaction term, Eq.~34!. To avoid it, we
calculate the mode spectrum of the Hamiltonian from wh
this term has been subtracted. The resulting dynamical
trices are listed in Appendix B. SubtractingH1 makes no
difference for the spin-disordered phases, but does cha
the results in the AF and AFSC phase~we discuss in what
way!. TheH1 term breaks SO~5! symmetry, though retaining
it at the mean-field level. As a result, the model which w
study in RPA has a projected SO~5! symmetry at the tricriti-
cal point with fine-tunedt2.

B. Mode spectrum

We briefly discuss the mode spectrum of the antifer
magnetic and spin-disordered phases. These results are
marized in Fig. 7.

The quantum paramagnet, for which both spin and ga
symmetry are unbroken, has no Goldstone modes. Its s
trum consists of a gapped threefold degenerate spin-1 m
non mode and a pairing mode which is also gapped. T
pairing gap closes at the transition to the singlet superc
ductor. Precisely at the transition, this mode has a quadr
dispersion. As the hole-pair density is increased from zero
acquires a finite velocity, becoming the phase Goldsto
mode of the superconducting state. This is the behavior
pected at a dilute boson transition,32 of which this is a par-
ticular example~where the hole pairs are the dilute boson!.
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The threefold degenerate mode of the quantum parama
remains gapped through the transition to the supercondu

The insulating antiferromagnet has a twofold degene
spin-wave mode. In addition, it has a gapped mode relate
spin-amplitude modulations and a gapped pairing mode.
spin-amplitude mode becomes degenerate with the aco
spin-wave modes at the transition to the quantum param
net, where they turn into the spin-1 magnon triplet. T
transition is in the same class as the spin-disordering tra
tion of the Heisenberg bilayer model.33 The pairing gap
closes at the transition to the antiferromagnetic superc
ductor, where it becomes the acoustic phase Goldstone m
at finite dopings. The spin-amplitude mode remains gap
through the insulator to superconductor transition, but
comes degenerate with the acoustic spin-wave modes a
subsequent transition to the singlet superconductor. At
transition line, the system therefore has four acoustic mo
of which three are degenerate.

C. p modes

The mode spectrum as outlined above can be unders
entirely from a decoupled perspective of the spin and
phase sector. At the transition line from insulator to sup
conductor, the pairing mode softens and continuously
quires a finite velocity. At the transition from a phase w
AF order to a spin-disordered phase, the spin-amplit
mode becomes degenerate with the acoustic spin-w
modes. These two effects combined yield the described
havior, and in particular the occurrence of four acous
modes at the AFSC to singlet SC transition. This decoup
perspective is correct fort250. In this case, the gappe
modes in the singlet SC state are indeed spin-1 magnon
they are in the quantum paramagnet, while the gapped m
in the AFSC is indeed a pure spin-amplitude mode, as
for the AF insulator.

The t2 process, however, provides a coupling between
movement of the hole pairs and the dynamics of the s
system. This coupling changes the nature of the gap
modes in the superconducting phases with respect to tho

FIG. 7. Sketch of the mode spectrum in the antiferromagn
and spin-disordered phases. The dashed lines are pairing m
when gapped~insulating phases! and phase Goldstone modes wh
acoustic~superconducting phases!.
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their insulating parent phase. In the AFSC phase, the s
amplitude mode is mixed with fluctuations between the h
pair and the zero-magnetization electron-pair states. In
singlet SC phase,p modes~hole pair to triplet fluctuations!
are mixed into the spin-1 magnons.

Close to the transition from the singlet to the antiferr
magnetic SC, the gapped mode becomes degenerate wit
acoustic spin-wave modes and thet2 process begins to affec
the low-energy physics of the system. From the analogy w
the spin-disordering transition in the insulating phase, o
would expect to find a threefold degenerate acou
magnon-mode at this transition~in addition to the phase
mode!. Instead, the RPA analysis yields an eigenvector

4t2AJ22~G0V2GV0!1~J28t2!~122t112t2!

3~G0A2GA0!, ~41!

which has both a magnon and ap-mode component. Note
that this result does not change if the more natural spin-s
interactions, withH1, are used, sinceH1 does not affect the
collective modes in the singlet SC phase.

For J→2, the spin-disordering line in the supercondu
ing phase approaches half-filling. In this case, Eq.~41! be-
comes a pure magnon mode, which is the result expected
the insulating phase. The same eigenvector is found fot2
50, which implies that the transition in the superconducti
phase is, for that case, indeed of the same type as for
insulators. Thep modes are mixed in for finitet2. We find a
purep mode fort25J/8 andt12t251/2. The first condition
is satisfied at the point where the AFSC, triplet SC and s
glet SC meet, atn→0 ~see Fig. 5!. This is related to the fac
that then50 state and the triplet SC, which are related by
p rotation, become at that point degenerate in energy.
second condition is of more interest: it is fulfilled if th
singlet-pair hopping process and the Ne´el-moment interac-
tion enter the Hamiltonian in the projected SO~5!-symmetric
form NW p

i ,d1
•NW P

i ,d2 . This is of course the case at the pSO~5!
point, which implies that the singlet SC phase at this po
has the mode content expected from SO~5! theory: four
acoustic modes, of which one is a phase mode and three
p modes. It is shown in Ref. 15 that this is generally the c
for systems with a projected SO~5! symmetry in the SC
phase. The symmetry breaking due to the projection onto
lower Hubbard band shows up in the RPA mode spectrum
a different velocity for the phase and thep modes:

vphase
SC, pSO(5)5A42J2

8
,

~42!

vp
SC, pSO(5)5

21J

4A2
.

The two modes become degenerate atJ56/5 (n54/5), but
this point does not seem to have any special significance

The condition t12t251/2 can also be satisfied at th
AFSC to singlet SC transition away from the point wi
mean field SO~5! symmetry. In this case, there are addition
terms which break the mean field SO~5! symmetry, since
they tune the system away from the tricritical point, b
which do not affect the RPA modes.

ic
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D. Projected SO„5… symmetry

In Ref. 15, the mode-spectrum at the pSO~5! point was
studied for a general direction of the superspin. Two strik
results were obtained. In the first place, the system ha
twofold degenerate acoustic mode, whose velocity is in
pendent of doping@i.e., independent of the direction of th
SO~5!-order parameter#. Secondly, the phase Goldston
mode is not acoustic, but gapless with a quadratic dispers
It was argued that this last effect is caused by the infin
compressibility of the system at the pSO~5! point, where
]^n&/]m diverges.

Both results are reproduced in our model. Since the s
ond result is related to the infinite compressibility rather th
to SO~5! symmetry, it always occurs at the tricritical poin
also if we tune away fromt152t25 1

4 while keeping t1
5t* , m5mc . By the same argument, this effect will no
disappear if theH1 term is added to the Hamiltonian, sinc
this does not affect the mean-field phase diagram.

The first result is very sensitive to perturbations. As so
as the tricritical point is tuned away fromt152t25 1

4 , the
velocity of the acoustic modes becomesn dependent. Also
the addition ofH1 to the Hamiltonian destroys this effec
This can be seen by calculating the spin-wave velocity fr
c5Ars /x', using the results obtained in section IV, a
evaluating it at the mean-field SO~5! point. This yields

vs
MF SO(5)5A„~21J!~J1222n!…~J112n!

8~J12n!
, ~43!

which has ann dependence. For the model withoutH1, the
stiffness is given by@see Eqs.~21!,~23!#

rs
H2H15

2

Ndf2
DE~a50!5n~12n!~ t11t2!~12cos 2x!

1
n2

4
~12cos22x!], ~44!

wheren andx have the mean-field values listed in Table
The susceptibility is obtained by multiplying theJF term in
the mean-field energy Eq.~15! with a factor cos2 f̃y, adding
the magnetic field term Eq.~16!, and minimizing with re-
spect tof̃y. We obtain

x
'

H2H15
2n~12cos 2x!

J28t2~12n!1n~12cos 2x!
. ~45!

At the pSO~5! point, this stiffness and susceptibility repro
duce the RPA resultvs5(21J)/(4A2), which is indepen-
dent of doping. Both the phase ordering and the sp
ordering energy contribute to the spin-wave velocity in t
AFSC phase. As one approaches the pSO~5! point, the dop-
ing dependence of the contribution of the spin-ordering
ergy is precisely compensated by the opposite doping de
dence of the phase-ordering contribution. Note that
model with H1 yields the samevs at the transition to the
singlet SC, wheren5(21J)/4, see Eq.~43!. This demon-
strates the insensitivity of the RPA mode-spectrum in
singlet SC phase to the specific form of the spin-spin in
actions.
g
a
-

n.
e

c-
n

n

-

-
n-
e

e
r-

At the pSO~5! point of our model, the acoustic modes a
no longer pure spin wave, but a combination of spin wa
andp mode. Their eigenvector is given by

A12n~G1V1GV21!1An2nc~G101G021!, ~46!

which starts out as a spin wave at half filling, but cross
over to ap mode atn5nc . This agrees with Zhanget al.’s
interpretation of the doping-independent velocity in terms
the projected SO~5! symmetry.15

VII. SUMMARY

We have introduced a strong coupling model for spin
dering and superconductivity. The microscopic buildi
blocks of this model are nearest-neighbor electron pairs.
spatial structure of these pairs gives rise tod-wave supercon-
ductivity. At the same time, it allows the pairs to have
nonzero uniform or staggered magnetic moment. In orde
avoid problems related to dimer-type spatial correlations
tween the pairs, the model is formulated on a 1/5-deple
lattice. A rich mean-field phase diagram is obtained, exh
iting in particular a phase which is at the same time an a
ferromagnet and a superconductor. The second order l
separating this phase from the antiferromagnetic insula
and the spin-disordered superconductor end at a tricrit
point, where the antiferromagnet to superconductor ph
transition becomes first order. By mapping the spin secto
the antiferromagnetic phases onto a nonlinear sigma mo
the main corrections to the mean-field phase diagram h
been obtained.

For a specific value of one of the model parameters
mean-field SO~5! symmetry between the antiferromagne
and superconducting order-parameter appears to be rea
at the tricritical point. It turns out that the model still con
tains spatial gradient terms which break SO~5! symmetry.
These can be removed by modifying the spin-spin inter
tions. The remaining SO~5! symmetry breaking is then a
pure quantum effect, being related to the operator alge
rather than the Hamiltonian. It is shown that true SO~5! sym-
metry can be realized for this model by allowing double s
occupancy and fine-tuning the HubbardU. The approximate
symmetry at largeU is therefore a projected SO~5! symmetry
of the kind discussed in Ref. 15.

We investigated the mode spectrum using the rand
phase approximation. It is found that the intersublattice h
ping process gives rise to the appearance of ap component
in the gapped modes of the singlet SC phase. Approach
the point with projected SO~5! symmetry from the singlet SC
phase, a threefold degenerate acousticp mode is found as
well as an acoustic phase mode. The RPA mode spect
then has the properties expected for an SO~5!-symmetric sys-
tem in the pure superconducting phase, apart from the
that thep modes and the phase mode have different velo
ties.

As reported in Ref. 15, the system at the pSO~5! point has
a gapless phase mode with a quadratic dispersion, as we
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3688 PRB 61C. N. A. van DUIN AND J. ZAANEN
a twofold degenerate acoustic mode whose velocity is in
pendent of doping. This acoustic mode crosses over fro
pure spin wave at half filling to ap mode at the transition to
the singlet SC phase. We find that the quadratic phase-m
is a property of the tricritical point rather than of the pr
jected SO~5! symmetry. The doping-independent velocit
however, is a strong signature of projected SO~5! symmetry,
which can be destroyed even by additional symme
breaking terms that leave the mean-field SO~5! symmetry
intact.
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APPENDIX A: THE SO „5… ALGEBRA

A short overview is given of the representation of t
SO~5! algebra for this model. In the unprojected Hilbe
space, a representation of the SO~5! algebra can be define
which transforms the superspinNW as a vector. The superspi
is given by

NW 5~ReD,S̃W ,Im D!, ~A1!

where

D†5A2~GDA2GAV! ~A2!

and ReD5 1
2 (D†1D), Im D51/2i (D†2D). The generators

of the SO~5! algebra satisfy the commutation relation

@Lab ,Lcd#5 i ~dacLbd1dbdLac2dadLbc2dbcLad!,
~A3!

where the indices take the values 1 through 5. TheLab are
antisymmetric under an interchange ofa and b. They are
given by11

Lab5S 0

2 Repx 0

2 Repy 2Sz 0

2 Repz Sy 2Sx 0

Q 2 Impx 2 Impy 2 Impz 0

D ,

~A4!

where thep operators readpa
†52 1

2 c1
†sasyc2

† , with sW the
Pauli matrices.31 Projecting onto the paired-electron state
we obtain

px
†5

1

2i
~GD12GD 211G1V2G21V!,
e-
a

de

-

-

s

,

py
†5

1

2
~GD11GD212G1V2G21V!, ~A5!

pz
†5

i

A2
~GD01G0V!.

The charge operator is given by

Q5nD2nV . ~A6!

It can be checked thatNW indeed transforms as a vector und
this SO~5! algebra:

@Lab ,Nc#5 i ~dacNb2dbcNa!, ~A7!

and furthermore that

@Na ,Nb#5 iL ab . ~A8!

APPENDIX B: DYNAMICAL MATRICES

A staggering factor for the antiferromagnetic spin- and
d-wave phase order has been absorbed into the oper
Gab . After subtraction ofH1, the Hamiltonian takes the
form of a model on the square lattice, where the opera
Gab act on the states on the lattice sites. The Singlet d
AF dSC, quantum paramagnet and AF insulator mean-fi
states are all uniform in terms of these operators. It is the
fore not necessary to introduce a multisublattice structu
The different modes in terms of the real~nonstaggered! op-
erators are simply related to the ones obtained here by a
in k space.

The operatorsGa,b separate into three sets. Each opera
couples only to operators in the same set through its R
equation of motion. One set is formed by the raising ope
tors $G1V ,G1A ,G10,GV21 ,GA21 ,G021%, another by the
lowering operators, which are related to this set by Hermit
conjugation. The third set contains the operators wh
act only on the zero-magnetization state
$GAV ,G0V ,GA0 ,GVA ,GV0 ,G0A ,nA ,n0 ,nV%.

The dynamical matrix of the raising operators has
form

MR5S AT BT

2BT 2ATD , ~B1!

whereA andB are the 333 matrices
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A5S 4S tsu
2gk1m2

J

4
22s2ucxS D t2

gk

4 D S t2s2usx

2s2ucx~S tgk2D t! cu
2cx

2gk2J cu
2s2x

2S ts2usx~12gk!
1

2
cu

2s2x~22gk! 0
D , ~B2!

B5S 0
1

2
s2ucxgk 0

0 cu
2cx

2gk 0

0 2
1

2
cu

2s2xgk 0
D , ~B3!

where we have used the notation

sx5sinx; cx5cosx, S t5t11t2 ; D t5t12t2 , gk5
1

2
@cos~kW•eW1!1cos~kW•eW2!#, ~B4!

with eW1 and eW2 the basis vectors of the square lattice spanned by the long bonds, Fig. 1. The anglesx and u are the ones
appearing in the mean field energy Eq.~15!. In the insulating phases,u vanishes, whilex is equal to zero in the spin-disordere
phases.

The dynamical matrix of the lowering modes is the same asMR , apart from a minus sign. The last set has a dynam
matrix

M05S C DT ET

2DT 2C 2ET

F 2F 0
D , ~B5!

which consists of the 333 matrices

C11524D t~cx
2cu

22su
2!gk1m1

3

4
J, C1252D tcu

2s2xgk2cu
2s2x , C13522s2usx~D tgk2S t!,

C2152S tcu
2s2xgk2cu

2s2x , C22524S t~cu
2sx

22su
2!gk1m2

J

4
, C2350, ~B6!

C3152S ts2usx2
1

2
s2usx , C325

1

2
s2ucxgk , C3352cu

2c2xgk1J,

D5S 0 0 1
2 s2usxgk

0 0 2D ts2ucx2 1
2 s2ucxgk

0 22s2ucx~D t2S tgk! cu
2c2xgk

D , ~B7!

E5S 22D ts2ucx~12gk! 0 cu
2s2x

0 2S ts2usx~12gk! 2cu
2s2x

2D ts2ucx~12gk! 22S ts2usx~12gk! 0
D , ~B8!

F5S 22D ts2ucx 0 cu
2s2x

0 2S ts2usx 2cu
2s2x

2D ts2ucx 22S ts2usx 0
D . ~B9!

For the singlet SC phase (x50), the operatorsGab with a andb referring to triplet states decouple from the equations
motion, since there is no longer a triplet component in the mean-field ground state. This leaves the rais
$G1V ,G1A ,GV21 ,GA21% and the Hermitian conjugate lowering set. The set of zero-magnetization operators splits in
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transversal set$G0V ,G0A ,GV0 ,GA0% and the longitudinal set$GAV ,GVA ,nA2nV%. The dynamical matrices of the first thre
sets contain the threefold degeneratep- and spin-1 magnon modes. The fourth set contains the phase and the pairing

In the quantum paramagnet phase (x5u50), the first three sets further simplify. Since thep operators do not refer to th
spin-singlet ground state, only the spin-1/charge-0 operators are left in these sets. The phase-modenA2nV disappears from the
last set.
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