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A model is introduced describing the interplay between superconductivity and spin ordering. It is charac-
terized by on-site repulsive electron-electron interactions, causing antiferromagnetism, and nearest-neighbor
attractive interactions, giving rise wave superconductivity. Due to a special choice for the lattice, this
model has a strong-coupling limit where the superconductivity can be described by a bosonic theory, similar to
the strongly coupled negativé Hubbard model. This limit is analyzed in the present paper. A rich mean-field
phase diagram is found and the leading quantum corrections to the mean-field results are calculated. The
first-order line between the antiferromagnetic and the superconducting phase is found to terminate at a tric-
ritical point, where two second-order lines originate. At these lines, the system undergoes a transition to and
from a phase exhibiting both antiferromagnetic order and superconductivity. At finite temperatures above the
spin-disordering line, quantum-critical behavior is found. For specific values of the model parameters, it is
possible to obtain SB) symmetry involving the spin and the phase sector at the tricritical point. Although this
symmetry is explicitly broken by the projection to the lower Hubbard band, it survives on the mean-field level,
and modes related to a spontaneously brokeb58/mmetry are present on the level of the random phase
approximation in the superconducting phase.

[. INTRODUCTION an implicitly weakly coupled perspective. The magnetic fluc-
tuations as seen in NMR and neutron scattering were be-
Both for empirical and historical reasons, research on sulieved to be due to the proximity to an amplitude driven spin
perconductivity tends to be preoccupied with the weak coudensity wave transition Recently, this perspective has been
pling limit. From a more general perspective, BCS theory aglrastically changed due to the observation of strong static
well as Gorkov-Migdal-Eliashberg theory correspond with aantiferromagnetic order associated with the stripe phases in
special case which in a sense is pathological. The emphasise LgCuQ, systen® In the Nd doped samples where this
is completely on the amplitude of the order parameter whileorder is strongest the magnitude of theeNerder parameter
fundamentally superconductivity is about breaking of gaugean be as large as 3 ,’ while 0.1ug has been claimed in
symmetry, associated with the phase sector. The work ofpristine” La ; gSt, 12CuQ,.8 It appears that this antiferro-
Schmitt-Rink and Nozierésevealed that the BCS theory for magnetic order is in competition or even coexisting with the
a swave superconductor can be smoothly continued to theuperconducting ord&r Given that the stripe antiferromag-
strong coupling limit. It is generally recognized that it is far net should be strongly renormalized downward due to trans-
easier to understand the vacuum structure of such a superersal quantum spin fluctuatiofshe stripe antiferromagnet
conductor in strong coupling. Amplitude fluctuations can behas to be strongly coupled. Given the strong similarities be-
regarded as highly massive excitations and all what remainsveen the static order and the incommensurate spin fluctua-
is the phase sector described in terms of hardcore bosons, ions which seem to be generic for all cuprate superconduct-
alternatively in terms of pseudospin models. ors in the underdoped regime, a strong coupling perspective
In the context of highF. superconductivity one encoun- on the antiferromagnetism should be closer to the truth even
ters a far more complex physics. Abundant evidence is availf static order is not present, at least as long as the doping is
able for ad-wave superconducting order parameter. This isnot too large.
usually discussed in terms of weak-coupling theory with its Recently several theoretical attempts have been under-
d-wave nodal fermions while the more sophisticated aptaken to shed light on this problem of strongly coupled su-
proaches start from this limit, attempting to penetrate theperconductivity and antiferromagnetism. The simplest theory
intermediate coupling regime using self-consistent perturbaef this kind is Zhang’s S(®) theory, where superconductiv-
tion theory? The obvious problem is that the coherenceity and antiferromagnetism are “unified” within a single
length is rather shoftAt the same time, an interesting case larger symmetry! Given that no such symmetry is mani-
has been presented claiming that much of the thermodynanfiestly present at the ultraviolet of the problem, this might
ics can be understood from phase dynamics afocem-  well be misleading and one would like to have a more gen-
pletely disregarding amplitude fluctuations. It would there-eral framework in which thigsneay SO(5) symmetry appears
fore be useful to study strong coupling theories dewave  as a special case. The manifest symmetry of the problem is
superconductors. U(1)xXSU(2) (superconducting phase- and spin, respec-
An even better reason to pursue a strong coupling pertively). The structure of the long wavelength effective theory
spective is the growing evidence for the presence of welbased on this symmetry principle has been analyzed recently
developed antiferromagnetism coexisting with the superconby one of the author¥ including the charge order associated
ductivity. Traditionally, this was approached within, again, with the stripe phase. These approaches are only truly mean-
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cussed, this model is characterized by an unproblematic clas-
sical (in fact, larged) limit. This allows us to derive in a
controlled way a complete semiclassical description.

As discussed in Sec. I, we find a surprisingly rich phase
diagram on the classical level containing all phases, which
have been up to now suggested in this context, including the
large N spin-quantum paramagnets. Perturbing around this
classical limit, we address the structure of the semiclassical
theory including the universality classes at the various phase
transitions(Sec. IV). By fine tuning parameters, we find lines
in the phase diagram where the @D symmetry is ap-
proached. However, even at the most symmetric poin650
is not reached: as we will show, the theory become$550
symmetric on the classical level but the quantum corrections
destroy this symmetry again. As was already pointed out in
the context of the S®) symmetric ladders, fine tuning of
the on-site repulsions is required to stabilize the full symme-

1 } . try (Secs. V and VI
FIG. 1. The z-depleted lattice. Dotted lines connect nearest-

neighbor horizontal and vertical bonds.

Il. THE MODEL
ingful at long wavelength and a more complete understand-
ing is in high demand. In fact, the only reasonably complete
theory is the one by Vojta and Sachdé\hased on the large For the strong-coupling description we are aiming at, the
N/small S saddle point of the Spl(®) t—J model. How-  microscopic building blocks are electron link pairs, created
ever, in this largeN limit the antiferromagnetism is in the by the operators
strongly quantum disordered regime, and is therefore at best
dual to the renormalized classical éleorder of the stripe o192t — o of (1)
phases.

i,8 I,rrlci+6,(rz’
Here we will present an exceedingly simple toy model . . . . .
which seems ne\F/)ertheIess to catch m%Zh of ?he pr?/ysics dig\_/hereé is a lattice unit-vector, whilé labels the sites. Such
a link-pair is the typical microscopic object in a strong-

cussed in the above. It is similar in spirit to the lattice-boson lina th i ductivit d th i
description of superconductivity and magnetism discussed iffoupiing theory old-wave superconductivity and the smat-
st electron pair that can support spin degrees of freedom.

Refs. 14 and 15. The pursuit is to construct a model which . ) "
'wo serious problems arise when trying to construct a model

the same time describes localized magnetism and local pai th ¢ technical and wal. Th
ing superconductivity. The magnetism is undoubtedly relate rom these operators, one technical and one conceptual. 1he
technical problem is related to the spatial structure of the link

to strong, Hubbard) type on-site repulsions. This prohibits L . ;
g yp P P airs, which introduces correlations between pairs centered

for obvious reasons on-site paring. The next microscopi dite t bonds. Th lati h in th
length scale available on the lattice is the lattice constanp! GIT€TENt bonds. THese correiations show up in the com-

itself: the pairs causing the superconductivity live on themutation relations of the link operators. Operators along dif-
links of the lattice!® If such a link pair is occupied, the sites ferent bonds do not commute if their links share a common

connected by this link are both occupied by a single electror>'€: As a result, the dimension of the link-operator algebra

In the presence of on-site repulsions these electrons will ter:jgrows. V,\[’.'th th? thSteE] SIZ€. Th'ts m'akes alzllmple gseutdo—splhn
to turn into a spin system. The number fluctuations implie escr|pt|onh 0 be charge zeg or |r_npot55|the a;n no lel_c
by the superconducting phase order correspond with such ems 1o have been gained by going to the strong-coupling

: ; . : . . imit.
occupied link-pair becoming unoccupied, causing at th . . .
same time a dilution of the spin system. This problem can be avoided by assuming that one can

On the square lattice a subtlety keeps a theory with thes omehow _keep track of V.VhiCh eIectrpns beIon_g to a particu-
link pairs as building blocks from being simple. Different ar pair (this can'b'e amb|guous, for |n§ta_nce, in Fhe case of
from the largeN limit with its spin-Peierls ordet® the link four electrons sitting in a squarelf this is possible, the

pairs cause both conceptual problems in describing the sta{@k'pa'ri cUanUbS qrescnbed by hardcore boson operators, sat-
at half filling as well as serious technical problems. As will isfying b;""?b, /# =0 for 6+ &". Link bosons on different

be discussed in Sec. Il, a consistent formulation requires lobonds always commute, removing the problem of the
cal constraints to be added to the theory in order to exclud@finite-dimensional link algebra. The correlation effects then
tilings of the lattice characterized by multiple occupancies orshow up in a different way, however. The hardcore link
the sites. This is not necessarily fatal: the theory is bosonibosons are spinful generalizations of the quantum
and it might well be that Jastrov projections cure the prob-dimers'’*81t is well known that even the classical theory of
lem. A central result of this paper is our discovery of a dif- the dimers is a complex combinatorics problem, which was
ferent lattice where these likely nonessential “correlation” solved for the case of half filling’ but not for general den-
problems are absent: the 1/5 depleted lattice shown in Fig. Xities. This problem seems unavoidable when one tries to
The linkpairs live on the long bonds, while the short bondsconstruct a strong-coupling theory for electron pairs with one
only carry spin-spin interactions. As will be further dis- or the other real space internal structure on the square lattice.

A. Correlated superconductivity
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The conceptual problem is related to the fact that our link t, t
pairs carry spin. It concerns the state at half filling. On the
square lattice, there are many ways in which the link pairs m '/—\

can be distributed over the lattice to obtain complete cover-

ing. Since the half-filling state is a pure spin system, this =
charge degree of freedom is superfluous. The link-pair model
at half filling therefore suffers from a large degeneracy.

In the largeNt-J model studied by Vojta and Sachdgy,
link pairing arises as a result of nearest-neighbor spin-singlet
formation, and the pairs are in this case spin-zero dimers. As
a result, different link-pair configurations at half filling cor-
respond to different distributions of the singlet spin bonds
over the square lattice. These configurations are therefore
physically distinct. The spin-Peierls order which is present at
half-filling singles out a particular link-pair configuration,  F|G. 2. Hopping processes and spin-spin interactions included
breaking the degeneracy. in the model.

For a largeStype antiferromagnet, however, the spin sec-

tor cannot be used to break the degeneracy associated withs-depleted lattice, shown in Fig. 1. We arrive at this lattice
half filling. Let us therefore consider a model where link by expanding the sites of a square lattice to form tilted
pairing arises as a result of charge-charge interactions. In thisguares. Along the bonds of the original square lattice, at-
case, link pairs can have both a singlet and a triplet spifiractive charge-charge interactions are assumed, while on-
component, allowing for the construction of a half-filling an- site repulsive interactions are introduced to promote antifer-

tiferromagnet. Consider a nearest-neighbor attractive interagomagnetism. The electron Hamiltonian of such a model
tion V, an on-site repulsive interactidth and a longer-range reads
repulsive interactiot’,

H= % [—Vny°n5®+U(niny’+n3nk?)]
HZEI _V25 nini+5+unmnil !
+hopping processes, ©)]

+u D NiNi+ s+, +hopping processes, where the index labels the square plaquettes, whiigd)
01,027 =01 denotes the four bonds extending from these plaquettes. The
(2)  two sites connected by each long bond are numbered 1 and 2
from left to right and from bottom to top. The hopping pro-
where é runs over all lattice unit vectors. The attractive in- cesses can include hopping along the long and the short
teractionV promotes link pairing, while the longer range bonds, as well as longer-range hopping across the square or
repulsive interactiotd’ is needed to counteract phase sepathe octagonal plaquettésee Fig. 1 In the largeV, largeU
ration in the strong-coupling limit. limit, the above model reduces to one describing the physics
At small electron densities, the strong-coupling limit of of spinful link pairs, which reside on the long bonds of the
the above model describes a dilute gas of electron link pairsl/5-depleted lattice. Note that the spatial correlations be-
Near half filling, it describes a dilute gas bble link pairs,  tween these pairs are the same as between point particles on
moving through a spin background. Taking hole pairs andx square lattice. Since the link pairs on different long bonds
spins, instead of electron pairs, as the elementary buildingo not share a common site, the algebra of the link pairs on
blocks in the strong-coupling limit near half filling, the large different bonds decouples and a pseudospin type description
degeneracy in the description is avoided. Such a perspectiv the charge sector becomes possible. Admittedly, this
is not entirely satisfactory, however, since the spin sector ismounts to a rather radical simplification as compared to the
in this case represented in a first-quantized form. square lattice link-pair problem. However, the long wave-
The technical problems, related to the spatial correlationgength physics we will derive for the depleted lattice might
between the link pairs, of course remain also for this modelpe of a greater generality because of the universality prin-
These correlations become important at finite densities awagiple. In fact, we suspect that the complexities discussed in
from zero or half filling, severely complicating the strong- the previous subsection will add only tendencies towards

coupling analysis of this model. Moreover, the short-rangecharge ordering which can be to some extent discussed sepa-
attractive and long-range repulsive interactions will give riserately.
to charge ordering phenomena at intermediate densities, fur-
ther complicating the physics. C. Pair-hopping and spin-spin interactions

Since the Hamiltonian Eq3) should be viewed as a toy
model, there is no reason to explicitly derive the strong-

The complex spatial correlations between link pairs anccoupling description by starting from this Hamiltonian and
the tendency towards charge-ordering at intermediate densitegrating out the states with unpaired electrons. Instead, we
ties as discussed in the previous subsection can be avoidsinply formulate another toy model, which describes generic
by formulating the model not on the square lattice, but on thdeatures of the dynamics of bound link pairs on the 1/5-

B. Depleted lattice
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depleted lattice. We include the minimal number of pro-The operator§,,, Gy, , and3(n,—ny) form anS= 3 spin

cesses needed to capture the physics of such a system, makgebra @¢=1,0,—1,A). Pseudospins with a different spin

ing sure that the interactions are consistent with thdndex o do not commute. In Sec. V, the constraint of no

symmetries of the lattice. double occupancy is abandoned to allow for the construction
An antiferromagnetic spin-spin interactiahis assumed of an S@5) symmetric version of this model. The operators

along the long bonds and &rromagneticinteraction Jg (6) then becomé&=1 pseudospins and operators with a dif-

along the short bondgFig. 2). This choice allows for an ferent indexa do commute in this case.

extension of the model to higher dimensions without intro- It is convenient to introduce the total spin and theeNe

ducing frustration into the spin system, making it possible tomoment of a link pair

reach thed—oo limit and check the mean-field results there.

For Jg>J, the half-filled system becomes equivalent to an S s=SustSoi sl S.s=Siis—Saise 7)

S=2 antiferromagnet on a square lattier S=d on a . .

d-dimensional hypercubic lattizeThis property will be used Which are given by

to obtain an estimate of the quantum corrections to the F=G.—G
saddle-point results obtained in the next section. tomeh
A sublattice and an intersublattice hopping process are St =/2(G.+ G
introduced, with amplitude, andt,. Both processes move v2( 10t Go-1), )
a pair from a horizontalvertica) bond to a nearest-neighbor Fe G G
- A0 0A »

vertical (horizonta) bond. Thet; process respects the spin

ordering, keeping the electrons which form the pair on their & = \2(Gya—Ga_ 1)

original sublattice. The, process moves the electrons from N 1A PA=1h

one sublattice to another, thereby frustratingeNerder. satisfying S@4) commutation relations. After absorbing a
Including a chemical potentiat, we arrive at the Hamil-  factor (—1)'x*'y sgn(5) into the triplet states, which induces

tonian a staggering o8 and G, (a=1,0-1), the Hamiltonian
; ) takes the form
H=20 | 2 {7 LWL
o ) H=Y 3 |ttt D (GAG2+HC)
g0 00 _ o0 g0 i S1==%6, a=10-1
‘Hz(Li,isxz _Li,€5X )(Li,éyl_Li,£§V)+H-C-} I 5;::5:
_JF(§1i,5x+§2i,—5x)'(§1i,5y+§2i,—5y) +(t1—t2)(Gk€lGi\}f\2+ H.c)
N - J[: o ~ = ~
+ 2 (ISi s Sai s ki) |, (4) 2 SistmSis) (S, 7S s)
6=55.0,
where the same notation has been used as in(8q.A 1 s s s
projection operatoP; ;= (1—ny’n}})(1—n%n3}) has been +Z 5:; i 29—y =Ang%) —u(1-ny9) |,
included in the definition of the link operatoﬁ?”ﬂ, Eq. o
(1). This enforces the constraint of no double occupancy, o ©
which is a result of the larg¥ limit in Eq. (3). wherez; =(—1)'x"y is the AF staggering factor. Note that it

The Hilbert space on one long bond is spanned by five 2 ; _
states: unoccupiedV(), spin-singlet A), and spin-triplet fﬁ)neqci:]gi;rgseoégig int§ 5, since (,dy) and (+1,— &)
(1,0-1). The operators acting on this space are%ma- '

trices. Introducing the notation
Il. MEAN-FIELD ANALYSIS

(Gap)ij=di,a0 b (5) A variational Hartree-Fock procedure is used for the
the pair creation operators can be written as mean-field analysis. In the ansatz wave function, thelNe
vector is fixed in thez and the total spin in th& direction
L%:le' (<§)-<§)=O). The pseudospin degrees of freedom of the
Lt —G charge/phase sector are described byBars spin coherent
L2 =1V state
(6)

|0,4;9Y,x)=sinde”|V)+cosb|¢,x), (10
while the spin degrees of freedom of the pair are contained in
L [, x)

T~ _ .
L= \/E(G°V+GAV)' |4Y,x)=e"""S(cosx|A)—siny|0)). (11)

These operators are the equivalent of the pseudo-spins whi¢Eby,X> is just the bilayer coherent statewhere the global
appear in the strong-coupling negatileHubbard modef®  orientation of the two-spin system has been fixed.
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FIG. 3. Mean field phase diagram dfversusy andn, for t; FIG. 5. Mean field phase diagram of versusu andn, for J
* ~ _ . - )
>_t_l (t;=0.43¢, t2——Q.1JF). Bold lines indicate flrst_ order traQ- <2Jp andt1>(4J§+J2)/32JF (t,=0.40¢, J=Jp).
sitions. At the dotted line, transversal quantum spin fluctuations
destroy the antiferromagnetic order.
| | y i, o0y =T1 16,458, x)1 5. (14)
We list the expectation-value of a number of quantities i\6

with respect to the variational state
In the mean-field analysis, it is assumed that the staggered

n=1—(ny)=cos, local magnetization and the charge density are uniform. The
5 phasey, is allowed to have a different value on horizontal
(S)=nsin2ysingY; (9)=(SH=0, (4™ and vertical bonds"). We then arrive at the follow-

ing mean-field energy:
($=nsin2ycosp’; (S)=(9)=0, (12)

(na)=ncosy cos$ Eve=N| Sir? 26(t; +t,— 2t, cof y co $¥)cog yH— y)
A - i)

o 1
(Gav)=+n(1-n)e "¢ x|a), =53 coddsirt 2y
where «=1,0-1A labels the four spin states. The role 1
which the various parameters play can be determined from + ZJ co€6(1—4 cody cogdY) —ucoLd|, (15

this list: ¢ fixes the pair densitys’ determines the relative

magnitude of(S) and (§>, while their total magnitude is whereN denotes the number of long bonds. Minimizing Eg.
fixed by yx; ¢ represents the phase which orders in the su{15), a variety of mean-field ground states is obtained as a

perconducting state. function of the various parameters. The results are summa-
The variational energy is given by rized in Figs. 3—5 and in Table I. We focus here on the case
5 t,>0, for which the superconducting state is typically of
Eval{6,4; 8", x}i.5) =i, 8 H|{i,5}), (13)  d-wave type {/"— V=). The same phase diagram results
for t;——t; and t,— —t,, but with s wave instead of
where
o5 o5 TABLE |I. Mean-field results for the various phases.
i P Phase n cos % cos¢’
Singlet dSC AF dSC
Singlet dSC ;
}1 ’31 Spin-liquid 1 1 1
Fo. LT . —J—4pu—16t,— 8Jt,+ 64t3 -
" Ll Néel dsC P16 -8+ 645 J+8E,(n-1)
P 4(1-8t,+1613) 2n
AF insulator L A+ 16(ty—t) +3J
ok /// +ms4 Jo ) o 1ty
et - Singlet dSC Singlet dSC 3t,1,) 1 1
phase sep. AF ins. + n=0 4 J 4 lat t )
. . ! . T T ] —ap— 1+t
2 p o T o 05 ) Triplet dSC R e 0 0
m/Jp n AF 1 1

N &

FIG. 4. Mean field phase diagram bf versusu andn, for J
<2J|: andt2<J/8 (J:JF, t2: _O].JF)
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d-wave phase order. For simplicity, t;, t,, and 4 are trates the phase ordering as favored bytthkop. To reduce
expressed in units afg from here on. this frustration, the singlet content of the pairs is suppressed
At half filling, the physics is determined by the competi- ast, is increased, enhancing the spin ordering in the AFSC
tion between the antiferromagnetic and the ferromagnetiphase. Eventually, a first order transition occurs to a ferro-
spin-spin interaction. While the first promotes singlet forma-magnetically ordered triplet superconductor phase, where the
tion along the horizontal and vertical bonds, the second fasinglet density is reduced to ze(Big. 5).
vors large local magnetic moment3.therefore tunes the If t; andt, have opposite sign, thgiplet component is
singlet density in the ground state at half filling. kb1,  suppressed through the same process ant,thep reduces
the system has full N order with(n,)=1, |<§>|:1' The the _s_pin-or.der in the _A_\FSC phase. Note thlgtca_useg a
singlet density increases linearly withup to(n,)=1 atJ  Positive shift of the critical valugy regardless of its sign.
—2, where the staggered magnetization vanishes in a secordis reflects the fact that on-sublattice hopping must domi-
order transition to a quantum paramagnet ph#Esg. 3. nate in order for an AFSC_: phase to occm[fét’{ implies
For densities smaller than one, the two hopping processds= |t2|, where the equal sign occurs fii|=5). _
begin to play a role. Since the case of a uniform charge It should be verified that the saddle-point solution be-

distribution is considered and since all electrons are paired ifOMeS exact in the limid—c. To reach this limit, the
the strong-coupling limit, all variational states with a nonin- Model has to be formulated in arbitrary dimension. The

teger electron density exhibit superconductivity. The superd-Wave phase order then posses a problem, since it cannot be

conducting order parameter depends on the electron densiggneralized to dimensions higher than 2. However, the
as|A|~Jn(1—n), see Eq(12). amlltonla_n of the two-d|men3|ona2D) system is mivilrﬁlant
The value of the hopping amplitudg determines the under a simultaneous sign changetef t,, and G, ™,
nature of the transition from the antiferromagnetic insulatomhich implies that- ands-wave order are equivalent for the
at half filling to the singlet superconductor at lower densities2D model. We therefore flip the sign of andt, and study
For smallt,, this transition is first order as a function pf ~ thed— e limit for the s-wave ordered state. In order to keep
giving rise to a region of antiferromagnet/superconductoithe energy finite Je, t;, andt, are scaled with I while
phase separation in thg-n phase diagrantFig. 4). At t;  taking the limit. The variation of the energy is found to be of
=t¥ =1+2t3, the first order line splits into two second or- order 14 for the saddle-point solution. Since it vanishes at
der lines. A region opens up in which the system has bot#arged, the mean-field groundstate indeed becomes an eigen-
antiferromagnetic spin order and superconductivity. In thisstate of the system in this limit.
antiferromagnetic superconduct@AFSC) phase, the elec-
trons which carry the superconducting order parameter are at
the same time responsible for the antiferromagnetism. This IV. TRANSVERSAL SPIN FLUCTUATIONS
state is most easily visualized by thinking of a small density
of nearest-neighbor hole pairs being doped into a half-filling In the AFSC phase, both the(U phase and the SQ)
antiferromagnet. If these hole pairs are most mobile alongpin symmetry are spontaneously broken. As a result, the
the diagonals of the square lattice, where their movementystem has two spin-wave modes and one phase Goldstone
does not disturb the AF spin order, they can delocalize and imode. These gapless modes dominate its long-wavelength
that way give rise to superconductivityithout at the same  physics. Since they decouple, the phase and spin degrees of
time destroying the antiferromagnetic order. The conditionfreedom of the system may be treated separately at suffi-
that diagonal pair hopping has to dominate to get an AFSGiently large length scales.
phase on the square lattice is reflected by the condition  The physics of the phase sector is equivalent to that of an
>t7 for the present model. XY-spin model in an external magnetic field, which has a
There are three ways in which the spin order parameter iblynamical critical exponert=2. TheT=0 system is there-
the AFSC phase is suppressed through the doping with holiere effectively at its upper critical dimensiah=2+z=4.
pairs. The simplest one corresponds with the dilution of theBecause of the high effective dimensionality, phase fluctua-
antiferromagnet by the removal of spins. More interestingly tions only give small correction to the zero-temperature
the interpair spin-spin interactiode scales with the pair- mean-field results for the insulator-superconductor
density squared, while the intrapair spin-spin interaction transition??
scales linearly witm. As a result, the ferromagnetic interac-  The long-wavelength behavior of the spin sector in the
tion is suppressed by a factorelative toJ, pushing the ratio AFSC phase is characterized by a critical exporeatl.
J/Jg closer to its critical value and reducing the magneticHence, atT=0, the spin sector lives effectively in three
moment per pair. Finally, the hopping procdssfrustrates  dimensions and fluctuation effects can be significant. The
the Neel order, provided that sgty) = —sgn(,) (the other long-wavelength spin physics is described by an effective
case is discussed belpwlhe increase of the singlet density nonlinear sigma modéf?* This model contains one cou-
per pair due to the last two processes results in a transition toling constantg, which is a measure of the quantum fluc-
the singlet superconductor at=n.=(J— 8t,)/(2—8t,). tuations in the system. At a critical value gf, the spin
Since thet, process amounts to f-type hop with an  system undergoes a quantum phase transition fromel Ne
additional interchange of the two electrons forming the pairordered state to a quantum paramagnet. For the present
it picks up a minus sign when acting on a pair in the anti-model,g, is expected to diverge at the mean-field transitions
symmetric spin-singlet state. Suppose thatndt, have the to the singlet superconductor and the paramagnetic
same sign. A singlet pair, through the process, then frus- insulator? Transversal fluctuations are therefore expected to
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significantly reduce the region in the phase diagram where
AF order is stable.
The coupling constant of the effective non-linear sigma
model depends on the bare values of the spin stiffness and / -------- .y N
the perpendicular susceptibility, which are properties of the o
microscopic model. The mean-field expressions for these
quantities can serve as an estimate for their bare lue.
These expressions are derived below for the present model.
We define the perpendicular susceptibility as the induced
magnetization per square plaquettentaining four spinsby )
a vanishing magnetic field applied perpendicular to the di- T ,,,,,,,,,, g
rection of antiferromagnetic ordering. It is calculated by add-
ing a magnetic field term to the mean-field energy @),

H 52 (S y=NHcogdsin2ysing’  (16)

and subsequently minimizing the energy. This yields

FIG. 6. A spin configuration with a twist along thety direc-
2(S) 2(1—cos2y)n tion.

= lim =
= M TH T U st,(1-n)
1
_ —JINcog 6| 1—4 cogy cos a5¢
AF 2-J 4
XL = TY
1
= 17 =Ear(8p=0)+ =~ INa?5¢p?cos 0 coSy, (19
Arsc _ N(2—8ty)—J+8t; 4
= J=8t,(1—n)

while the ferromagnetic energy is simply reduced by a factor
The susceptibility vanishes at the transitions to the quanturBos(l-a)é¢ per twisted ferromagnetic bond. The phase-
paramagnet and the singlet superconductor phase. It hasosdering energy also contributes to the spin stiffness. Along
divergence ah=1-J/8t,, which is interrupted by the first the twist, we haved-wave ordey

order transition to the triplet superconductor phésig. 5

(the line wherey, diverges and the first-order line approach

each other for smalh). (G V)((;I“
For n=1 andJg>J, the four spins around each square =10~
plaquette lock into a symmetric state. The spin operators can 1
then be replaced by times the total spin operator on the =— 2 —sin?2 0(ﬁ|e*”5¢5y|a)
plaquette. The resulting Hamiltonian describesSsn2 an- a=10.-1 4

tiferromagnet on a square lattice, with a spin-spin coupling
Jei= 15J. Such a system has a mean-field perpendicular sus-
ceptibility x, =1/8J.¢=2/3%° (where the lattice spacing, in 1 ) . R
this case the distance between neighboring square plaquettes, =— Zsin22 6(Q|(1—]|ANA])e 5| Q)
is set to ong The above result for the susceptibility indeed
reduces to this expression for=1 andJ<<1.

To determine the spin stiffness, the configuration shown ~—(GLy NG - Z8in 20
in Fig. 6 is considered. It has a slow twist in the spin order
parameter along the+y direction. The stiffness gives the
lowest-order correction to the ground state energy due to this
twist.2®

At each antiferromagnetic bond along the direction of the
twist, the spins have been rotated over an alagls in the a1 1 1
XZ plane, at each ferromagnetic bond over an angle (1  {Gav{Gva >——ZSHI229°08 X €08 (Ea 5¢2)
—a)d¢. This configuration is described by the variational
state Eq.(10), where the spin part is given by

x<a|ei (I+1) 5¢>S»"|ﬁ)

1 . .
1—=60%QIS72Q) |,
299 4

sin? X

1 1
~— Zsin22000s2x( 1- Zaz&ﬁz).
1 ‘ ,
e S P=Zash, x=xur), a8 (20

with the index| labeling the bonds along the twist.
The antiferromagnetic interaction energy of this state isTaking these contributions together, the energy-increase due
given by[compare with last line in Eq15)] to the twist in the spin order-parameter is found to be
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NPT . ) arsc. N(2—8ty)—J+8t, ,
AE=oN&o (2sir? 26[ (t;+t)siPy —tya® coS ] Ps = girien  12IntJI"+4(l-n)
+5ir? 2y cod'(1— )%+ 2Ja? cog6 cody). X[I(ty—2tp) +2t;n+8t5(1—n)]}. (25)

(21)  As with the susceptibility, the stiffness vanishes at the tran-
sition to a spin-disordered phase. It reduces to $w€2,

o . Joi= J form for J>J¢ at half filling.
The distribution of the total twist over the two types of “'11e pare coupling constant of the nonlinear sigma model

bonds_ is ol_:)talned by minimizing this energy with respect tojg given bygo=(psx,) Y2 As expected, it diverges at the
@, which yields transitions to the singlet superconductor and quantum para-
magnet, since both the susceptibility and the stiffness vanish
n(1—cos2y) 2 in these [I)hasesh!fr: odr%er to obtain afmore preﬁisr:a estimate of
ap= . do, its value is shifted by a constant factor such that it agrees
N(1-cos2y)+J—4ty(1-n) with the result for theS=2 antiferromagnet ah=1, J¢
. >J. The bare coupling for the square lattiBe 2 antiferro-
For J; much larger thard andt, (or justJ for n=1), the  magnet can be determined from spin-wave results for the
twist is entirely localized on the antiferromagnetic bonds, agenormalized spin-wave velocity and perpendicular suscepti-
expected. At the transition to the spin disordered phases, it isility, using the one-loop expressi
localized on the ferromagnetic bonds.
The stiffness now follows from &: 1 (26)
A4 1+4dmy, clhN’

5 whereA = 2/rr/a, with a the lattice spacing. Using the spin-
AE(ag) =75 6¢%ps. (23 wave results of Igarasf?,we obtain

g5 %=3.85. (27)

For the half-filling antiferromagnet, we obtain . . )
For the half-filling antiferromagnet, the bare coupling

constant is given by

AF 1
peF=gd2-1), (24 Lo, 2 -
90—90 2-7 ( )
while for the AFSC phase the stiffness is given by while we find for the AFSC phase
o, 2V(2n+)[I-8t(1-n)] 1
90=90 (29)

N(2=8ty) —J+8ty  \2nJ+J32+4(1—n)[I(t;—2ty) + 2t;n+8t3(1—n)]

The order-disorder transition gy=g.=4 is indicated the zero-temperature phase stiffness and on the number of
by a dotted line in the mean-field phase diagrams, Figs. 3—%losely spaced layers in the superconductor material, which
It is found that transversal spin fluctuations significantly re-point to a dominant role of finite-temperature phase fluctua-
duce the parameter range over which théeNwdered tions in determiningl..?°
phases are stable, without changing the topology of the zero-
temperature phase diagram. V. SO(5) SYMMETRIC POINT

At nonzero but low temperatures, the quantum nonlinear
sigma model predictg=1 quantum critical behavior in a
parameter region around the AFSC to SC transition ifhe.
The width of this region grows agjo—4m|~T %, with v
=0.7 the correlation-length critical exponent of the 3D N o= E 1’5’ i _

; eng cal exp : Np=|5(GavtGva),5S,5-(Gay—=Gya) |. (30
Heisenberg model. This type of finite temperature behavior, 2 272i
where temperature becomes the only energy scale in the sys- o L ] ) .
tem, has been reported for the underdoped cuprates by '€ labelP indicates thatNp is defined in the projected
number of author&—28 Hilbert space, where double site-occupancy is forbidden. The

Finally, we note that in the present model the superconmean-field expectation value of; satisfies
ductivity onset temperature is completely determined by
phase fluctuations. This is a trivial consequence of the fact a(NP>2
that we focussed on the strong-pairing limit. Nevertheless, it an
is consistent with recent analyses of the dependendg oh

The AFSC phase has an interesting property. Let us con-
sider the S(B) superspin-vectdt for this model

—0. (31)
t,=—1/4
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Hence, at the mean-field level and for this particular choiceplies that thed—oc SQO(5) symmetry is not only present in

of t,, the AFSC phase can be characterized by arf5580 the zero-temperature ground state, but also at finite tempera-
order parameter which has components both in the supercotures, where higher energy levels are thermally occupied.
ducting and in the antiferromagnetic subspace, and which is As a first step towards an $8&-symmetric Hamiltonian
rotated from the AF to the SC direction as the hole density isH, is subtracted front{. This introduces second- and third-
increased. As one approaches the tricritical point, the AFS@eighbor spin-spin interactions into the model.

states with differenn become degeneratéig. 3) and the The second term ity is SQ5) invariant (this is dis-
mean-field state becomes invariant under rotationdlef  cussed beloyv The first term is invariant under rotations of
For t,=—3 the tricritical-critical point is located at, =t* Np, but this does not imply that it is S8 symmetric.

=3, u=p*=J/4, There is no representation of the &Dalgebra on the pro-

It should perhaps come as no surprise that we find gected Hilbert space under whidlis transforms as a vector.
“mean-field S@5) symmetry” for this model. The special The rotation symmetry is therefore broken at the quantum
lattice used here has two orbitals per unit cell, which seemgevel. In a recent articlé> Zhanget al. show that mean-field
to be one of the requirements for constructing atB6ym-  sQ(5) symmetry always remains when a projection to the
metric model with Short-range interaCtiO??S.ThiS can be lower Hubbard band is app“ed to a System with fu”(SD
understood from the fact that the minimum number of sitessymmetry. Here we work backwards: mean-field(S@ym-
required for the electron Hilbert-space in which an(50 metry being established, we deduce a model with ful(50
representation can be constructed isiace thew operators  symmetry by lifting the constraint of no double site occu-
are spin-1, charge 2 objegtsTwo-leg spin ladders have a pancy.
natural two-site unit, the rung, on which the &D order The basis of the single-bond Hilbert space is extended to
parameter can be defined. The lattice used here also has sug@jude the doubly occupied stdi@). It now consists of one
a unit: the long bond. To formulate a short-range(30 sQ(5) singlet(A) and one SCb) quintet(spin-triplet,D and
model on the square lattice, one either has to break the lattio) The details of this representation of the (SDalgebra
symmetry, or to involve a certain amount of coarse grainingare briefly discussed in Appendix A. We introduce an on-site
which means that the resulting 8 description is effective  repulsionUS;snp ;5. The general Hamiltonian on the un-

rather than microscopic. S projected Hilbert space is given by
In the following, an exact SB) symmetric point is de-

rived for the present model. The procedure used is similar to )
that for the S@6) symmetric ladde?! At the mean-field =2 > [4(t1+t2)2 5ﬁ§1.77ff§2

SO(5)-point, the Hamiltonian is given by i gfi;x
=L 0y
H=Ttot T, 32 +(t—t) A 5 A s,
where 1
L , +7(S0,* 71S5) - (Si0,% ms,gz)}
Ho=—2 2 Ng®Ng2-3X X np’,
i gl:tgx i 6=0y.0y J J
2=*+d, _ N io_| |8
(33 i,agsx,&y Jny %+ 7 U+pu|np ( 4)nv '
1. = (39
Hi=2 Z Z[S,&l'sﬁ,&z"‘ 7i R R
AT whereA =(ReA,ImA), 7%= (Rew%Im 7%) (see Appendix
2 =% A). The value ofU has to be fine-tuned in order to obtain
g & - & SQ(5) symmetry on a single bond. The resulting constraint is
X(S 55 5.+ . , 34 . e S
(S0 S0, S0y Si"sz)] 34 u=J/4 as before, but in additiob =J/2. Note that this is
absorbing a-wave staggering into thg/; ;) state. more restrictive than the local constraint for the ladder

. . . . 31 H .
The second termiH,, is manifestly not invariant under model;* which leaves two free parameters. Since we only

rotations ofNp . After decoupling the operators on different consider states of paired electrons, this model has fewer local

bonds with respect to the order-parameters for su erconduc?—o(s) invariants than the ladder.
P P P To establish S(&) symmetry of the inter-pair interac-

tivity and antlferromagne'Usm, this term vanishes and there{ions, one now has to takg= — t,= 1. After subtraction of
fore the symmetry breaking does not show up at the mean}-_t this vields the Hamiltonian

field level. As Ederet al. pointed out” the first and the "'’ y

fourth component oNp are rotated into each other by trans- 1

forming the zero-magnetization triplet stdes into the hole- Hsosy=— 5 > N-Ny—J> nl, (36)
pair statg V). This transformation leaves the singlet density 4 () [

n, invariant. Since one may assume in mean-field that all )

components of Np) vanish except the first and the fourth wherel andmrl_Jn over the square Iatt|cg spanned by the long
(spontaneous symmetry breaking selects a preferred directidDrP_ndf(_dOtt.ed lines in Fig. 1 The unprOJectgd S@) sup(?r-

in the spin and phase sectothe decoupled mean-field SPINN is given by Eq.(A1). The local S@5) invariantn, is
Hamiltonian is invariant under this transformation. This im- related to the length of the superspin throudh=1+4n,.
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Note that Eq.(36) is not the most general $8)- A. Random phase approximation
symmetric Hamiltonian which could be formulated. In prin-

’ o The collective modes of the system are studied in the
ciple, there can be an additional term of the form

random phase approximatiofRPA).3* They are obtained

from the equations of motion of the operatdsgz, which
are given by

DI IN EEAL

(I,my a<b

i,G,5=[G,5 H]. (39)

:)\<;n> ; i Wrzfﬁsﬂ',ﬁl'si,&ﬁQiﬁlQiﬁz » 37 The commutator in this expression contains products of op-
' erators on different bonds,©). These products are decou-

which is also an S(®) invariant. The charge-charge interac- pled in a mean-field fashion, yielding a set of coupled linear
differential equations. After a transformation to frequency

tion Q; i 5. W mitted from the present analysis an .
0 Ql,ﬁlglﬁz as omitted from the present analysis and @and momentum space, it takes the form
term of this form therefore does not appear at the symmetric

point.

The projected S®) [pSO(5)] symmetry atU-—oo 0G5k ,0)= > Mgﬁﬁ (K)Gyr g (K 0). (40
evolves from the true S(B) symmetric point at fine-tuned a'p’
in the following way. Let us assume we haye= —t,=t and

— The dispersion relations of the collective modes are obtained
u=Ji2+U

from the eigenvalues of the dynamical mathNk while its
eigenvectors give the operators which generate these modes.
- 1 - — | There is a problem with the above decoupling in the spin-
H=— E 2tAI'AmjLZSI “Sm +§|: (Unp—Jny). ordered phases. As was discussed in Sec. |V, the low-energy
(39) fluctuations of the spin system behave differently at latge
and near the spin-disordering transition. Bpt<1, the spins
. o= around each square plaquette are locked into a symmetric
Ihle Superspin has no preferred global directionUor 0, t state, forming one spin-2 object, and the low-energy defor-
=g Since the AF ground state does nqt_ﬂaq@;acompo- mations of the spin-state are localized on the antiferromag-
nent, while the SC does, a small positite will flop the  netic bonds. The above decoupling, which cuts across the
superspin to the AF direction. The energy-difference beferromagnetic bonds, then becomes very poor. Near the spin-
tween the AF and the SC state can be compensated by gfsordering transition, the spins are rigidly coupled along the
increase irt. For U—oo, this procedure shifts the superspin- antiferromagnetic bonds and the low-energy transversal fluc-
flop point fromt=3% to t=%, with the SC ground state now tuations are localized on the ferromagnetic bonds. In this
having (np)=0. The shift int is accounted for by the dif- case, the decoupling works well.
ferent relative normalization ok andS in the definitions of The crossover to spin-2 behavior at lageis driven by
No andN the H, spin-spin interaction term, E¢34). _To §v0|d it, we
P ’ calculate the mode spectrum of the Hamiltonian from which
this term has been subtracted. The resulting dynamical ma-
VI. COLLECTIVE MODES trices are listed in Appendix B. Subtractirfg; makes no
) _ ) _ difference for the spin-disordered phases, but does change
In the above, it was shown that the intersublattice hoppingne results in the AF and AFSC phagee discuss in what
t, which couples the spin and charge dynamics in oufyay). The, term breaks S) symmetry, though retaining
model, plays a crucial role in establishing the(Ssymme- it at the mean-field level. As a result, the model which we

try. This symmetry only emerges at the mean-field level for astydy in RPA has a projected $8 symmetry at the tricriti-
specific value oft,. To further investigate the role of this ca| point with fine-tuned,.

hopping process, the collective modes in the antiferromag-
netic and spin-disordered phases are analyzedt o0, it

is found that a decoupled spin/charge perspective suffices to
understand these modes, as one would expect. In this case, We briefly discuss the mode spectrum of the antiferro-
the superconductivity does not affect the collective spinmagnetic and spin-disordered phases. These results are sum-
modes of the system. marized in Fig. 7.

This changes for nonzeitg. Although the dispersion re- The quantum paramagnet, for which both spin and gauge
lations do not change qualitatively, the interpretation of thesymmetry are unbroken, has no Goldstone modes. Its spec-
modes does. Most strikingly, the gapped spin-magnon modgum consists of a gapped threefold degenerate spin-1 mag-
of the singlet SC phase acquiresranode component. This non mode and a pairing mode which is also gapped. The
mode softens at the transition to the AFSC phase and begpairing gap closes at the transition to the singlet supercon-
comes a pure, acoustig-mode as the system is tuned to- ductor. Precisely at the transition, this mode has a quadratic
wards pS@) symmetry. dispersion. As the hole-pair density is increased from zero, it

The mode spectrum for systems with pSDsymmetry  acquires a finite velocity, becoming the phase Goldstone
was analyzed by Zhangt al!® We reproduce their results mode of the superconducting state. This is the behavior ex-
for the present model and investigate the influence of furthepected at a dilute boson transitiéhof which this is a par-
SO(5) symmetry-breaking terms. ticular examplewhere the hole pairs are the dilute bospns

B. Mode spectrum
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their insulating parent phase. In the AFSC phase, the spin-

5 , amplitude mode is mixed with fluctuations between the hole
NS, pair and the zero-magnetization electron-pair states. In the
T O in Singlet SC singlet SC phasey modes(hole pair to triplet fluctuations
T pm are mixed into the spﬁr_1—1 magnons. _
. N % Close to the transition from the singlet to the antiferro-
e . magnetic SC, the gapped mode becomes degenerate with the

acoustic spin-wave modes and theprocess begins to affect
the low-energy physics of the system. From the analogy with
the spin-disordering transition in the insulating phase, one
et would expect to find a threefold degenerate acoustic
magnon-mode at this transitiofin addition to the phase
mode. Instead, the RPA analysis yields an eigenvector

AF

4t T—2(Ggy— Gyg) + (J—8t,)(1—2t,+2t,)
X(Goa—Gao), (41)

FIG. 7. Sketch of the mode spectrum in the antiferromagnetic
and spin-disordered phases. The dashed lines are pairing modédlich has both a magnon andmmode component. Note
when gappe(ﬂinsmating phaseﬁnd phase Goldstone modes when that this result does not Change if the more natural Spin—Spin
acoustic(superconducting phases interactions, withH,, are used, sincé{, does not affect the

collective modes in the singlet SC phase.
The threefold degenerate mode of the quantum paramagnet For J—2, the spin-disordering line in the superconduct-
remains gapped through the transition to the superconductof?d phase approaches half-filling. In this case, ) be-

The insulating antiferromagnet has a twofold degeneratéomes a pure magnon mode, which is the result expected for
spin-wave mode. In addition, it has a gapped mode related te insulating phase. The same eigenvector is found for
spin-amplitude modulations and a gapped pairing mode. The& 0, which implies that the transition in the superconducting
spin-amplitude mode becomes degenerate with the acousthase is, for that case, indeed of the same type as for the
spin-wave modes at the transition to the quantum paramadnsulators. Ther modes are mixed in for finite,. We find a
net, where they turn into the spin-1 magnon triplet. Thispure mode fort,=J/8 andt; —t,=1/2. The first condition
transition is in the same class as the spin-disordering transis satisfied at the point where the AFSC, triplet SC and sin-
tion of the Heisenberg bilayer mod&.The pairing gap glet SC meet, an— 0 (see Fig. $. This is related to the fact
closes at the transition to the antiferromagnetic supercorthat then=0 state and the triplet SC, which are related by a
ductor, where it becomes the acoustic phase Goldstone mode rotation, become at that point degenerate in energy. The
at finite dopings. The spin-amplitude mode remains gappegecond condition is of more interest: it is fulfilled if the
through the insulator to superconductor transition, but besinglet-pair hopping process and theédkenoment interac-
comes degenerate with the acoustic spin-wave modes at tiien enter the Hamiltonian in the projected &Psymmetric

subsequent transition to the singlet superconductor. At thiform N‘p"sl. NL;52_ This is of course the case at the pSD

transition line, the system therefore has four acoustic modeggint, which implies that the singlet SC phase at this point

of which three are degenerate. has the mode content expected from (SOtheory: four
acoustic modes, of which one is a phase mode and three are
C. = modes 7~ modes. It is shown in Ref. 15 that this is generally the case

The mode spectrum as outlined a}bove can be.understo ase. The symmetry breaking due to the projection onto the
entirely from a decoupled perspective of the spin and th

FURT ; H h in the RPA
phase sector. At the transition line from insulator to super-OWer ubbard band shows up in the mode spectrum by

L ) a different velocity for the phase and themodes:
conductor, the pairing mode softens and continuously ac- y P

iﬂ: systems with a projected $8 symmetry in the SC

quires a finite velocity. At the transition from a phase with 4— 32

AF order to a spin-disordered phase, the spin-amplitude Vgr%srfoﬁ): ,

mode becomes degenerate with the acoustic spin-wave 8

modes. These two effects combined yield the described be- (42)
havior, and in particular the occurrence of four acoustic sc. pso(s) 219

modes at the AFSC to singlet SC transition. This decoupled Va _m'

perspective is correct fotr,=0. In this case, the gapped
modes in the singlet SC state are indeed spin-1 magnons, ase two modes become degeneratdatt/5 (n=4/5), but
they are in the quantum paramagnet, while the gapped modhis point does not seem to have any special significance,
in the AFSC is indeed a pure spin-amplitude mode, as it is The conditiont;—t,=1/2 can also be satisfied at the
for the AF insulator. AFSC to singlet SC transition away from the point with
Thet, process, however, provides a coupling between thenean field S@) symmetry. In this case, there are additional
movement of the hole pairs and the dynamics of the spirterms which break the mean field &) symmetry, since
system. This coupling changes the nature of the gappethey tune the system away from the tricritical point, but
modes in the superconducting phases with respect to those which do not affect the RPA modes.
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D. Projected SQ5) symmetry At the pS@5) point of our model, the acoustic modes are
In Ref. 15, the mode-spectrum at the pSOpoint was " longer pure spin wave, but a combination of spin wave
studied for a general direction of the superspin. Two striking@"d 7 mode. Their eigenvector is given by
results were obtained. In the first place, the system has a
twofold degenerate acoustic mode, whose velocity is inde-
pendent of dopindi.e., independent of the direction of the V1=n(Gy+Gy_ 1)+ VN—n(Giot+Go 1), (46
SQO(5)-order parametér Secondly, the phase Goldstone
mode is not acoustic, but gapless with a quadratic dispersion.
It was argued that this last effect is caused by the infinitevhich starts out as a spin wave at half filling, but crosses
compressibility of the system at the p@D point, where oOver to am mode atn=n.. This agrees with Zhanet al’s
a(n)/ o diverges. interpretation of the doping-independent velocity in terms of
Both results are reproduced in our model. Since the sedhe projected S(&) symmetry*
ond result is related to the infinite compressibility rather than
to SQO5) symmetry, it always occurs at the tricritical point,
also if we tune away front;=—t,=3 while keepingt, VII. SUMMARY
=t*, u=u.. By the same argument, this effect will not ) ) )
disappear if theH, term is added to the Hamiltonian, since  We have introduced a strong coupling model for spin or-
this does not affect the mean-field phase diagram. dering and superconductivity. The microscopic building
The first result is very sensitive to perturbations. As soorPlocks of this model are nearest-neighbor electron pairs. The
as the tricritical point is tuned away fromlg=—t,=%, the  spatial structure of these pairs gives riselt@ave supercon-
velocity of the acoustic modes becomeslependent. Also ductivity. At the same time, it allows the pairs to have a
the addition of; to the Hamiltonian destroys this effect. nonzero uniform or staggered magnetic moment. In order to
This can be seen by calculating the spin-wave velocity fromavoid problems related to dimer-type spatial correlations be-
c=+ps/x., using the results obtained in section IV, andtween the pairs, the model is formulated on a 1/5-depleted

evaluating it at the mean-field $&) point. This yields lattice. A rich mean-field phase diagram is obtained, exhib-
iting in particular a phase which is at the same time an anti-

MF SO(5)_ \/((2+J)(J+2—2n))(J+1—n) 43 ferromagnet and a superconductor. The second order lines

Vs - 8(J+2n) (43 separating this phase from the antiferromagnetic insulator

and the spin-disordered superconductor end at a tricritical
which has am dependence. For the model withdd, the  point, where the antiferromagnet to superconductor phase
stiffness is given bysee Eqs(21),(23)] transition becomes first order. By mapping the spin sector in
the antiferromagnetic phases onto a nonlinear sigma model,
the main corrections to the mean-field phase diagram have

P?_Hl: N5¢2AE(“:O):n(1_ n)(t;+1)(1-cos %) been obtained.
For a specific value of one of the model parameters, a
N n_2 1— co22 (44) mean-field S@b) symmetry between the antiferromagnetic
4 (1=cos2x)l, and superconducting order-parameter appears to be realized

at the tricritical point. It turns out that the model still con-
wheren and y have the mean-field values listed in Table I. tains spatial gradient terms which break (SOsymmetry.
The susceptibility is obtained by multiplying tri]f,z termin  These can be removed by modifying the spin-spin interac-
the mean-field energy Eq15) with a factor co8¢”, adding  tions. The remaining SG) symmetry breaking is then a
the magnetic field term Eq16), and minimizing with re-  pure quantum effect, being related to the operator algebra

spect togY. We obtain rather than the Hamiltonian. It is shown that true(Sym-
metry can be realized for this model by allowing double site
H-H 2n(1-cos2y) occupancy and fine-tuning the Hubbdid The approximate
X, = . (45 : ;
J—8t,(1—n)+n(1—cos 2y) symmetry at larg®J is therefore a projected 8 symmetry

of the kind discussed in Ref. 15.
At the pS@5) point, this stiffness and susceptibility repro- ~ We investigated the mode spectrum using the random
duce the RPA resultg=(2+J)/(4+2), which is indepen- phase approximation. It is found that the intersublattice hop-
dent of doping. Both the phase ordering and the spinping process gives rise to the appearance of @@amponent
ordering energy contribute to the spin-wave velocity in thein the gapped modes of the singlet SC phase. Approaching
AFSC phase. As one approaches the (i@oint, the dop- the point with projected SB) symmetry from the singlet SC
ing dependence of the contribution of the spin-ordering enphase, a threefold degenerate acoustimode is found as
ergy is precisely compensated by the opposite doping depemvell as an acoustic phase mode. The RPA mode spectrum
dence of the phase-ordering contribution. Note that thehen has the properties expected for an(®@&ymmetric sys-
model with H, yields the samesg at the transition to the tem in the pure superconducting phase, apart from the fact
singlet SC, wheren=(2+J)/4, see Eq(43). This demon- that them modes and the phase mode have different veloci-
strates the insensitivity of the RPA mode-spectrum in theties.
singlet SC phase to the specific form of the spin-spin inter- As reported in Ref. 15, the system at the 5Qoint has
actions. a gapless phase mode with a quadratic dispersion, as well as
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a twofold degenerate acoustic mode whose velocity is inde- :
pendent of doping. This acoustic mode crosses over from a Ty =
pure spin wave at half filling to & mode at the transition to

the singlet SC phase. We find that the quadratic phase-mode

is a property of the tricritical point rather than of the pro-

jected S@5) symmetry. The doping-independent velocity, i
however, is a strong signature of projected(SGymmetry, W;=—(Goo+ Gov).
which can be destroyed even by additional symmetry- V2

breaking terms that leave the mean-field (S0symmetry

intact.

N -

(Gp1+Gp-1—G1v—G_1v), (A5)

The charge operator is given by
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APPENDIX A: THE SO (5) ALGEBRA

A short overview is given of the representation of the [Lap,Ne]=1(8acNp— 8pcNy), (A7)
SQ5) algebra for this model. In the unprojected Hilbert
space, a representation of the (§0algebra can be defined

which transforms the superspias a vector. The superspin and furthermore that

is given by
> = N ,N =iL . A8
N=(ReA,5ImA), (A1) [Na NoJ=iLap (A8)
where
APPENDIX B: DYNAMICAL MATRICES
A= \/E(GDA_ Gay) (A2) A staggering factor for the antiferromagnetic spin- and the

d-wave phase order has been absorbed into the operators
and RAA=1(AT+A), ImA=1/2((AT—A). The generators Ga.p- After subtraction ofH;, the Hamiltonian takes the
of the SA5) algebra satisfy the commutation relation form of a model on the square lattice, where the operators
G,z act on the states on the lattice sites. The Singlet dSC,
AF dSC, quantum paramagnet and AF insulator mean-field
[Lab,Legl=1(8ackpgt Spalac— Sadlbe— Sbelad) states are all uniform in terms of these operators. It is there-
A3)  fore not necessary to introduce a multisublattice structure.
- The different modes in terms of the realonstaggeredop-
where the indices take the values 1 through 5. Theare o401 are simply related to the ones obtained here by a shift
antlsymn}etnc under an interchange afand b. They are ;. k space.
given by The operator§,, ; separate into three sets. Each operator
couples only to operators in the same set through its RPA
equation of motion. One set is formed by the raising opera-

0 tors {G1yv,G1a,G10,Gv-1,Ga-1,Go_1}, another by the
2 Remry 0 lowering operators, which are related to this set by Hermitian
L,,=| 2Rem, —& 0 , conjugation. The third set contains the' operators which
2 Re o _ 0 act only on the zero-magnetization  states:
. {Gav:Gov:Ga0,Gva:Gvo,GoaNa,No Ny}
Q 2imm, 2Imm, 2Ima, O The dynamical matrix of the raising operators has the

(A4)  form

where thew operators readr! = —3clo,oych, with o the

Pauli matrices® Projecting onto the paired-electron states,
we obtain AT BT
M R™ _ BT _AT ! (Bl)

1
t_
= —Gp _1+Gy—G_ .
x 2|(GDl Gp -1+ Gy =G-1v), whereA andB are the 3<3 matrices



PRB 61 INTERPLAY OF SUPERCONDUCTIVITY AND ... 3689

J Yk
42tS§yk+,u— Z _ZSZGC)(( At_ Z) EtZSZf)SX
A=| 254C, Sy AY cicy—J o | (B2)
1
235768, (1— %) 50552)((2 =Y 0

1
0 ESZOCka 0

B=[0 cicZw O, (B3)
1,
0 ~ 5 CeSax Yk 0

where we have used the notation

1 Lo .
S=SiNX; Cy=C0SX, ;=t;+ty; A=t;—1,, ykzz[cos{k-el)ﬂLcos(k'ez)], (B4)

with él and éz the basis vectors of the square lattice spanned by the long bonds, Fig. 1. The yargld® are the ones
appearing in the mean field energy E4j5). In the insulating phases,vanishes, whiley is equal to zero in the spin-disordered
phases.

The dynamical matrix of the lowering modes is the saméas apart from a minus sign. The last set has a dynamical
matrix

c D' ET
M,=| -DT -C —-ET[, (BS)
F —-F O

which consists of the 8 3 matrices

3
Cui=— 4At(c)2(C§_ SO Vit ut ZJ’ C1=2A(C5S0, Yk—C5S2y, Caa= — 25248, (A yvk—20),

J
Co1=23,C3S2, V= CyS2y»  Coo= —A%u(CiSi =) ntu— 7. Car=0, (B6)

1 1
2
C31= 225748~ 55265y Cszzzszoc)(?’k: Cs3= —CyCay vkt J,

0 0 % S265 Yk
D= 0 0 ZAISZHC)(_ % SZQCX')/k ) (B7)
0 —2534C (A= 27 C%szyk
—2A824C,(1= %) 0 C3S2y
E= 0 ZEtSZHSX(l_ yk) _C332X y (BB)

20:826C, (1= i) — 235568, (1— %) 0

—2A:S5C,, 0 €550,
F= 0 25,848, —C5Sy, | . (B9)
2A¢55C,  —22Sy48, 0

For the singlet SC phasg € 0), the operator§s, ; with @ and 8 referring to triplet states decouple from the equations of
motion, since there is no longer a triplet component in the mean-field ground state. This leaves the raising set
{G1v,G1a,Gyv_1,Ga_1} and the Hermitian conjugate lowering set. The set of zero-magnetization operators splits into the
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transversal setGgy ,GoaGvo,Gao} and the longitudinal setGay,Gya,na—Ny}. The dynamical matrices of the first three

sets contain the threefold degenerateand spin-1 magnon modes. The fourth set contains the phase and the pairing mode.
In the quantum paramagnet phage=(6=0), the first three sets further simplify. Since theoperators do not refer to the

spin-singlet ground state, only the spin-1/charge-0 operators are left in these sets. The phasg-nmgdgisappears from the

last set.
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