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Ensemble theory for force networks in hyperstatic granular matter
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An ensemble approach for force networks in static granular packings is developed. The framework is based
on the separation of packing and force scales, together with @iori flat measure in the force phase space
under the constraints that the contact forces are repulsive and balance on every particle. In this paper we will
give a general formulation of this force network ensemble, and derive the general expression for the force
distribution P(f). For small regular packings these probability densities are obtained in closed form, while for
larger packings we present a systematic numerical analysis. Since technically the problem can be written as a
noninvertible matrix problem{where the matrix is determined by the contact geometne study what
happens if we perturb the packing matrix or replace it by a random matrix. The resBiting differ
significantly from those of normal packings, which touches upon the deep question of how network statistics
is related to the underlying network structure. Overall, the ensemble formulation opens up a different perspec-
tive on force networks that is analytically accessible, and which may find applications beyond granular matter.

DOI: 10.1103/PhysRevE.70.061306 PACS nuni®erd5.70—n, 46.65+¢, 83.80.Fg, 05.46-a

I. INTRODUCTION networks[11]. This force network ensemble is based on the

One of the most fascinating aspects of granular media i§éParation of packing and force scales that occurs in systems
the organization of the interparticle contact forces into highlyof hard particles in most experiments, typical grain defor-
heterogeneous force networks. Direct evidence for these Mmations range from I8 to 10°°. The crucial observation is
force networks mainly comes from numerical simulationsthat these packings are usuahlyperstatic i.e., the amount
[2,3] and experiments on packings of photoelastic particle®f force components is substantially larger than the number
[4,5]. While the contact physics can be quite convolui@l  of force balance constrainfd9]. This makes the problem
numerical studies have shown that qualitatively similar force'underdetermined” in the sense that there is no unique solu-
networks occur in systems with much simplified contact lawstion of the force network for a given packing configuration.
[2,3]. It has, nevertheless, remained a great challenge to ufFor example, Fig. @) shows two different force networks
derstand the emergence of these networks and their proper a regular packing of two-dimension&D) balls in a

ties. “snooker triangle.” The ensemble is defined by assigning an
Even though the spatial structure and anisotropies of the

force network may be importaf,7—11], a more basic quan-
tity, the probability density of contact forceB(f), has
emerged as a key characterization of static granular matter S
[2,3,12-15%. Recently this quantity has also been studied for ¥ ‘ $
a wider range of thermal and athermal syst¢iits16§. Most : \ SN A
of the attention so far has been focused on the broad KO TR N ¥ X
exponential-like tail of this distribution. Equally crucial is
the generic change in qualitative behavior for small forces:
P(f) exhibits a peak at some finite value bfor “jammed” 0.6
systems which gives way to monotonic behavior above a o 04l ]
glass transitiorf16,17. This hints at a possible connection
between jamming, glassy behavior, and force network statis- 021 1
tics, and underscores the paramount importance of develop- 0.0
ing a theoretical framework for the statistics and spatial or- 0 1 2 3 4
ganization of the forcegl8]. f

In this paper we study theoretical aspects of an ensemble

. . FIG. 1. (a),(b) Two different mechanically stable force configu-
approach that we recently introduced to describe these forCr%tions for a snooker-triangle packing of 210 balls; the thickness of

the lines is proportional to the contact force. The “force network
ensemble” samples all possible force configurations for a given
*Present address: Physique et Mécanique des Milieuxontact network with an equal probabilitg) After sampling many
Hétérogenes, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex O%orce configurations, this yields the following distribution of inter-
France. particle forcesP(f).
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equal a priori probability to all force networks in which the  After defining the ensemble in more detail, the paper con-
net force on each particle is zero, for a given, fixed particlesists of four parts. In Sec. Il, we study the force ensemble for
configuration Since we want to describe noncohesive par-spherical, frictionless particles in regular triangular snooker
ticles, we then consider only those networks that have purelpackings. We discuss how these force distributions are re-
repulsive forces. As can be seen from Fig. 1, these simplgyted to geometric aspects of the high-dimensional phase
rules indeed yield configurations that resemble realistic forcgpace. In Sec. 11l we provide a formal mathematical descrip-
networks, as well as a force distributid®(f) as typically  tjon of the ensemble and derive the explicit formRsf), Eq.

observed in experiments and simulations. An important ob;7) This expression contains coefficients that depend on the
jective of this paper is to deepen our understanding of th%acking geometry, and which we have been able to compute
force distribution, for this simplified but well-defined prob- for several small systems. These exB¢t) already exihibit

lem. S
Our ensemble approach is in the same spirit of the Ed_ghe features that are relevant for larger, more realistic pack-

wards ensemble, in which an equal probability for all ings, and yviII be presented in Sec. IV. Due to the linearity of
blocked or jammed configurations is postulaad,21. This the equations of forg:e l:_)alance, the .problem can bg further
Edwards ensemble does not only average over forces, pgeneralized by considering perturbations of the packing ma-
also over all possible packing configurations, which makedx and random matrices, which are presented in Sec. V. This
the problem difficult to track theoretically. We therefore pro- Probes which ingredients are essential for obtaining realistic
pose to exploit the separation of length scales that occurs fdf(f)’s. The paper closes with a discussion of the strengths
hard particles, by fixing the packing geomegrgacroscopic and weaknesses of our approach and indicates some open
scale and allowing for force fluctuationgmicroscopic issues and other problems that can be addressed with the
scalg. Besides practical advantages, the conceptual gain afnsemble.
separating the contact geometry from the forces is that we
can start to disentangle the separate roles of contact and
stress anisotropie-11]. Interestingly, the idea to restrict Definition of the force network ensemble
the Edwards ensemble to fixed packing geometry has also e will now introduce the main aspects of the ensemble
been proposed recently by Bouchaud in the context of €xanhr6ach, Even though our approach is perfectly suited to
tremely weak tapping22], and was also employed in recent j oy, 4o frictional forces[11,23,24, for simplicity we will
simulations[23,24. Note that this force ensemble Incorpo- o iet ourselves to packings of frictionless spheres. of
rates the local force balance equationsadnparticles and radii R with centersr.. We denote the interparticle for n
therefore it is fundamentally different from recent entropy- adil R \ centersr;. Ve denote the interparticle force o
based models for force statistif25,2§. In these studies one particlei due to its contact with pz_;\rtlcle b_y fij. There are
postulates an entropy functional in terms of the single forcgN/2 contact forces in such packmg:_s being the average
distribution P(f), without including the intricately coupled Ccontact numbgr and for purely repulsive central forces we
force balance equations and resulting force correlations.  ¢@n writef;; = firij/[ry|, where allf; (=f;) are positive sca-
From a more general point of view, the ensemble providedars. For a fixed contact topology ith dimensions, we are
a challenging statistical physical problem of rather broad inthus left withdN unknown positions’; andzN/2 unknown
terest, that of sampling the solution space of a set of undeforces f;;. Note that the number of unknown forces is not
determined equations and constraints. For example, the proprecisely, but close tgN/2 if boundary forces are present.
lem is mathematically very similar to the so-called flux These degrees of freedom satisfy the conditions of me-
balance analysis that is used to unraretabolic networks chanical equilibrium,
in biological systemq27,28. Here the reaction fluxes are
underdetermined and play a role analogous to the forces dis- dNegs. : St Tij
. i
cussed here. In contrast to the forces, however, these fluxes Tl
typically display power-law distributionf28]. This touches o o
upon the deep question of what kind of statistics emergegnd once a force laW is given, the forces are explicit func-
when balancing scalars on a network of a given structurdions of the particle locations:
[14,29, and shows that the nature of the set of balance equa- Cf=E(r. B P
tions has a strong influence on the resulting statistics. N2 egs.: 1 = F(ry;R.Ry). 2
The aim of this paper is to explore the “phase space of The contact numbez is a crucial quantity. As has been
force networks” and to unravel how this gives rise to theargued beforg11,31,32, even though packings of infinitely
robust characteristics of the force distributiBff). We will hard frictionless particles have=2d and are thussostatic
initially focus onregular packingswhich are highly coordi- for particles of finite hardness, packings are typicéljyper-
nated and therefore far from the isostatic limit. The advan-static with z>2d. In this paper we focus on hyperstatic
tage of these packings is, however, that the underlying phygpackings, but before doing so, we wish to point out an im-
ics is more transparent and that small regular packings can kgortant subtlety. In recent numerical work, it was shown that
resolved analytically. In addition, their force distributions arez approaches the isostatic limit for vanishing pressures
quite comparable to those found in numerical explorations ofhence vanishing deformationsf the particles, and that the
the ensemble for amorphous packings presented elsewhefgn)jamming transition here is similar to a phase transition,
[11,30. We will also study the ensemble on generalized netwith power-law scaling of the relevant quantities and the
works, for which the force distributions rapidly lose their occurrence of a large, possibly diverging length sdalg.
similarity to those of real packings. Therefore the precise value afmay be important, since it

=0, whererj=r;-r;, (1)
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reflects the distance to the jamming phase transition; this
may bear on the interpretation of our results. It is worth
pointing out that for frictional packings, even in the limit of
infinitely hard particlesz stays away from the isostatic limit
[19,34. Hyperstatic packings are therefore important, and
our work, even though it focusses on frictionless packings,
may also be seen in this light.

Returning to the force network ensemble, in the regime
where particles are hard but not infinitely hard, variations of
the force of ordeKf) result in minute variations af;. Hence
Egs.(1) and(2) can effectively be considered separated, and
the essential physics is then given by the force balance con-
straints Eqs(1) with fixed r;. In this interpretation there are

more degrees of freedofmN/2) than constraint$2N), lead- ! 1 ! 2
ing to an ensemble of force networks for a fixed contact
geometry. FIG. 2. Three monodisperse frictionless spheres in a snooker

This ensemble for a fixed contact geometry is then contriangle. This system has nine unknown forces: six boundary forces
structed as follows(i) Assume ara priori flat measure inthe (f; to fg) and three interparticle force$,fg,fo).
force phase spaci}. (ii) Impose the Rl linear constraints
given by the mechanical equilibrium Eg4). (ii ) Consider  terparticle forces. These forces have to balance on each par-
repulsive forces only, i.e[Jf;;=0. (iv) Set an overall force ticle in both thex andy directions, which constitute 2 3
scale by applying a fixed pressure or fixed boundary forces: 6 linear constraints. In addition, we impose an overall pres-
similar to energy or particle number constraints in the usuasure by keeping the total force on a boundary at a fixed
thermodynamic ensembles. value: for example, we fix,+f,=2. Interestingly, one can
We are thus considering the phase space defined by thghow that such a boundary or pressure constraint is equiva-
force balance Eqg1), the condition that alf's are positive, lent to keeping the sum ovell forces at a fixed value: in
and a “pressure” constraiitf,=F. For notational convi-  Appendix A we demonstrate that keepibgf; at a constant
ence, we indicate the forces by a single indethroughout  value is equivalent to a constant pressure, also for irregular
the remainder of paper. Since all equations are linear, thpackings.
problem can be formulated as Together with the pressure constraint, there are thus seven

o linear equations to determine the nine unknown for€es
Af=b and =0, ) =(fy,...,fg), and hence there is a two-dimensional space of

where the fixed matrix4 is determined by the packing ge- solutions. This space does not contain the origin of the force

ometry, f9=(f11f2, o fang), andb=(0,0,0,... ,0,Fo0). space, for which alf;=0, due to the inhomogeneous pres-
sure constraint. As a consequence one requires three vectors
Il. REGULAR PACKINGS: BALLS IN A SNOOKER to characterize the two-dimensional space: two basis vectors
TRIANGLE and a vector defining the location of the plane with respect to

the origin. Using linear algebra one can construct these three

In the introduction we h.ave seen that our ensemble aPYectors from three linearly independent force network solu-
proach for a snooker packing of 210 particles reproduces a~ -

force distribution that is very similar to those obtained in tloNs fa e, fc, which allows us to express the general solu-
experiments and simulations. To understand how this shagt" as

of P(f) comes about, we now work out the force network - - - -

ensemble for small systems of crystalliggmonodisperse f=cafa+cafs + (1 —ca—co)fc. 4

packings. We first study the packing of three balls shown in

Fig. 2, for which we explicitly construct the phase space of’An intuitive picture of this equation is provided in Figta

force networks. As this system is very small, the force dis-t.he two-dimensional plane can be defined from three solu-

tribution deviates considerably from distributions observeu;'{Ons (very much like a line can be defined by two pojnts

in large systems. It, nevertheless, provides a very instructiv a(t)i\tljvr?;/?)rﬁ tt?\i ;?Igi\tgn\ilhhef gjl\l ar?dgroxgj\?viflet:gjgﬁclzuv\
example. We then present a numerical analysis of B
P b Y ROt below, only a small convex subset of the the two-

evolves as a function of system size for snooker packings;. . .
. . i s dimensional solution space represents force networks con-
Remarkably, a packing of six balls is already sufficiently

large to obtain the characteristic peakRif). We therefore sisting of strickly repulsive forces.

4d | ohysical ts by elaborai thi Using the solutions of Fig. 3 to construct the phase space,
zystreesf general physical aspects by elaboraling on tige opiain the triangle depicted in Fig(ad In this picture,

the three solutions are the corners of the triangle. For ex-
A. Three balls ample, the right corner represents the first solution in Fig. 3,

In the system of three balls depicted in Fig. 2, we encounfa for which (fz'f8'f9):(0’0'\”3)’ whereas the left corner
ter nine unknown forces: six boundary forces and three incorresponds tdg that has(f;, fg,fg)=(0,v3,0). A superpo-
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(@

FIG. 3. (a) The 2D phase space of the three-
ball problem can be defined using three simple
independent solutions of the problerth) The
first solution FA hasf,=f,=2, fs=fg=1, andfy
=3 andf, 5 ; &=0; the other solution$g and fc
follow from the threefold symmetry of the

®) packing.

sition of these two vectors is still a solution of our linear  The distribution of the boundary forcé$; to fg) can be

problem, and since in both casés=0, the base of the tri- found in a similar manner. Checking the three independent

angle is a line wheré,=0. The upper corner represerf@ solutions, one finds thdt =0 at 'ghe left cornerf,=1 at the

for which f; attains its maximum value of3. Therefore the ~UPper corner, and;=2 at the right corner of the “phase-

dashed line is a projection of tHe axis onto this 2D space SPace triangle.” From the geometric construction in Fi@),5

of solutions. This implies that the space below the triangldt iS €asy to find thef, =0 line, and the projection of thi

corresponds to a region whefg< 0, which is forbidden for ~ @xis is mdmated by the arrow. Due to symmetry there are of

repulsive particles. Applying the same argument figand ~ course six such border$;=0 to fs=0), and all boundary

fo, one realizes that only the area inside the triangle is aforces are positive inside the hexagon. So, the solutions for

lowed. As we mentioned in the introduction, the ensemblgvhich all forces are positive lie within the triangle. Consid-

assumes an equal priori force probability, which makes ering the shaded area in Fig.ah we obtain the distributi_on

each point in the triangle equally likelgue to the linearity Of boundary forcesP(f,)=7(2~f;)-27(1~fy), which is

of the force balance restrictiondherefore the probability to  Shown in Fig. $b). We thus find that there is a qualitative

have a solution betweefy and f,+ 5f, is simply represented difference between the boundary fordds, ... ,f¢) and the

by the shaded area in Fig(a}. This “volume” decreases interparticle forceqfs,fg, fg). Interestingly this is also the

linearly asf,; approaches its maximum value, so that thecase for larger systems and is consistent with earlier work on

distribution of f, simply becomes P(f;)=5(3-f,)  statistics of wall forces[36,37 _ o

X O(y3-f,)—see Fig. 4). Although this threg—ball system prowdes a very nice illus-
The combinatiorkO(x), whereO(x) is the Heaviside step tration of how to obtairP(f) from all possible force configu-

function, will occur in mostP(f) thoughout this paper. rations, it is not complex enqugh to reproducg nonmonotonic
Therefore. we introduce P(f). In fact, the problem discussed above is equivalent to

partitioning a conserved energy into three positive parts. In

T(x) = xO(X). (5

(@) f7= max ® 5
| PE) |,

0.5

0.0

FIG. 4. Two-dimensional cut through the phase space spanned FIG. 5. Two-dimensional cut through the phase space spanned
by the nine forces of the three-ball proble¢a) The borders of the by the nine forces of the three-ball problem, showing how boundary
triangle are the lines where one of the interparticle forces change®rces are distributeda) The borders of the hexagon are the lines
sign; the shaded area represents the probability to find a configuravhere one of the boundary forces changes sign; the shaded areas
tion betweenf; and f;+ &f;. (b) The corresponding force distribu- represents the probability for a certain (b) The corresponding
tion P(f). force distributionP(f,).
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] 0.8
0.6 b F "-.g'
04 . 5
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[ === 55 balls ] e 55 balle
0oL — 210 balls ool — 210 balls
0 1 2 3 4 0 1 2 3 4
f fwan
FIG. 6. P(f1) for bulk forces in snooker packings of increasing FIG. 7. Boundary forces for snooker packings of increasing

Sizes. sizes.

our case, the conserved quantity is the total force and thgyost numerical and experimental observations; only a few
three parts are the coefficierts cz, and(1-ca=Cg). Inthe  stydies report power-law behavior for small fordes13).
thermodynamic limit, the problem of partitioning, e.g., anfFor large packings, this peak rapidly converges to its
energyE, simply yields the Boltzmann distribution of ener- asymptotic limit. The tail ofP(f) broadens with system size,
giesE; of subsystems; also for finite systems these distribuzng will be discussed in more detail in Sec. VI.
tions are always monotonically decreasing—see Appendix |n Fig. 7 we show the probability distributio(f,) for
A.In Sec. Il C, we show that the problem of six balls alreadyhe forcest,,, between sidewalls and balls for the regular
has enough complexity that it leads to nonmonotonic behavpackings of increasing size. As has been discussed at length
ior of P(f). in [36,37), these distributions differ from the probability dis-
tributions of bulk forces. In this particular case this is easy to
B. Numerical analysis of larger systems see: the boundary forck,,, has to balance the force of the

To computeP(f) for larger packings, we have applied a two .balls in the next layer with which it makes contgek-
simulated annealing proceduf®s]. As was shown in our cludlng. the corner.t_)al}s Even thpugh each of these force.s
previous work{11] this scheme can also be used for irregular,has a finite probability to be vanishingly small, the probabil-
packings. Starting from an ensemble of random initial forcd®y that both these forces are small has not, herié,z)
configurations taken from an arbitrary distribution with ~ — 0 O fwar—0.
=1 andf;=0, we select a random borjcand add a random
force Af, so thatf;(n)=f;(0)+Af, in which the symboln C. P(f) and phase space geometry
and o denote the new and old force, respectively. The ran- Here we will discuss some geometrical aspects of the set
dom change frono to n is accepted with a probability given of allowed force configurations. Consider the
by the conventional Metropolis rule p(o—n) zN/2-dimensional force phase space spanned by;tt&ince
=min(1, 6(f;(n))exp{-[H(n)-H(0)]/T}), in which H is a  all 2N force balance equatiori$) arelinear in the forces, the
penalty function whose degenerate ground states are solallowed solutions lie on a hyperplane of dimensiaN/2
tions of Eq.(3): —2N). (Note that the overall pressure constraint introduces

- . a2 an additional constraint, lowering the dimension by Aur-
H(f) = (Af - b) : (6)  thermore, since we consider repulsive forces only, this plane
: oo . is restricted to the positive hyperquadrant wherefai 0
;(:)rrek?argiiiepriilsg?vs\f;\lyz Sgt?)sf\;) ':Sl %322?;‘2::23?\'/% Lnounc dhs (see Fig. 8 Therefore the allowed fqrce-configuration_s_ form
. ) a (hypenpolygon whosefacetsare given by the conditions
(1#k at random and usingj(n)=fj(0)+Af and fin)  yhat’some forcef; becomes 0. Under our assumption of a

=fi(0)-Af as the update scheme, so that the pressure CORfat measure,” all points on this polygon correspond to valid
straint can be left out of the penalty function. By slowly force networks with equal probability.

taking the _Iimit qu—>0 we sample all mechanically stable A number of basic properties of this solution space can
force configurations for whict#¥f—0. We have carefully o readily be deduced. Trivially, the solution space is con-
qhecked that (esults do not dgpend on the initial conflgurgVeX: due to the linearity of the equations, the points on a
tions and details of the annealing scheme. In Sec. IV we wilktrajght line connecting two admissible solutions are admis-
show that this scheme perfectly reproduces analytic resuligipje solutions themselves, as was also pointed out in Refs.
for small regular packings. o _ [23,24,38. Although this is not immediately obvious in low
The two force networks shown in Fig. 1 are typical solu- gimensions, for higher dimensional bodies the overwhelming
tionsf obtained by this procedure. The resulting distributionspart of the “measure” is concentrated near the boundary
of interparticle forces are presented in Fig. 6, for packings ofthink of a high-dimensional sphere, where almost all vol-
increasing number of balls; boundary forces will be dis-ume is in the “shell” close to surfageNear the boundaries,
cussed seperately and are not included in tHede. Note  one or more forces tend to zero, and this is consistent with
that all P(f)’s display a peak for smafl, which is typical for  the fact that in typical force networks a finite fraction of the
jammed systenj46]. The fact that the probability for van- forces are close to zersince P(f | 0) # 0]. More homoge-
ishing interparticle forces remains finite is in agreement withneous force networks, for whichll forces are around some
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@ ®

S FIG. 9. Two different types of solutions of force equilibrium for
six balls in a snooker triangle.

<3

\ dent solutionsf that obey force balance on each particle.
_ i Again, there exist simple solutions of linearly propagating
FIG. 8. Schematic representation of the phase space of allowegh o |ines_see Fig. (8). However, there are only three
force .Conf'g.urat'ons' Eachf; d.efmes. a d'r.eCt'on n .the tsuch solutions, so we also require nontrivial solutions where
zN/2-dimensional force space. By imposing the linear conditions o w ,, . -
mechanical equilibrium, this space is restricted to a “hyperplane” o{orces scatter 'at a certain particle. Fpr gxample, we can
. C . o take three solutions of the type shown in Figh)9
lower dimensionality. The physically allowed region is(fayper- L .
ypolygon is bounded by the requirement thatfgli=0. The presence of these nontrivial solut|or_15 changes the
phase spacenia a fundamental manner. A given force can
average value, correspond to points in the phase space thaww take a certain value in many different ways, by different
are sufficiently faraway from the boundary. While such con-linear combinations of elementary “modes.” In other words,
figurations are perfectly allowed within our framework, and a force can no longer be associated to a single mode of the
are easy to construct by considering a suitable linear combforce network, like it was the case for the three interparticle
nation of “ordinary” force networks, they only occur with forces in Fig. 3. As a consequence, the problem has become
vanishingly small probability in the limit of larghi, and are  much more intricate than simply partitioning the total force
thus e_xtremely unlikely to be seen in “unguided numerics” ofinto positive amplitudegwhich, for large systems, would
experiments. lead to a simple exponential distribution, see Appendjx A
Even though we have not worked this out in detail, we|nstead one finds nontrivial force distributions, for which we
expect that some more general properties of the force netterive analytical expressions in the following section. In-
works could be related to geometrical propertiesrahdom  deed, for all investigated packings, we observe nonmono-
hyperpolygons. As one simple example consider the followtonic P(f) whenever scatter solutions occur.
ing. For two forces, say; andfj, to become zero simulta-
neously, the facetsandj have to touch; in general this may
not be possible geometrically, so that an intruiging issue con-  Ill. GENERAL FORMULATION FOR ARBITRARY
cerning correlations between distant forces arises. PACKING GEOMETRY
Anqther issue that may have'a relatively simple interpre- In this section we show how statistical averages can be
tation in the polygon language is the peaked appearance %f

P(f). We suggest the following intuitive picture, based on a omputed analytically within the force network ensemble,
consideration why the slop#P(f)/df can be expected to be for arbitrary packings. We present a systematic way to evalu-

o ) ate the complicated high-dimensional integrals as a sum over
positive for small forces. For very small systems, like the

contributions of the following structure:
case of three balls discussed in Sec. Il A, this is not true. This 9

immediately follows from the shape of the allowed phase P(f) = > ¢, f0N1 —b, )P~ HO(1 - b, f)
space polygon. As shown in Fig. 4, this is a triangle where )\
the angles between the bounding edges waetge When we 0-1
move away from a&=0 boundary, the phase space volume =2 GfNTL -, H]P ™, (7
decreases so thdP/df<0. If we go to larger systems, how- »
ever, the number of facets bounding the speezN/2) be-  whereD is the dimension of the phase space, and the coef-
comes much larger than the dimensib(rzN/2-dN-1) of  ficients b,, c,, and g, depend in a nontrivial way on the
the polygon. Hence we expect that the “angles” betweemarticle packing; for most, we find thatg, =0. The function
bounding facets will typically becomebtuse which will 7 was defined in Eq.(5); note that the contributions
make the phase spad&reasewhen increasind. This indi-  [7{1-bf)]P~t~ e ®-Db n the thermodynamic limit. For the
cates thatlP/df is typically positive for small forces, so that reader who is interested in the results but not in the details of
P(f) displays a peak39]. the derivation, we summarize exaetf) for small regular
Six balls Let us provide another perspective on the phaseackings in Sec. IV.
space geometry by discussing the problem of six balls, which
is the smallest snooker packing displaying a nhonmonotonic
P(f). For the six balls there are 18 forces, which are con-
strained by 2 6+1=13equations, so the space of solutions The phase space of force networks is defined by the linear
is a 5D hyperplane. If we try to construct the phase spaceonstraints of force balance, an inhomogeneous linear con-
like we did for the three balls, we now require six indepen-straint to fix the pressure, and the requirement that all forces

A. Mathematical definition of the ensemble
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are non-negative. If we now indicate each contact force by

an indexj, we can express mechanical equilibrium as

zZN2

E g;f; =0, (8)
j=1

where the nonzere; are projection factors betweenl and
+1. There aredN such equations, which we label as

PHYSICAL REVIEW E 70, 061306(2004)

2
I

f d@lleH f dfle—(EJ'HZ:lSla”)fJ
i Jo

—00

- : 1
desF [ ————, (14
J—oc ji(-ig+ X say)

where the factoe>:" arises due to the inhomogeneous pres-

sure constraing9). We furthermore added cutoff factoes*i

=2,3,...,dN+1. To keep the overall pressure at a fixedso that the integrations over tie are definite; at the final
value we impose;f;=F, which for notational convience we stage we take the limit;—0. The rows of the matrix4

write as

zZN2

> af=F, withall a;=1.
j=1

(9)

We thus encounter a matrix proble#‘rf: b, where thes;; are
the components afl.
Imposing the various constraints and assumingaumal a

priori probability in the force space defined byF

=(f1,f,,...,f,2), We obtain the joint probability density
-1
P(f):55<2 aljfj—F>H 5(2 ajfj>. (10)
j i=2 j
which is normalized by the phase-space volume
j i=2 i

Since we consider repulsive forcef represents an inte-

gral over all forces in the hyperquadrant where fai 0.

correspond to the constraint variablgsand the columns
correspond to the denominators originating from thete-
grals. From now on we indicate the dimensions of the matrix
by m=dN+ 1 (number of rowsandn=zN/2 (number of col-
umns.

All integration variabless run from -0 to «©, so we can
evaluate them as contour integrations in the complex plane.
The integrand is a product of denominators, and eadt-
curs in as many denominators as there are forces acting on a
certain particle. In the absence of gravity, each mechanically
stable particle should at least have three contacts. This makes
the integration over thg converging at infinity and allows to
close the contour either through the upper half plane or
through the lower half plane. An exception is theintegra-
tion, which has to be closed through the upper plane since
F>o0.

Let us first integrate ous,. Each denominator that has
amj7# 0 gives rise to a pole at

(15

1 m-1
Sfi) :;(iej -2 saﬂ-)-

j i=1

With this measure, we can now compute the single forcél'he residue is obtained by substiting this pole in the remain-

distribution P(f;) as

P(f)) = {H f dfk} P(f),

k%] Jo

(12)

which in principle can be different for eadiy for example
see the boundary forces within the snooker triangsc.
I1). In practice, it turns out thal(f;) for differentinterpar-
ticle forces shows only little variation.

The fact that we only integrate over the hyperquadrant
where allf;=0 makes it difficult to evaluate the integrals

explicitly: each integration of thé function gives rise to a

Heaviside© function to keep track of the boundaries of the

phase space. To avoid this problem we representtiugc-
tions as Fourier integrals,

Se_isizjaijfj, (13)

Sa)=] 52

which has the advantage that theonly occur in an expo-

ing n—1 denominators of Eq.14). Note the importance of
the ¢ to make the integration definite. It is easily seen that
this substitution leads to a renormalized matd of m-1
rows (constraint variablesand n—1 columns(denomina-
tors), and to renormalizealr;,qtj as well. However, the key
observation is that the remaining integrals are of the same
type as Eq(14). We thus find a recursion relation

1 *
QA = £ 2 O 100(A)), (16)
i 8mi

]

where the sum extends over all encircled poles. The symbol
+ indicates that the contribution is positive or negative de-
pending on whether the integral has been closed through the
upper(+) or lower (—) half plane. The renormalization to
A} is different for each pole, so each term has to be fol-
lowed independently. At each integration the number of con-
tributions therefore grows rapidly, since each new pole gives
rise to a new “branch” of the recursion Ed.6). The expo-
nential increase of the number of branches with the size of

nential way and they are easily integrated out. If we nowthe tree forms a severe limitation on the solutions for larger

write S=(1/2m)(s,, ...
function () becomes

,Sw)» where m=dN+1, the partition

systems. At the final stage, we have to compﬂlg—:‘-nfinal
=, p+ by integrating oves;:
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“ ds . 1 FD one would expect that it very unlikely that sorag=0, since
S1_js,F
Qqpa= e . = , it corresponds to an accidental coincidence of two poles
' _ 2T Ti(-ig +sag) D[] ay; ) i >
] ) ) - 1] However, for regular structures like the snooker packings it

is a frequently occuring phenomenon. The double poles are
(17)  responsible for the caseg # 0. We have adapted the algo-

whereD s the dimensionality of the phase space. Egg rithm such that it can deal with an arbitrary multiplicity of
and ¢; appearing in this equation are obtained from succest€ POl€s. In some cases, these multiple poles alter the gen-

sive renormalization each time a pole is substituted. eral result forP(f) with additional contributions of the type
So, the calcul_ation on involves a treelike structu_re P, () = f(1 - b, f)P1HhO(1 b, f). (21)

where the branching rate is equal to the number of encircled

poles. Using relation Eq$16) and(17) one can compute the These contributions can be recognized agifltie derivatives

contribution of each individual branch, using a recursiveof the general result, corresponding to the coincidence of

scheme. The fact thdd scales ag to the powerD is not  G,+1 poles. We expect, however, that multiple poles will

surprising:F is the only force scale for thB-dimensional never occur for disordered packings.

phase space, and in fact, the behaW8ris obtained imme-

diately from a trivial rescaling of Eq11). However, in the IV. EXACT RESULTS FOR SMALL CRYSTALLINE
following paragraphs we show how the analysis presented PACKINGS

above can be extended to the nontrivial calculation of the

force distributionP(f). We now present a number of exdf) for small crystal-

line packing geometries. In particular, we have worked out
B. Calculation of P(f) the p_roblem_ of six_ba!ls in a snooker trif'i_ngle, triangular 2D
packings with periodic boundary conditions, as well as a
Comparing Egs(11) and(12), we notice that the expres- small 3D fcc packing with periodic boundary conditions.
sion for P(f)) is the same as that fd2 without the integra-  Following the algorithm described in the previous section,
tion over f;; without loss of generality we will consider we have been able to obtain the coefficiebfsand c, ap-
P(f1). As a result, the expression f&X(f;) contains one less pearing in Eq.(7) for these systems. For notational conve-
dominator than Eq(14) and instead there will be an addi- nience, we express the results in the dimensionless force

tional exponential factor, i.e., =f/F. All is in perfect agreement with our numerical simu-
lations.
P(fl)zlf dsdeF-MSisagahi ]| ;_ The intricate combinatorics has been performed using a
Q <1 i(-ig+2 s computer program. As mentioned the number of contribu-
(18) tions grows exponentially with the size of the tree, since the

branching rate is of order of 2 per elimination step. Even
Following the same integration strategy as foy we again  worse is the fact that the different signs of the contributions

obtain a recursion of the type lead to large cancellations. The results given below for small
systems are the result of many more terms in the tree. This
Pon(f) = > ip 1noa(fp) (19) makes the algorithm numerically unstable for larger systems.
m,n - m-1,n- ’
k 8mk

where for clarity in notation we left out the explicit depen- A. 2D triangular packings with periodic boundaries

dence on thérenormalizegl matrix A. After successive sub- Four balls The smallest interesting 2D triangular packing
stitution of the poles, the final integration ov@rbecomes  with periodic boundary conditions is thex2 packing of
four balls. It has X 4=12 unknown forces and >24=8

Py oa(fy) = lfo d_Sleisl(F—allfl)e-elfl - 1 e_qugtions expr_essing mechanical equilibrium. Due to the pe-
' Q). 2w j+11(=i€+s39)) riodic boundaries, however, two of these equations are actu-
D1 ally dependent. Hence there are only six independent equa-

1 (F —anfy) O(F —ay,fy). (20) tions and together with the overall pressure constraint this

T Q(D-1I j#184; results into aD=12-(6+1)=5-dimensional phase space.
In terms of the dimensionless variabke=f/F, we ob-

Each branch of the tree gives a contribution of this type am%ained the following result for this system:

together they accumulate to the result of EQ.with g, =0.
The coefficientsb, are thus simply thea,;/F that remain P(x) = 10741 - 2). (22
after successive renormalization of the matdx We will
demonstrate that, fortunately, the final result contains only daking F=12 so thagf)=1, we plotted this distribution in
few differentb,, at least for small packing geometries. Fig. 1Qb). It is a monotonically decreasing function that
In the final integration of Eq20), we implicitly assumed allows a maximum force ofxmaX:%, ie., fmaX:%F. This
that all a;; appearing in the denominators are not equal tonaximum force is achieved for a simple “propagating” solu-
zero. They may become negative, provided that the associion shown in Fig. 108): the total forceF is shared between
ated smalle; is also negative so that the pole is still in the two nonzero forces onlynote the similarity to the solutions
upper half plane and the integration remains finite. Naivelyshown in Fig. 3 for the packing of three ball®ue to the
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1.0

P(f)

W W
0.0
W Wy v

FIG. 12. (a) One of the scatter solutions for the fcc unit cell with
FIG. 10. (a) All solutions of the 2< 2 periodic arrangement can periodic boundary conditions. The black spheres belong to this unit
be described as a superposition of linearly propagating force linegell; the grey spheres belong to neighboring cells. All forces have
(b) The corresponding monotonk(f). the same magnitude; those within this unit cell are drawn as thick
solid lines; the others are drawn as thick dashed liies.The

symmetry of the problem there are six such trivial solutions CorrESpond'.ng nonmonqtonre_(f), from Eq. (24) (solid curve and
from numerics as described in Sec. l(&osses

which are in fact sufficient to define the whole 5D phase

space of force networks. Thex2 problem is therefore ZN/2=24 forces in this system. We now have to respect

equivalent to partitioning the total force into six nonnegatlveforce balance in three dimensions, i.ex 8=12 equations,

-amplitudes,” just as was the case for the three balls in th%f which, due to periodic boundary conditions, only nine turn
snooker triangle. Indeed, E22) is of the same form as Eq. out to bé inde eﬂdent Together \)//vith the reésurg constraint
(A6) in Appendix A. p - 1og p :

Nine balls For the 3x 3 packing of nine balls there are there are thus ten equations to constrain 24 forces, and hence

3% 9=27 unknown forces that are constrained by @-2 the EroblemI has a 14—d|menS|on§I space of solutions.
=16 independent equations of mechanical equilibrium. Fix- The resultingP(x) turns out to be

ing the overall pressure, one is left withx=27—-(16+1)
=10-dimensional phase space. This speaenotbe recon-
structed from the trivial propagating solutions, of which
there are only 9. Again, the presence of the “scatter” solu- —aXT(1 - f»()}- (24)
tions such as the one shown in Fig(d1lresults into a non-

monotonicP(Xx):

0.5f

o
—
[N
w
»

_ 354 113 o - 2131 g - L3 -
P = =5 [7 (1-20 - T™(1-69 - T(1- 80

Figure 12 shows that this force distribution has the same

typical features as those obtained for two-dimensional pack-

P(x) =40 T%(1-3) - 179(1 - |. (23)  ings. It is a nonmonotonic function, which can again be re-

lated to the existence of scatter solutions. There are 15 inde-

Taking F=27 so thatf)=1, we plottedP(f) as a solid curve pendent solutions to fix the 14D phase space of force
in Fig. 11(b); the crosses indicate the distribution obtained bynetworks, 12 of which are linearly propagating “trivial” so-
the same numerical method that was used for the snookdutions (two for each lattice direction The other three are
triangles in Sec. Il. The perfect agreement illustrates the acagain scatter solutions. One of these is shown in Fig. 12.

curacy of our numerical method. ) ) )
C. Six balls in a snooker triangle

We now provide the exact force distributions for the six
B. 3D fcc packing with periodic boundaries balls in a snooker triangle, which we discussed in Sec. Il. We
To illustrate that our ensemble can be applied to three@lréady showed that one has to distinguish betweerinthe
dimensional packings just as well, we have compRéd in terparticle forcesand theparticle wall forces which obey

the conventional fcc unit cell, with periodic boundary condi- dualitatively different statistics. Upon closer inspection,
tions. This is a system of four balls, since the fcc unit cell"OWeVer, one notices that there are also two different types

contains eight particles at cornefsach counting for 1/8 of interparticle force: the six closest to the bogndampe )
and six particles at the facgsounting for 1/2. The coordi-  and the three closest to the centgpe ). We find that

nation number of the fcc packing iB=12, so there are 95a° 16
P(X)=————=|T*1-ax) - =741 -2ax)
768(7 + 4/3) 19
(a) (b) 1.0
3
P(f) +—T41- 3ax)} , (25)
05 1 19
5
0.0 : 5 3
Py(x)=———=| 741 -ax ——T“(l——ax)
0 1 2 3 45 1(X) 64(7"'4\"3){ ( ) 6 2
FIG. 11. (@) The system of X3 balls allows for nontrivial 3 3
“scatter” solutions.(b) The correspondind?(f) is therefore non- -ax77| 1-7ax] |, (26)

monotonic. The solid curve is E@23); the crosses are obtained _
from numerics as described in Sec. Il B. wherea=2(1+43).
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The numerical results shown in Fig. 6 were obtained with- Lo 5 (@)
out discriminating between type | and type Il. This is al- = iﬁ%;ﬁi
lowed since even thougR,(x) and P;;(x) are not identical, £. € o0s T
their shapes are very similar. Comparing the data with g 1003
%Pl(x)+%P,|(x) gives again an excellent agreement between 20 —100x100 00
the theoretical result and the numerical result shown in Fig. 0 s 1o 15 2 o 1 2 3 4
6. The factors 2/3 and 1/3 appear because there are six
forces of type | and three forces of type Il FIG. 13. (a) Numerical evaluation ofP(f) for matrices with

Finally, let us discuss the statistics for the boundary forceslimensions ranging from 1002 (p=0) to 100X 100 (p=1) illus-
as shown in Fig. 7. Also in this case there are two differentrating crossover from exponential to Gaussian beha\@ompare
types of boundary forces, namely six at the corneisand  to Eq. (30)]. (b) Force distributions obtained withx n Gaussian
three in the middlém) of each boundary. We find that random matricegwith pressure constrainfor different values oh

(curvey. Forn=50 the force distribution obtained with matrix ele-

° ments from auniform distribution is included for comparison

P.(x) = % T41-bx) - 741 - 2bx)

7+ 4\,'3) (crosses
—E)bxﬂ(l— 2bx) - 2(bX)27T2(1 - 2bx) |, very sensitive even to small perturbations away from the
3 physical matrix.
(27)
5 A. Random matrices
Pm(x) = 54(7 + 4\5) [- 741 —bx) +8bxT *(1 - bx) 1. Infinite Gaussian random matrices
4rq We start out the random matrix approach by generating all
+T7(1 = 20x)], (28) elementsy; in Eq. (8) from a Gaussian distribution
whereb=3+3. The linear combinatioéPc(x)+51,Pm(x) fits
the boundary force distributions as shown in Fig. 7 ex- Pa(ay) = \/:e &, (29

tremely well(not shown.

for which the problem can be solved exactly. Together with
V. BEYOND PACKINGS the constrain®;f;=F, we obtain a matrix ofn rows andn

In the preceding sections we have extensively studied th olumns. By demandm_g that & =0, one 'can.ln principle
force distributions emerging in the ensemble of force net-OIIOW the same ?”a'ys's as for regl packings; we then aver-
works, for a variety of crystalline packings. The varid¥(d) age over_all poss>|ble random matrices and _con5|der_ only so-
are nonmonotonic and display only marginal differences. Aﬁl:]rﬂﬁrt]ﬁavtvghn?ifio /V\Ei)t.hlr;.’]?i\)}:()ggl:gtli); B_Vr\]'s nd?[rrwl:a/edit:t?itt’)dgc;[ze
we demonstrated in Refll], the same qualitative behavior ' P '
is observed for irregular packings. Even though the packiné)ecomes
matrices differ substan';ially. in these cases, the res_ul?(rig P(f) = o( p)e—(l—p)fe—b(p)fz, (30)
is extremely robust. This raises the question of which are the
essential ingredients to obtain a typical force distribution. Inwhereb(p) is an almost linear function that h&¢0)=0 and
other words, what properties of the packing matdxdeter-  b(1)=1/7. For square matrices, i.ep=1, we thus find that
mine the shape dP(f)? P(f) is a pure Gaussian centered aroudmd. This is illus-

All packing matrices consist of a large number of zeros,trated in Fig. 18a); to calculate the?(f) for these nonsquare
except for a few elements per row that are projection factorsnatrices we have evaluated E@B3) and (B5) by Monte
between—1 and 1. Such a matrix has some features of aarlo simulation. Tuning to zero, the pressure constraint is
random matrix, but it implicitly contains the entire spatial dominant and we retrieve the pure exponential behavior that
structure of the system. To see whether this spatial structuris also discussed in Appendix A.
is crucial for the typical shape d?(f), we now study true So, we find that the tail oP(f) is a mixture of a Gaussian
random matriceswhich no longer represent a physical pack-and an exponential, depending on the aspect atid the
ing of particles. Of course, we still extend the matrix by thematrix. However, for any value gs it is monotonically de-
normalization constraint;f;=F and demand that af,=0. creasing, and we never observe the peak that is extremely

We find that such random matrices yigh{f) whose de- robust for real packing matrices.
cay is described by a product of Gaussian and exponential A relevant question of course is whether a Gaussian dis-
tails. However, all these distributions are monotonically de-ribution of all matrix elements is representative for a matrix
creasing and thus lack the typical peak, even when considethat is based on a real system of particles. Such a “real”
ing “sparse” random matrices. We then try the opposite appacking matrix is not only sparse but also lag&[-1,1] in
proach, where we start from a physical packing matrix andsuch a way that Newton’s third law is respected. Unfortu-
then slowly introduce randomness. In contrast to the strikinghately, it becomes very hard to work out the integrations if
robustness oP(f) for real packings, the force distribution is P4(a;) is not Gaussiarj40] or when correlations between
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matrix elements are imposed. For those systems, we have to Loy s ORI o
rely on numerical simulations. it oA IR L RN S
a : — 1=30 e 101 \\\
£ oost Y e e n=5
. . . a AN & 02f - —-n=20
2. Numerical simulations RN Nt I\ ¥
‘q\‘:‘s: 10 —" i
To numerically sample the ensemble discussed above, one 0ol s 10% L

first has to average over a representative number of allowed

f for each matrix4, and then repeat this for many different FIG. 14 F distributi btained with 30 d
matrices. However, only very few of the generated matrices |G- 14- (8) Force distributions obtained with 3030 random
actually have solutions for which aﬂ =0. We have there- matrices(with pressure constraintwith increasing sparseness. The

fore focused our study csquarerandom matrices, for which distributions forl,=30 and|,=20 are indistinguishable, but for

the phase space consists of a sinale point and the numeric}mallerlzwe see that the distribution becomes broa@®rHere we
P P gie p ow, for fixedl,=5, the emergence of a power law R(f) for

effort is thus reduced to inverting each matrix. Starting fromlargey sparse x n matrices.
a random matrix for which alf;=0, we apply a Monte
Carlo simulation procedure in which attempts are made to

change a randomly selected elementbf(except the ele- row (again, we leave the elements of the pressure contraint
ments corresponding to the pressure constraftich at- unalteredl. These nonzero elements are arranged in a band-

tempts are accepted with a probability given by the convenMarix-like form.
P P b ¥y y Force distributions fon=30 and several values &f can

tional Metropolis acceptance/rejection ru[d4]. In this way, e h ‘ : t the distri
we are able to explore the phase space of random matric®§ S€en in Fig. 1&). The maximum value of the distribu-
tions remains at=0 and, surprisingly, it even increases as

for which all f;=0, for any distribution of the matrix ele- o ) SV
mentsa, . the matrix is more sparse. Uniformly distributed elements
) {gave almost identical results. It thus appears that the charac-

It is important to note that this numerical procedure is not?< "= K ofP(f) | ety rel h
precisely equivalent to the analysis of the Gaussian randorf¢"istic peak ofP(f) is not directly related to the sparseness

matrices presented above. The reason for this is thater ~ Of the matrix. In addition we found that for large sparse
uniformmeasure is not uniquely defined for continuous vari-matrices, the tail of>(f) develops power-law scalingFig.
ables: a nonlinear transformation of variables gives rise to 4] . o
Jacobian that affects this flat phase-space density. Since the This demonstrates that a wide range of force distributions
coupling betweem;; andf; is indeed nonlinear, the flat mea- Can be obtained by varying the matrix properties, and that
sure is ambiguous. However, one can show that the measuli@ere is no simple answer to the question what properties of
of the numerical scheme differs by a factor det) from the matrix. A are necessary to mimic realistic packings. In

2 - . . . the light of this discussion, let us make the following remark.
‘I‘D(f ’.A) of Eq.”(l_31), anc_j we h_ave ver|f|ed_ that including this Recently, Ngarj25] obtained a variety of force distributions
weight factor” in the simulations only mildly alters tHe(f)

. i ‘ similar to those obtained for real packing matrices in Sec.
for small r_natrlces(nss) and practically disappears for |, B, and compatible with the form of Eq30). These have
larger matrices. _ _ . _ been derived by minimizing an entropy functional under a
Square random matriceset us start the discussion with pressure constraint similar to the one used in this pp@r

nxn square random matrices like the ones used for the angst without specifying the local microscopic equations of
Iytlca}l calculation above. This means one of the rows of th&q,ce palance. One may therefore wonder whether it is pos-
matrix represents the pressure constraint and the others aggyje to make a connection between the force ensemble and
taken from a Gaussian distribution. In the limit- these Ngan’s work. On the other hand, the results of this section
were shown to give rise to @alf) Gaussian force distribu-  jearly jllustrate that properties of the local equations, which

tion, see Eq(30) with p=1. The numerical results for=5,  5r¢ apsent in Ref25], do play a crucial role: it can change
10, 50 are shown in Fig. 1B). The distribution fom=50 is P(f) from Gaussian to power law.

indeed a Gaussian, as expected Ifier. The casen=5
displays a very small peak at finifg but this effect disap-
pears quickly whenn increases. Furthermore, Fig. (b3
shows that the distribution obtained with Gaussian matrix
elements only slightly differs from the case of matrix ele- In the previous section, we have shown that introducing
ments taken from a flat distribution betweeri and 1. elements from real packing matrices to random square ma-
Sparse matricesA property of real packing matrices that trices does not easily lead to the characteristic peak in the
is not represented by the random matrices is their sparsenesssulting P(f). Therefore we now investigate the reverse
only those forces that push directly onto a given particleroute, i.e., perturbing a real packing matrix by slowly intro-
contribute to the force balance, and hence most matrix eleducing randomness in the matrix elements. We perform three
ments are zero. On average, each row contaimdnzero sorts of perturbations. In the first, the angles of the contacts
elements, where denotes the average coordination numberare randomly varied, which ensures thia¢ topology of the
In order to investigate whether this sparseness is responsibb®ntact network remains unaltereth the second, we ran-
for the nonmonotoni®(f), we have generated a simple classdomly delete contacts, in the third, we randomly add con-
of sparse random matrices: The matrices used are agaiacts. In all three cases, ti#&f) loses its maximum for suf-
nXxn, but now with onlyl, nonzero(Gaussianelements per ficiently strong perturbation. We show how for the first two

B. Perturbing a physical packing matrix
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FIG. 15. Definition of a rattler. The net force on this rattler can
only be zero if all forces involving this particle are zero. This means
that the maximum angle between bonglss larger thans. Such
rattlers can arise when bonds are deleted or when the contact angles
are randomly rotate(see text FIG. 16. Variation ofP(f) and number of rattlers when perturb-

ing a realistic packing matrixa),(b) Variations of the contact angle
protocols, this behavior appears to be correlated to the emefandomly selected from-A¢,A¢]; P(f) evolves from peaked to
gence of “rattlers’(see Fig. 1% monotonic(a). The density of rattlerg (open symbolg and the rms

We have first constructed a matrix corresponding to arvariation of P(f) (starg with respect to the unperturbed situation are
irregular packing of 1024 bi-disperse disks0:50 mixture, roughly proportionatb). A similar scenario occurs when bonds are
size ratio 1.4 by molecular dynamics simulations using a randomly deletedc),(d). When bonds are added, however, no rat-
12-6 Lennard-Jones potential with the attractive tail cut offtlers are created buR(f) still evolves to a monotonic forrte),(f).
[11,14. This system is quenched below the glass transition
(ksTg=1.1 in reduced unitsand its energy is minimized monotonicP(f) is extremely robust for packing matrices, it
using a steepest descent algorithm, which guarantees thggpears to be not at all a generic feature for arbitrary matri-
there is at least one stable force network. The resulting packseg.
ing consists of 2814 bonds g6=5.5. The amount of rattleréFig. 15 due to the randomization

The effects on theP(f) for the force ensembles corre- of the angles is small, but can be seen as a crude measure of
sponding to the perturbed matrices is illustrated in Fig. 16. Inthe contact geometry. To our suprise, the evolution of the
Figs. 16a) and 16b) we illustrate the effect of rotating the average amount of rattlers, and the rms deviatiorP6f)
contacts by random angles uniformly generated betweeftom the unperturbed distribution are fairly proportional
—A¢ and A¢. With increasingA#, the packing is getting [Fig. 16h)]. Here, this rms deviation has been measured as
more and more unphysicétorresponding less and less to a | [fqf[P(f)-P(f)]2, where Py(f) denotes the unperturbed
system of nonoverlapping particledevertheless, the topol- istribution.
ogy of the network always remains the same, and Newton's \yhen honds are deleted, a similar scenario occurs. Again
third law is always respected. The resulting force distribu-pe P(f)’s lose their peak and the rms deviationRff) fol-
tions are computed using the algorithm described in Sec. Ij;\\s the amount of rattlers quite wéffigs. 16¢) and 16d)].
and averaged over all randomly generated perturbations @y, he other hand, when bonds are added, no rattlers are
our original matrixA. In Fig. 16a) we have plottedP(f) for  generated, but the(f) still exhibit the same trendFigs.
different values ofA¢. For smallA¢ we obtain the charac- 146 and 16f)). Curiously, all theP(f)'s for the cases of
teristic shape oP(f) for jammed systems similar to Fig. 6. added contacts appear to intersect in two pdifitg. 166)];
Small perturbationgA¢<0.2 rad hardly changeP(f), but .o have no explanation for this phenomenon.
at largerA ¢ the peak aroundf) disappears an(f) looks
“unjammed.” ForA¢>0.75 we were no longer able to ob-
tain solutions with allf;=0.

This clearly shows that the conditions of a sparse matrix In this paper we have proposed an ensemble approach
respecting the packing topology, elements distributed beto athermal hard particle systems which, in contrast to
tween[-1,1], and the incorporation of Newton’s third law more local approximations or force chain models
into A are not sufficient to obtain the characteristic peak in[14,15,25,26,43,44incorporates the full set of mechanical
P(f). Even at relatively small perturbations dfthe shape of equilibrium constraints. The basic idea is to exploit the sepa-
P(f) changes quite abruptly. Furthermore, our simulationgation of force and packing scales by simply averaging with
clearly show that we are not even guaranteed to find a soluequal probability over all mechanically stable force configu-
tion of the problem for a randomized matrix: only a very rations for a fixed contact geometry. There are thus two im-
small fraction of all possible matrices lead to a solution forportant ingredients, namely the assumption of a flat
which all f;=0. So, even though the emergence of a non{Edwards-likg¢ measure in the force space and the fact that

VI. DISCUSSION
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physical force networks were indeed more central, the en-
sembleP(f) would evenoverestimatehe large force fluctua-
tions. Therefore the validity of the flat measure remains an
open issue.
A second important ingredient of the force network en-
0123456 0 5101520253035 semble is that there is no unique force solution for a given
contact network, i.e., packings are hyperstatic. While most
FIG. 17. Logarithmic plots of thé@(f) for snooker triangles of ~Packings are indeed hyperstatic, the precise degree of inde-
increasing size as function 6f(a) andf2 (b) illustrate that the tails ~terminacy may depend on material parameters and construc-

of these distribution decay faster than exponential but slower thaHon history [19,23,34. It appears that strict isostaticity is
Gaussian. only found for infinitely hard particles without friction, or

with unphysically large friction coefficients. The present
packings are hyperstatic. As the flat or uniform measure carstudy was performed with highly coordinated regular pack-
not be justified from first principles, the emerging force prob-ings, Which are more hyperstatic than most physical pack-
ability distribution P(f) provides a first important test. For ings. The coordination number is therefore an important pa-

small forces, the ensemble nicely reproduces the typical norf@Meter that remains to be explored. It may very well be that

monotonic behavior that has been found in numerous experfl€ Predictive power of the ensemble depends on this degree

. . : L f indeterminacy.
ments and numerical simulations. Alg(f) remains finite at  ° ; . . .
£=0, which has been the problem of ea)rlier modalé, 15. Metabolic networksWhile preparing this paper, we have

. . f riking anal ween the for n-
Let us now discuss the tails of the distribution. From Eq.become aware of a striking analogy between the force e

- ; bl d th bl f taboli twi ,28.
(7) we can only predict the asymptotic behavior of the sIow—Sem e an e problem of metabolic networfa,2§

d : di he minimal valub.of These are networks of biochemical reactions, in which the
est decaying term, corresponding to the minima ValuB Ol matabolite concentration@article positions and the reac-
For 2D packings one can show that this minirbabc 1/vN,

. Lo . tion and transport fluxeéinterparticle forcepare the vari-
but _S!%feD_oc N, the contribution tcP(f) of this term decays  apjes of the problem. In principle the fluxes follow from the
ase ', this term thus provides a sharp cutoff close to thecyncentrations, similar to how the forces follow from the
maximal force. However, there will be a distributiontgfs,  pariicle positions. This coupling involves intricate reaction-
and in order to resolve the tail &f(f) one would really have gitsion dynamics, for which numerical values of most rates
to know all coefficients in Eq(7) for large enough systems. zre not known. In practice, however, a separation of time
In Fig. 17 we again plot the numerically obtain®df) for  scales occurs: the metabolite concentrations quickly adjust
snooker packings. Although the systems are of limited size, itseconds to global changes in the netwotkninutes [46].
appears that the distributions have tails that neither argery much like we employed the separation of length scales,
purely exponential nor purely Gaussian. The differences arg successful strategy has been to treat the fluxes as indepen-
subtle, and may be sensitive to numerical details. Everjent variables and resolve the steady state from the stoichi-
though numerical and analytical distributions for small pack-ometry of the network.
ings appear to be in perfect agreement on a linear scale, on \athematically, the problem then reduces to an underde-
similar log scales the numerical curve seems to slightly untermined matrix problem with non-negative flux variables,
derestimate the large fluctuations. While the numerical preghich is identical to the equations defining the force network
cision is about 10 around(f), the relative differences be- ensemble. It turns out that for different metabolic maps the
tween numerical and exact results become about 5% arountlmber of fluxes is always larger than the number of me-
f=4(f). In the literature, there has recently been some debat@bolites and therefore these systems are “hyperstatic.” The
on the true nature of the tailgl5]: while the carbon paper main difference with respect to the force problem, however,
experiments undoubtedly yield exponential tails, it appearss the network structure defining the matrix: metabolic net-
that most numerically obtaine@(f) display some downward works are scale free, i.e., with highly uneven connectivities.
curvature when plotted on log-lin scales. It has also beeiThis leads to power-law flux distributiori28], which is very
argued that individual packings are not self-averaging andlifferent from the P(f) within the force ensemble. This
that tails appear Gaussian or exponential depending on hotuches upon the deep question of how network statistics
the ensemble is normaliz¢d3]. At present, we can therefore relate to the underlying network structures. In Sec. V we
neither confirm nor falsify the validity of the flat measure have found that, indeed?(f) can range from Gaussian to
based on the tail oP(f). power law when changing the properties of the matrix defin-

Unger et al. [23] recently proposed another test for the ing the ensemble.

uniform measure. For frictional packings, they compared For metabolic networks the main interest is to find solu-
force configurations that emerge in a dynamical process ttions in which the production of “biomass” is optimized. In
those obtained from a random sampling of the force space&ontrast to the averaging procedure within the force en-
They found that the dynamical solutions are located moresemble, this corresponds to finding the “extreme pathways”
centrally within the force space, and therefore concluded thahat form the corners of the hyperpolygon defining the solu-
the flat measure does not apply. While this is definitely artion spacq27]. In fact, the force network solutions shown in
interesting observation, this claim strongly depends on théigs. 3 and 9-11 are such extreme pathways. We speculate
“flatness” of their numerical sampling of the solution space,that a systematic analysis of extreme solutions may give ad-
for which no evidence is provided. Counterintuitively, if the ditional insight in the geometrical properties of the phase
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space and the emergent force statistics—see alsq®Rgflt  this remains valid for polydisperse packings, since in prac-

would furthermore be interesting to see whether for disortice, the forces are uncorrelated [id so that(|r|) can be

dered packings there still exist localized linearly propagatingaken out of the sum in EqA1) [7,11].

solutions such as shown in Fig. 9, or whether all particles Let us now consider the statistical properties of a set of

have to be involved into the force network. independent non-negative variables=0, that is contrained
Outlook A number of crucial questions can possibly be by a conservation law

addressed within our framework.) By separating the con-

tact geometry from the forces, we can start to disentangle the n

separate roles of contact and stress anisotropies in sheared > X =X. (A4)

systems. In particular, we have already shown that the en- j=1

semble comprises an unjamming transition for shear stresses ] . . .

above a critical valug1l]. Furthermore, the contact and The phase space of these variables i1al)-dimensional

force networks exhibit different anisotropies under differentsimplex of volume

construction historief9,10. We suggest that the contact net-

work anisotropies may be sufficient to obtain the pressure e . xn-t

dip under sand pilegii) As also illustrated by Ref§23,24, Qn(X) = H dx || X - 2 X | = (n——l)l (A5)

our approach is perfectly suited to include frictional forces. j=170 1= '

While these forces are difficult to express in a force law, theyW

are easy to constrain by the Coulomb inequality. here the integrals can be evaluated, e.g., by Fourier repre-

sentation of thes function. Assigning an equal probability to
all sets{x;} obeying Eq.(A4), we compute the probability of
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APPENDIX A: PRESSURE CONSTRAINT X

In. this appendix we first shOV\_/ that the sum.of all forces|p, the thermodynamic limin— =, this becomes the purely
=fj; is constant for regular packings under a fixed eXtemalexponential “Boltzmann” distribution

pressure. This provides a conservation law similar to the con-

servation of total energy in the microcanonical ensemble. We 1

therefore revisit the problem of partitioning a conserved P(x;) = —e ¥, (A7)
quantity in the second part of this appendix. 0

One can compute the stress from the contact fofges . e
P f where(x)=X/n. For finiten>2, however, this distribution is

1 always monotonically decreasing.
Tap = \_/{IE} (fipalrij) s (A1) In this paper we encounter tw@mall) packing configu-
: rations for which the force network ensemble can be reduced
whereV represents the volume of the systg#T]. The vec-  to the simple problem discussed above, so that force distri-
tor rjj=r;—r; denotes the interparticle distance, which for butions of the type Eq.A6) are found—see Figs. 4 and 10.

monodisperse particles of diameﬁaalways haﬂr|=a. For In general, however, the constraints of force balance on each

packings of frictionless disks, one can therefore write particle are more complicated and lead to nonmonotonic

5 P(f).
d

Oyx = VE f” COS2 Gij » (A2)

{ij} APPENDIX B: DERVATION OF THE GAUSSIAN RANDOM
MATRIX P(f)

oy = 92 fi siré i (A3) In this appendix we show how E@30) is obtained. We

Vi study the ensemble defined by

whereg;; indicates the angle of the contact with repect to the . n m n

honzonali axis. Taklng the trace of the stress tensor, We_f_lnd P(F,A) _ —Pa(A)ﬁ(F -3 fj) I 5(2 aijfj> . (B1)
oyt oy=d/VZf;. So indeed, a constant pressure condition Q i=1 Ji=2 \j=1

is equivalent to a constraint for the sum of all contact forces,

at least for monodisperse packings. To a good approximatiowhere we define
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m n c o ] . 2
Pa(A) = [T TI Py(ay). 82  PH=,Il dfk5(F -2 fj) J dtt™ 22
i=2 j=1 k#j 70 ] 0
In order to be consistent with the notation in Sec. Ill, we _c ) d_sleisl([:—fj) oodtt(m—S)lze—tsz[g(iS ]
reserve the index=1 for the inhomogeneous pressure con- Q) 27 0 b '
straint. The force distributio®(f;) becomes B7)
P(f) :f dAJ] dka(F,A), (B3)  where we have used a shorthand
k#j 70 o
where g(isy,t) =f dfeisft’, (B8)
0
m n 0
JdA: 1111 da; . (B4) We now exponentiate the full integrand of E&7), so that
i=2 j=1 J — . P(f;) becomes
The advantage of taking Gaussian elemeajtss that they c(“ds (© . 2
can be integrated out explicitly, using the Fourier represen- P(f;) = af Zf dterisafi~tfy gPliset) (B9)
tations of Eq.(13): — 0
m n where
f dAP,(A]] 5(2 aijfj) _3
=2 \j=1

)In(t) +(n=21)In[g(isy,t)].

m 0 n )
d isaf

:Hf iﬂ day P(ay))e s3] (B10)

i=2 J - =

" If we now fix (f)=1 by takingF=n, one observes that all
1T * 48 s (1 (m-1)/2 (B5) ems of the phase are extensive im or m. In the limit

2 where bothn,m— oo, we can thus evaluate the integrals us-

! ing a saddle-point approximation. By determining the sta-
It is convenient to bring the factok; sz to the exponent tionary phase, i.e4®/ds,=0 andd®/st=0, one finally ar-
using the relation rives at the result of Eq.30):

i f it (86) P(f) = c(p)e 17 Te ", (B1D)
I'(k) Jo

m
d(isy,t) =isF + (

i2 J o, 27 w2 f

ak

The functionb(p) varies almost linearly betwedst0)=0 and
Introducing this auxilary variablg P(f;) becomes b(1)=1/.
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