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The frequency of physical pairs of separations between 1/20 and 5 parsecs,

by G. P.

1. The study of these very wide binary stars has
been made as a part of a general survey of the
double stars described in Leiden Annals, Vol. XIV, 5
(which will soon be published), and is of particular
interest for the derivation of the frequency curve
of the mutual distances (l.c. Problem 2).

Physical pairs with these large mutual distances
are, at least among the stars of large parallax,
generally not distinguishable by their proper motions
~ alone. When we consider a parallax, = 0”100,
transverse distances of 1/,, and 5 parsecs are seen
under 0°3 and 30° respectively, so that it is necessary
to compare the space velocities, in order to establish
parallel and equal motion. But by doing so, a con-
siderable amount of uncertainty is introduced, mainly
by the parallaxes, which are used to convert the well
known angular proper motions into linear velocities.
However, especially for the fainter stars (m > 7),
the radial velocities may also have considerable prob-
able errors. When we confine ourselves to stars
nearer than 15 parsecs the uncertainty in the velo-
cities is about 10 times smaller than the dispersion in
the velocities of the different stars themselves. There-
fore a direct comparison of the calculated space velo-
cities among a few hundred stars must leave a large
percentage of the genuine pairs undetected and reveal
many spurious combinations. Without a statistical
treatment rendering an account of these accidental
combinations we cannot obtain results of much
significance.

Recently two authors have given lists of approxi-
mately parallel moving pairs or star groups. In
Verdff. d. Universititssternwarte zu Berlin-Babelsberg, Vol.
II1., Heft 3, p. 21 (1923), J. Haas gives a list of such
stars, but expresses as his opinion (p. 20): “It should
not be said at all that we deal here with stars having
the same movement or even with star clusters.” In
his recent discussion: Verzeichnis der Sterne innerhalb

Kuiper.

15 parsec, A.N. 239, 97-114; 1930, however, Haas
calculates spatial distances in two pairs of stars,
“correlated by agreeing velocities,” evidently now
assuming some real connection between these stars.
A further list is given by W. LuYTEN in a paper: On
the possible existence of physically connected groups
of stars (H.0.C. 298, 1926). LuyTeN calculated for
500 stars nearer than 25 parsecs the space velocities
and picked out those pairs or groups of stars having
nearly the same X, ¥, Z components of velocity; this
was done by studying plots of the stars on the XY
plane as well as on the YZ plane of velocity. LUYTEN’s
list contains 52 stars (46 Tau (p = 0"-034) and the
Sun excepted) as belonging to pairs or plural systems,
this being 109, of the total number of stars investi-
gated. LuyTEN writes: “Considering the small number
of stars investigated, the accordance of the three
velocity components within each group is closer than
might be expected if the velocities were distributed at
random. It is not claimed that each of the groups
tabulated here constitutes a moving cluster of phys-
ically related objects. In not accepting this explana-
tion, however, we are faced with an alarming number
of coincidences, far greater than we should be led
to expect from pure chance”. No calculations, how-
ever, are given on which this last conclusion should
be based. From the following lines it will appear that
the number of apparently parallel moving pairs is
just equal to the number of chance combinations to
be expected.

2. In the following investigation an extensive use
has been made of the above mentioned “Verzeichnis
der Sterne innerhalb 15 parsec” by J. Haas, which
contains the galactic components of the space velo-
cities. This list contains 180 1) stars of which 33 had

1) Double or multiple stars counted as one.
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in my parallax catalogue 1) (at the time I executed
this work) a probable error in the parallax exceeding

#/8 or else had according to my parallax value dis-

tances larger than 15 parsecs; these 33 stars were
rejected. In 7 cases out of the remaining 147 the
parallax used by Haas differed by more than p/8
from my value; 2 of these (11P44™ + 15°8" and
23t59® — 37°51") differed only because Haas had
rejected older, very bad parallax determinations,
which had been included by ScHLESINGER in his
Catalogue. I have taken Haas’ unaltered value in
these 2 cases. For the remaining 5 stars and 7 others?),
according to Haas nearer than 10 parsecs, and
differing in p more than o'07 p from my catalogue
values, the galactic components of the space velocity
were calculated anew. Thus the parallaxes employed
up to distances of 10 parsecs always differed by less
than 7 percent from my catalogue values, and those
between 10 and 15 parsecs by less than 12} percent;
in no case the probable error of p exceeded p/8.
The following principle was used for the statistics.
Consider the velocity space in which every star from
the list is represented by a point. Two stars having
equal and parallel space motions will in the velocity
space be represented by two points very close together.
A number of physical pairs will make the relative
frequency of very small mutual distances abnormally
large. In a part of the velocity space where the den-
sity d of points is constant we imagine a sphere
around an arbitrary image-point and consider all
other image-points lying in this sphere. The fre-
quency of the distances of these points to the centre
of the sphere will be 47 (2dp.d, therefore proportional
to p2. The presence of physical pairs will produce an
excess near p = 0. In the actual computations I have
taken 20 km/sec. for the radius of the sphere; and
computed all the distances from the centre of the
points within this sphere. This was done for each
star as a centre in the following way: A large diagram
was made, representlng the £n coordinates (notation
of Haas), i.e. the two velocity components parallel
to the plane of the Milky Way. Near the plottcd points
the ¢ component was written down with its sign. For
each star as a centre the three coordinate differences
were read off with the aid of a reseau, bearing also a
circle with a radius of 20 km/sec, thereby limiting the

1) This catalogue is based on ScHLESINGER’s Catalogue of
1924 supplemented by all the new determinations. These
new values, and also their probable errors, are reduced to
SCHLESINGER’s system.

2) A number of the differences in p are apparently a con-
sequence of the fact that Haas did not (or not in all cases) use
the corrections to the measured p values which were derived
by SCHLESINGER; in a few cases a modern p value had not been
used by Haas; in a few others the difference was not explained.
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area to be investigated. Each mutual distance occur-
red twice, but as afterwards all distances were to
be collected in one table, it was sufficient to take
each combination only once, thus halving the work.

If there were no physical pairs, the frequency (N)
of the distances (p) would be proportional to g2
The mean error of a counted number N is y/ N;
therefore, if we take 1/ N as ordinate instead of N,
and p as abscissa, we not only obtain for the relation
a straight line instead of a parabola, which is a great
advantage when an excess at p = o has to be studied
(see later), but we also make the mean error of the
points determining this straight line a constant in the
diagram, independent of N, another large advantage.

The position is therefore: when no physical pairs
are present in a diagram with 1/ N as ordinate, the
observed frequency curve of mutual distance is a
straight line (on which the mean error of the points
is constant) intersecting the horizontal (p) axis at a
geometrically determined point; physical pairs will
be distributed near this point of intersection and their
distribution curve entirely determined by the mean
errors of the parallaxes and radial velocities. The fact
that the straight line ends in a geometrically fixed
point and that, further, the mean errors of the ob-
served points are numerically small at this end, makes
a sharp determination of the number of physical
pairs possible.

One point has so far been neglected: the finite
extension of the velocity picture of the stars. For a
star lying near the boundary the exterior part of the
sphere will not be filled to the same extent as the
remaining part 1); the only consequence will be that
the / N curve is no longer a straight line, but de-
viates for larger relative distances a little downwards,
as a consequence of the convex shape of the equiden-
sity surfaces.

In nearly all cases (the exceptions are stars having
very small angular proper motions), the accuracy of
the transverse velocity is determined by the probable
error of the parallax. As a rule therefore the probable
error of the transverse velocity is

M . V transv,;
b
to attain a certain homogeneity in the p.e. of the
different velocity components of a star, it seems
desirable to divide the velocity space into two parts,
an inner sphere of radius R km/sec, Sun as a centre,

fl?

and the remaining part. The quanuty
is, in our case, always < §; for the stars with p > "*100

1) One may compare this with the mechanism causing the
surface tension in a liquid.
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the mean value is about %, for p << "*100 somewhat
larger. If we take R = 4o, the p.e. of the transverse
velocity in the inner sphere never exceeds 5 km/sec,
and is generally about 1 or 2 km/sec, i.e. of the same
order of magnitude as the p.e. of a radial velocity.
The accuracy of the velocities in the sphere may
therefore be considered to be approximately homo-
geneous, whereas that of the remaining stars is about
proportional to the velocity. I found it easier to take
a cylinder of R = 40 km/sec parallel to the ¢ axis,
instead of the sphere between the inner and outer
parts of the velocity space. As large ¢ velocities in this
cylinder do not occur, the homogeneity of the accura-
cy is not disturbed in it.

3. The counts. a. Stars of the inner cylinder (=
Region I); p > "*100. Here are 38 stars, after having

j P-e of p

rejected one star wit 1. The frequency

of relative velocities (p) derived as described above,
is given in Table I, column 2. Combined in groups
of 2, 3, 4, and 5 respectively, the square roots of the
totals are shown in Figs. a2, a3, a4, and a5. The
mean errors of the points are always nearly 1 in the

diagram, as /' NEVN~ VN + 3, if N> 2.

TABLE 1.

Counts of relative space velocities (g).

p a b ¢
km/sec
o o o o
I o 2 o
2 I 3 o
3 o ) o
4 o 4 )
5 2 12 4
6 I 9 I
7 I0 12 I
8 3 23 3
9 6 26 6
10 8 19 10
II 4 30 II
12 7 33 6
13 14 42 11
14 10 34 8
15 12 45 I1
16 9 45 16
17 14 59 23
18 14 58 16
19 13 48 15
20 13 59 7

It appears that the points actually approximate
to a straight line, and that a small “‘surface-tension
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effect” is present. If the abscissae of the points
are chosen as has been done in the diagrams, the
points of intersection of the line with the p axis
are in the four cases at

p = 0'37, 078, 1°25 and 165

respectively. (The limits of counting are o — 2% —
43— 6% ... .. , 0 — 3% — 63 — 9%, etc.) It at once
appears that no physical pairs are present among
the 38 stars; a more precise discussion will follow
later on.

b. Region 1, all stars within 15 parsecs (except the
rejected ones); 69 altogether. The frequency of
relative velocities is found in Table 1, column 3.
Combined in groups of 2, 3, and 4, the square roots
are given in Figs. b2, b3, and b4.

¢. Stars outside Region I, but inside a cylinder
with R = 100 km/sec (= Region II); all stars
within 15 parsecs. The frequency of the relative
velocities is given in Table 1, column 4. Combined
in groups of 4, 5, and 7, the square roots are given
in Figs. ¢4, ¢5, and ¢7.

4. Discussion of the results obtained under « to c.
From a glance at the diagrams it appears that all
three groups of stars, g, b, and ¢ show that the number
of physical pairs among them must be very small.
A determination of the accuracy of this result is of
interest especially in a study of the frequency curve
of the mutual distances (Problem 2, Leiden Annals,
Vol. X1V, g5). Dealing with small numbers, as we are,
the exact procedure, of obtaining both the most
probable value of the number of physical pairs and
its accuracy, is to derive the frequency distribution
of this value on the basis of the calculus of probabili-
ties. This is done in Note A to this paper in which
the required formulae are derived and applied to
the counts of Table 1. These formulae are entirely
general and also valid if the number of physical pairs
is large.

In this section we prefer to use a simple approxi-
mate formula. Define: n, as the number of physical?)
pairs present among the stars studied; N as the total
number of observed pairs in a certain interval of
relative velocity; #n, as the mean number of acciden-
tal ') combinations in the same interval; and f as
the fraction of the total number of physical pairs to
be expected in this interval.

1) Physical pairs are thought to be of common origin, like
members of a binary system or of a moving cluster. We may
expect the relative velocities to be less than 1 km/sec or
1'02 parsecs in 108 years, because their ages must be much
higher than 108 years. Accidental pairs, on the contrary, happen
to possess nearly the same space velocity and their number
is determined by the laws of chance.
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FIGURE 1.
N is counted from Table 1; 7, read from the dia- TABLE 2.
grams; f is computed from the mean probable error
¢ of one component of a space velocity, of which N 7 f n, + m.e.
an estimate is given in Note C for all three groups of
stars mentioned under a, 4, and ¢. In Note B a table
is constructed from which f may be taken as soon as ay 1 04 059 + 10 410
¢ is known. as 1 1'0 087 oo 4+ 12
Since from the diagrams it is probable that 44 . Ig 0:976 - o:g + '3
Jfn, << m,, we may suppose the deviations of N from % 3 3 ©'997 — 06 £ 19
its mfaan v:allue for a certain interval to be given by b, 5 17 0242 + 136 -+ 54
the dlsPer31on, + 1/ 7.. For n, we may then use the by 5 5 07488 oo 4 45
approximate formula by 9 9 0717 o0 4+ 42
S(n £me)=NLtyn—n,. (1) | o 6 77 0686 | — 25 4+ 40
In.Table 2 the values of N, n, and f are given for W ce th — . bout i .
those combinations of counts that seem to promise }? n;)tlceht a; ‘{l”‘ .1ncreas1es about in proportion
the most accurate determination of 7z, for the three toht € engt of t ellntler\;a s used in i(lh € i{)unts,
groups of stars, a, b, ¢. In the last column, the cor- I’V creas S mlzreazes S'le Y, 0; very Sn;{a anb very
responding values of 7, and their mean errors are zlllr.gc. interva fan (}ulc }{ln etwt;:ler,i: bf menrlll ernﬁg
given, as computed by formula (1) 1). this it is seen from formula (1) and Table 7 t at the
result must be that n, is most accurately determined
1) The exact procedure is much more complicated, see if f 15. al?out o8.. i .
Note A. This is confirmed by inspection of Table 2. For
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instance, the result obtained from b, has no value
on account of the small value of f.

As the result of Table 2 we may take for the
number of physical pairs belonging to groups a, b,
and ¢: o 4 12, 0 4+ 4, and — 2 4 4 respectively;
or, in percentages of the numbers of stars used:
o0 4+ 32, 0 4+ 6 and — 3 4 6 respectively.

5. It has been stated in section 1 that the know-
ledge of the number of wide pairs is of importance
in constructing the frequency curve of the separations
of the binaries in a volume of space. A provisional
determination of this curve will be published later.

Since this frequency curve probably depends on
the absolute magnitude of the stars considered, we
derive the curve for stars brighter than 6M'5 (ab-

-solute; p = o”'1), for which our present knowledge

on duplicity is most complete. Furthermore, since
stars with very faint companions are not completely
known, it is appropriate to set an upper limit to Am,
the difference between the magnitudes of the two
components. We take for this limit Am = 40, which

..om .
corresponds to a mass proportion ﬁ of approxi-
1

matél 2 .
7y

Accordingly, we adopt M = 6°44 for the limit of the
total brightness of the two members of a physical
pair and Am = 4o for their difference in magnitude.
Furthermore, it is necessary to make an assumption
as to the relation of the magnitudes of the components
of these wide physical pairs. For simplicity we suppose
the relation to be the same as that of arbitrarily com-
bined pairs of single stars in space. Probably this as-
sumption is extreme and the relation will be closer.

Consider a physical pair of which the brighter
component has an absolute magnitude M. Define
as Ny the number of stars between M — L and M + 1
in the volume of space investigated. Further, we
define Sy as the number of stars between M and
M + 40 contained in the same volume. According
to the above assumption about the relation between
the magnitudes of a physical pair, the number of
such pairs is proportional to NxSas: say ¢ NppSar. Then,
the number of physical pairs with M < 65 and Am
< 40 equals ¢ (2N Sy + 4), in which the sum has
to include all M values brighter than 6°5; ¢A is the
number of pairs with a total brightness exceeding
6M'5 and with both components fainter than 6M-4.
Ny and Sy were taken from VAN RHIN’s luminosity
function in Gron. Publ. 38, Fig. 1, for each half
magnitude, the last one being + 6M-2.

This number may be contrasted with the number
actually found, which equals n, = }cH H;; H is the
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number of stars in the sphere investigated that is con-
tained in our list, and H, the fraction of H between
the selected limits of spatial velocity. Elimination of
¢ gives the desired “standard” number, with the
limits M < 6'5 and Am < 4°0:

+6
(S NuSu+ A) 1| sHH, — Fr,.
If we divide this quantity by the number of stars

+ 62
brighter than 6M5 in the same sphere, being 2 Ny,

we find the “standard” fraction.

Resulis. Group a (see sections 3 and 4). Volume
of the sphere 4190 cubic parsecs. Numerator of F:

+6'2
2520; H= %9, H,; = 38,hence F=1'66; 2 Ny = 404,

therefore the “standard” fraction of ;hysical pairs
i;o?g (0’0 + 1°2) = 0’00 4 0'05 (m.e.). Using the
result of the more exact derivation in Note A, which
makes the quantity always positive, we have for the
standard fraction + o‘o5 4+ o003 (p.e.) %).

For group & the corresponding figures are o-oo
4+ 0°16 (m.e.) and + o0'13 + 0'08 (p.e.). For group ¢
they are — 0’09 + 018 (m.e.) and + 0’09 4 0'06°

(p-e.).

6. It is interesting to compare the relative merits
of the 3 groups of stars for our purpose, in order to
see whether something may be gained by another
subdivision of the material, and what may be ex-
pected from additional observations. The advantages
of group a are the small value of ¢ and the relatively
great completeness of the stars in the sphere (the
influence of the completeness is quadratic). Dis-
advantages are the small number of stars and the
great density in the velocity space. Group & has a
somewhat larger ¢, is much less complete, and has
a great density in the velocity space. On the other
hand, the number of stars is larger; this, however,
appears to be insignificant in comparison with the
disadvantages. We come to the remarkable con-
clusion that the addition of the stars between 10 and 15
parsecs does not improve, but rather lessens the value of the
result.

In group ¢ we have a still larger value of ¢, the in-
completeness is the same as for group &, the density
is much less, the number of stars about the same. The
smaller density approximately counterbalances the
larger value of .

1) We prefer to retain the p.e. in this case, since this is the
quantity derived in Note A and since the dispersion is not
nearly gaussian.
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On the basis of these conclusions it seems appro-
priate to discard the stars beyond 10 parsecs entirely
and to take all velocities below 100 km/sec together.

Group d. (Conclusion); p > 0"'100; velocity rela-
tive to Sun < 100 km/sec; 7o stars in all. The counts
of the relative velocities are given in Table 3. Com-
bined in groups of 3,4 and 5 the results are shown
in Figs. d3, d4 and d5.

TaBLE 3.
P N | p | N | o | N
km/sec km/sec km/sec
o o i 10 14 I1
I o 8 3 15 12
2 I 9 7 16 9
3 o 10 8 17 16
4 o 11 6 18 15
5 3 12 7 19 15
6 2 13 14 20 13

Table 4 corresponds to Table 2 in giving the num-
ber of physical pairs derived by means of formula (1)
from the quantities N, 7, and /- As the result of the
n, values in Table 4 we adopt o'o + 1°6 (m.e.) as
the best determination. In Note A we find + 1°2
+ 09 (p.e.) for the same stars. These values make the
“standard” fraction of physical pairs o'0o + 0036
(m.e.) or + 0'027 4- 0020 (p.e.) 1).

TABLE 4.
N 7 f n, -+ m.e.
d, I 1’0 0639 oo 4 16
d, I 2°3 0849 | —20 -+ 18
dy 40 0'952 00 -4 2°1

7. One point remains to be considered: the se-
parations in the pairs for which this result is valid.
Pairs wider than 20 parsecs are not included among
those stars, for which p > o”'100. If s is the spatial
distance between the components of a physical pair
expressed in terms of the diameter of the sphere in-
vestigated (i.e. 20 parsecs in our case), and N is the
density of such pairs, V the volume of the sphere,
we have for the number of pairs included with both
components in the sphere: NV <1 -+ %> (1—s)2
If R is the distance between the two components in
astronomical units, for log R = 6°25 the coefficient

1) TIbid. The preference of one of these values over the other
is a matter of taste. The determination gives a frequency curve
with the maximum at o but no negative values.

B. A. N. 263.

of NVis 0'395. For log R = 600, it is 0°646; for log R
= 5'75 it is 0'8co. The effective upper limit may be
considered to be about log R = 6°05, corresponding
to 5% parsecs.

The lower limit is the separation of the widest
binaries, since, in this paper, the binaries have been
treated as single objects. The widest binary in the

-sphere of 10 parsecs is « with Proxima Centauri,

for which log D = 401 (D is the projection of R on
the sphere). In this binary, however, Am < 4'0 and
for the next widest pair, ¢ Ret, log D = 3°5 1).

It appears that the interval in log R covered by
the present investigation is about 2. Accordingly, the
fraction, per unit interval in log R, of all stars brighter
than 6M'5 (absolute, p = o”1) that is double with
Am << 4'0is 0’00 4 0018 (m.e.) or 4 0’014 4 o'010
(p.e.) 2), valid for 4 < log R < 6.

For the same reason that made it desirable to take ’
in this investigation 10 parsecs as an upper distance
limit rather than 13, it is not very feasible to extend
this search to still wider pairs. Future improvement in
the determination of the number of wide physical
pairs will mainly depend on the following items:

1. Increase in the completeness of the known stars
up to distances of 15 or 20 parsecs (the effect on the
accuracy is quadratic).

2. Increase in the accuracy of the trigonometric
parallaxes for these stars by repeated measurement.

3. Determination of the radial velocities of these
stars within 1 or 2 km/sec, if possible.

NOTES.

Note A. We suppose that in a certain interval
of relative velocity (for instance from o to 3} km /sec)
anumber N pairs of stars (physical and accidental com-
binations) have been observed; further, that we know
the probable error of a velocity component for the
stars considered, so that it immediately follows how
large a fraction of the number of physical pairs,
present in the material studied, may be expected to
be included in the number N; we call this fraction f.
The stars studied form an arbitrary sample (of
number M) of the stars in general; the number of
physical pairs present in this sample will, as a rule,
not be equal to the mean of the numbers of all
possible samples, which mean, however, we desire

1) In the sphere of 15 parsecs the widest known physical
pair is 26 Dra AB, C for which log D = 4'04. There is a remote
possibility that Co.D. — 42° 5678 (gh4ym'1 — 43°1’; 1900)
is connected with LuvyTeN 268a, H.C. 283, which is 11550”
distant. If the connection is real, log D = 5'10. The reality,
however, is very doubtful and, moreover, the star is not con-
tained in our list of stars with known space velocities.

2) See note under previous column.
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to know. We call this mean number of physical pairs
(per M stars): n,; the chance to have n, physical
pairs among the M stars investigated is then:

@, _;

— —r 1
¢ = n)p!'e >0

—~

We consider this also to be the chance that fz,
physical pairs among the M stars fall into the first
interval of relative velocity; we have thereby neg-
lected the fluctuation of f by chance and taken its
mean value, derived in Note B.

The number of accidental combinations among the
N pairs found in the first interval is N — fn,; the
probability that this number occurs is:

AN

(N—fm)! '
where 7, is the mean number of accidental pairs, which
is accurately known from Fig. 1. The chance to have
Jn, physical pairs and N— fn, accidental ones is the
product CC’; and to find the total number N (in the
supposition that, in the mean, n, physical pairs are
present among M stars): z = 2 C(’; the summation
to be extended over all integral values of fn, < N.
Now = gives the relative probability that n, is the
actual mean number of physical pairs included
among M stars 2).

The analysis in the preceding Note is due to a
conversation with Dr. J. H. Oorr.

With the above formulae the frequency curves of
n, were derived for all 4 groups of stars; for the groups
a and d the details are given below. The required
values of N, n, and f are taken from Tables 2 and 4.

Group a; a,. The sum » = 2 CC’ consists of two

1) This is easily derived by considering the problem in
one dimension: If m points (m very large) are thrown on a
line of unit length, and the interval of the line investigated
has a length s (s very small), the mean number of points falling
in the interval s is sm = p. The chance that no single point
drops into the interval is (1—s)m; one point: ms (1—s)m—1;

¥4 —_
p points (%:) s? (1-s)™?, which approaches ;—' e~ for

m— o, and s— o (i is kept constant).

2) In the summation for » the quantity fnp takes all integral
values from o to N; therefore, the computation of C’ presents
no difficulties. However, in general f is an arbitrary real
fraction and hence np a fractional number; this is not illogical
since np depends on the choice of M. From the derivation of
x it is clear that we want in this case an interpolatory value
of C, which is found if we have such a value for n,!, the only
discontinuous function in C. We shall use for this: n! = I' (n - 1).
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terms, corresponding to f7, = o and 1. We find:
v — <0.4 + —n;rv >e_ (04 -|-_73,) ’
(r7)!
where 0'4 = 7, and 17 = I,
4 7 7

Dividing » by

[« @ = (orr F22) s,

we find for the normalized frequency curve:

o4 -

£ = (0286 + 0'462 B,YT) e

1

This curve is given in Table 5, column 2.

In the same way the columns for a;, a, and a,
were derived. The sum » consists of 2, 2 and 4 terms
respectively in these cases.

TaBLE 3.

Frequency curves of 7,.

- a, as a, a;
~ .

"] o2t | o3p | o4b | osi
I 286 ‘500 ‘630 ‘412
I 275 359 367 316
2 ‘242 ‘210 186 ‘210
3 ‘1603 ‘109 ‘088 ‘127
4 094 052 039 071
5 ‘050 ‘024 ‘017 ‘038
6 ‘025 "0II . ‘007 ‘019

It is evident from Table 5 that group g, i.e. the
interval o—4% km/sec, gives the sharpest determin-
ation of n,. This, however, is partly accidental as is
seen by comparison with the approximate determin-
ation in section 4, Table 2; there a negative number
is found for group a,. Accordingly, to avoid a
spurious accuracy we shall use a,.

Since no negative values for n, are possible, the
probable or median value is always positive. As the
probable error of the median value of n, we may take
half the interval that includes from I to 2 of the
area enclosed by the frequency curve. In this way
we find 7, = + 12 4 0'8.

Group d. The frequency curves of n, as derived
from d,, d, and d; are given in Table 6. The interval
0—4% km/sec seems the best suited to determine n,,
but inspection of Table 4 shows that this is partly
due to the fact that N < n,. The interval 031 gives
n, = 139 4 0°98; the interval o—4% : 7, = 0'98
4+ 0'75. We adopt 1°2 4 0'g (p.e.).
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TABLE 6.
m 0-3% o4} o-5%
o "500 697 451
% 377 497 382
I 316 359 318
2 ‘211 ‘180 '205
3 125 ‘085 ‘122
4 ‘067 ‘039 ‘068
5 033 or7 037

Note B. Consider a number of wide physical pairs,
which can be recognized only by their space veloc-
ities. In Note 1, p. 229, it is explained why the relative
velocities in such systems probably are negligible.
The relative observed velocities, however, will follow
a certain frequency curve, which is entirely deter-
mined by the probable error ¢ of one component
of an individual space velocity. (In this Note ¢ is
considered to be the same in all three components).
Considering ¢ to be known, the problem of this Note
is to find this frequency curve, which is needed for
the computation of f. (See Note A) 1).

Consider two observed velocities (taken relative
to the real motion of the pair), viz. ¢; and ¢; (¢, > ¢;) 2).
The relative observed velocity is

7= V24 2 —2¢; ¢y cOs T,

if & is the angle between ¢; and ¢,. We first determine
the frequency curve f; (r) of 7 if ¢; and ¢, are fixed,
and 7 is allowed to vary. The chance that 3 lies
between J and 5 + 45 is § sin & d3; expressing ¥ in
7, ¢; and ¢,, we find:

Si(r) dr =

valid for ¢, —¢; <7 < ¢y 4 ¢;. (f; (r) = o outside
these limits).

The next step is to allow ¢, to vary from o to «2).
The frequency of ¢, being between ¢, and ¢, + d ¢, is
k3 . .
{i/f c2e— 9 g, Multiplying f;(r) by this

™
frequency and integrating with respect to ¢, 3), we
find the frequency curve f, (r) of the possible relative
velocities with one fixed velocity, ¢,. Repeating the

rdr

2¢; ¢’

1) The formulae in the textbooks on the Kinetic Theory
of Gases give the mean relative observed velocity, expressed
in the value of . However, we need the whole frequency
curve.

2) Therefore, ¢; and ¢y are the errors of observation.

3) This has to be done in two steps: from ¢ to 0, so that
¢1 > ¢g; and from o to ¢, in this case interchanging the roles
of ¢; and ¢,
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multiplication and integration for ¢;, we find the
general frequency curve F (r) for r:

h2 3

2 dr.

F(r)ydr = R ]/3 ¢
T

Expressing the modulus % in terms of the probable
error ¢ by the relation 4 ¢ = 0747694, we find for
the frequency curve of the relative observed ve-
locities:

F(V,)dV, = 0'0864<V'>2 PR <%>2d (9 _

e

We want the quantity

™|

p= [ ar — [ (8L

in which a represents the interval of relative observed
velocity studied. From the last integral it appears

that f may be tabulated as a function of g 1), as has

been done in the following Table 7:

TABLE 7.

a a a
A NN
0’5 ‘004 | 35 | 575 | 65 | 978
10 ‘027 40 ‘698 7°0 ‘989
5 | 085 | 45 | 798 |75 (995
20 178 50 ‘873 80 ‘998
2’5 301 |55 | 925 | 85 | 999
30 ‘438 6'0 ‘958 9'0 | 1°000

Note C. The purpose of this Note is: 1. To obtain
an approximate value of the mean p.e. of a radial
velocity used in our list of space velocities. 2. To
estimate the mean p.e. of one component of a space
velocity (e).

1. The radial velocities of the stars.in our list
between of and 4* R. A., obtained by different ob-
servers, were compared after the systematic correc-
tions given in Lick Publications, 16, p. XXXI had
been applied. The probable errors as derived from
the internal agreement between the measures by one
observatory were compared with those derived by
intercomparing the mean values obtained at different
institutions. In this way it was found that the former

1) This was anticipated, of course.
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p-e. had to be multiplied by about 1'2 in order to
represent the true accuracy 1).

For the mean corrected p.e. of the radial velocity
for 15 stars with p > 0”100, 4 056 km/sec was
found. For 12 stars with p < o”'100 (fainter, on the
average), it was 4 1'1 km/sec; for the mean of all
these 27 stars, 4- 0'8 km/sec. These figures have been
used for all the stars in our list, except that the first
p.e. has been changed to + 06 km/sec.

2. We shall estimate the mean p.e. ¢ of one com-
ponent of a space velocity in two ways:

a. Consider the X component (X;) of the velocity
of a star relative to the Sun. X, partly originates from
the radial, partly from the transverse velocity; as both
are arbitrarily distributed with respect to the X axis
(taking all the stars in our list together), half the
error of the radial velocity and half the error of the
transverse velocity contribute to the error in X, 2).
For the first contribution we have (group a; section 3):
3 X (4 06 km/sec) = 4 o0'3 km/sec. The mean
space velocity in Region I (section 3) is about
30 km/sec relative to the Sun; the mean transverse
velocity, therefore, 30. ©/4 = 24 km/sec. The mean

Eﬁ.;ﬁ for group a is 0'053; hence the mean p.e. of

a transverse velocity 4+ 0°053 X 24 = 4 1°2 km/sec.
The second contribution of errors on the X axis,
therefore, amounts to 4 o'6 km/sec. If we neglect
the criticism of Note 2 and the influence of the non-
gaussian form of the two error curves, the mean p.e.
of the X component is about 4+ o7 km/sec.

b. Somewhat better is the following computation.
Take for a small area of the sky the Z axis along the
line of sight; then &, = o0°6 km/sec. For the parallax
stars considered, er of the transverse velocity will
be mainly determined by ¢, of the parallax, the

1) This factor is about the same as that for trigonometric
parallaxes.

2) This simple reasoning neglects the fact that for every
individual star the radial and the transverse velocity are not
independent in their orientation to the X axis.

LEIDEN 235

relation being e = 474 % ¢ (# = proper motion,

p = parallax, both in seconds; ¢, = p.e. of the
parallax, in seconds). We may assume that the errors
in the parallaxes used are fairly well represented by a

gaussian error curve, with a p.e. = &,. But we can
hardly expect that the errors in the transverse veloc-
ities are gaussian, with a p.e. = &, found from

4774 <%> ¢,. However, it probably is an approximation
close enough for our purpose. We find: ¢, = 0" 0072;

<%> = 32;,2; e = 1'1 km/sec.

1
From this we find for &, and s,: ‘—/ef: = 0'8 km/sec,
2

neglecting a new source that makes the distribution
of the errors non-gaussian, viz. the effect of the
various position angles of the transverse velocity,
which makes the frequency curve of the errors in
the X and Y coordinates the superposition of a great
number of frequency curves (one for every position
angle), all with a different dispersion. For ¢ we may
take the average of ¢,, ¢, and ¢, because the parallax
stars considered are distributed over the whole sky
and so the Z axis takes all different directions. Hence
¢ ={1/3 (0'6 4+ 0'8 + 0'8) = 07 km/sec, agreeing
with the value found under a.

For the three other groups (4, ¢, d) of stars we find,
following the second method of computation, the
values of &, & and ¢ given in the accompanying
table.

Group A & €
; km/sec km/sec
0'0072 161 I'I
¢ 070066 1) 3°46 19
d 00070 | I'70 093

1) These stars with large proper motion have been measured
more frequently for parallax, which reduces ¢p.
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