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l Introduction

The quantum Hall effect (QHE) is the phenomenon that the Hall conductance GH is
quantized in units of e2/h, äs expressed by the formula

G-?T ω
(p and q being mutually prime integers). The integer QHE (q = 1) was discovered
10 years ago by von Klitzing, Dorda, and Pepper [1] in the two-dimensional electron
gas (2DEG) confined to a Si Inversion layer. The fractional QHE (q > l and odd)
was first observed by Tsui, Stornier, and Gossard [2] in the 2DEG at the interface
of a Ala;Ga1_ ;j.As/GaAs heterostructure. Microscopically the two effects are entirely
different. The integer QHE, on the one hand, can be explained satisfactorily in terms
of the states of non-interacting electrons in a magnetic field (the Landau levels). The
fractional QHE, on the other hand, exists only because of electron-electron interactions
[3]. Phenomenologically, however, the integer and fractional QHE are quite similar. In
an unbounded 2 DEG this similarity is understood from Laughlin's general argument [4]
that: (1) The Hall conductance shows a plateau äs a function of magnetic field (or Fermi
energy) whenever the quasi-particle excitations in the bulk of the 2 DEG are localized by
disorder; and that: (2) The value of GH on the plateau is precisely an integer multiple p
of ee*/h, where e* = e/q is the quasi-particle charge. (The product ee* appears because
one e is needed to change the unit of conductance from Amperes per electron Volts to
Amperes per Volts). Theory and experiment on the QHE in an unbounded 2 DEG have
been reviewed in the books by Prange and Girvin [5] and by Chakraborty and Pietiläinen
[6] (see also the article by MacDonald in the present volume).

In the past few years, a variety of experiments have uncovered a novel phenomenol-
ogy of the QHE on short length scales. For example, in small sub-micron-size samples
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the QHE can occur in the absence of disorder [7,8] and can show deviations from precise
quantization [9]. An anomalous quantization of the Hall conductance has been observed
[10] in samples which are large but which contain a pair of closely spaced current and
voltage contacts: quantization of GH then occurs at multiples of e2//* determined by the
properties of the contacts, rather than of the bulk 2DEG. Indeed, it has becn possible
in such an experiment to measure the fractional QHE in a 2 DEG which by conventional
measurements shows the integer effect [11].

These anomalies are not easily understood within the conventional description of
the QIIE, which determines the quantized value of GH from the charge of a quasi-particle
excitation localizcd in the bulk of the 2 DEG. One necds a description which can be
applied to small samples without disorder and which explicitly includes the properties of
the current and voltage contacts. For the integer QIIE the Landauer-Büttiker formalism
provides such a description [12]. A central conccpt in this formulation is the concept of an
edge channel, which is the collection of statcs at the Fermi energy within a given Landau
level. These states are extended along the cdges of the 2 DEG whencver the Fermi level
lies between two Landau levels in the bulk. Many of the anomalies in the integer QIIE
can be understood äs resulting from the absence of local equilibrium at the edge, which
in turn is a consequence of the reduction of scattering between edge channels in a strong
magnetic field [10,13,14]. On short length scales the electron transport becomes fully
adiabaiic, i.e. without inter-edge channel scattering. Edge channels in the integer QIIE
are defined in one-to-one correspondence with bulk Landau levels. This singlc-electron
description is not applicable to the fractional QHE, which is fundamentally a many-body
effect. In this article we review recent work towards a generalization of the concept of
adiabatic transport in edge channels, with the aim of providing a unified description of
anomalies in the integer and fractional QIIE.

We first summarize, in section 2, the Landauer-Büttiker formalism for the integer
QHE. Our generalization [15] to the fractional QHE is described in section 3 and applied
to experiments in section 4. Two open problems are addressed in section 5. One is
the question: "What charge does the resistance measure?" The other refers to an alter-
native generalized Landauer formula proposed by MacDonald [16]. We will argue t hat
the appearance of both "electron" and "hole" channels in this formula implies a novel
limitation to the accuracy of the fractional QHE. Much of the matcrial in the prcsent
article is bascd on a review with a wider scope written in collaboration with H. van
Ilouten [17].

2 Integer Edge Channels

The Landauer-Büttiker formalism [18,19] is a linear rcsponse formalism which expresses
the conductance (a non-equilibrium property) in terms of an equilibrium Fermi level
property of the conductor. That property consists of a rational function of transmission
probabilities between current and voltage contacts of propagating modcs with the Fermi
energy. In a strong magnetic field in the QHE regime the propagating modes are extended
along the edges of the conductor, because all Fermi level states in the bulk are localized.
The Landauer-Büttiker formalism thus describes the integer QHE in terms of properties
of edge states. We review this description in the present section.

We restrict the discussion to the case of a smoothly varying potential energy land-
scape V ( x , y ) in the 2 DEG. The smoothness criterion is that V should vary by less
than the Landau level Separation Äo;c Ξ TieB/m over a magnetic length lm = (h
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(which plays the role of the wavelength in a strong magnetic field B). In such a smooth
Potential the quantizcd cyclotron motion energy (n — i) Ηω€ (being the eneigy of the
n-tii Landau level, n = l, 2, . . .) is a constant of the motion. The total energy Ep of an
elcctron at the Fermi level is the sum of this Landau level energy and the energy EG
from the electrostatic potential,

EG = EF - n - Ηω0. (2)

(The spin-splitting of the Landau levels by the Zeeman energy is ignored here, for sim-
plicity.) The constancy of the Landau level index n for smooth V implies that the motion
of the electron is along the equipotential V ( x , y ) = EG- Classically, the center of the
cyclotron orbit is guided along equipotcntials by the combined effccts of the Coulomb
and Lorentz forces. Ilence the name guiding center energy for EG- The drift velocity
vdn/f °f the orbit center (known äs the guiding center drift) follows by balancing the
Coulomb and Lorentz forces,

vdrt/< = W χ B. (3)

The wavefunctions of states at the Fermi level have an appreciable amplitude within
lm of the cquipotentials at EG· One can distinguish between extended states near the
sample boundaries, and locahzed states encircling potential maxima and minima in the
bulk, äs illustrated in Fig. 1. The extended states with the same Landau level index n
are referrcd to collcctively äs the n— th cdge channel. The cdge channel with the smallest
index n is closest to the sample boundary, becausc it has the largest EG (cq. (2)). This
is sccn more clcarly in a cross-sectional plot of V(x,y) (Fig. 2). Notice that if the peaks
and dips of the potential in the bulk have amplitudes below 1ιω0/2, then only states with
the highest Landau level index can exist in the bulk at the Fermi level.

The simplicity of the guiding center drift along equipotentials has becn originally
used in the percolation theory [20-22] of the QIIE, soon after its expeiimental discovery
[1]. In this theory the existence of edge states is ignored, and the Hall resistance is
expressed in terms of properties of extended states in the bulk of the sample. Since
in equilibiium all Fermi level states in the bulk are localized in gcneral, the percolation
theory requircs for its applicability a thrcshold elcctric ficld to create extended bulk states
(it is thus not a linear response theory). A description of the QIIE based on extended edge
states and localized bulk states, äs in Fig. l, was first put forward by Halpcrin [23], and
further developed by several authors [12,24-27]. With the exception of Büttiker [12], these
authors assume local equilibrium at the edge. In the presence of a chemical potential
difference δμ between the edgcs, each edge channel can be shown to carry a currcnt
(ε/Ιι)δμ, and thus to contribute e2 /h lo the Hall conductance. The equipartitionmg of
currcnt among the cdge channels is characteristic for a local equilibrium. The total
number of cdge channels N at the Fermi level is cqual to the number of bulk Landau
levels below the Fermi level (because of the one-to-one correspondence between edge
channels and bulk Landau levels). In this casc of local equilibrium one thus has the
usual integer QHE, RH = h/Ne2, with RH = l/G/ί the Hall resistance (we disregard for
convenience of notation the two-fold spin degcncracy of each Landau level).

The Hall resistance RH is a four-terminal resistance, meaning that the voltage
contacts are distinct from the contacts through which the current is passed. For the two-
terminal resistance R^t the voltage is measurcd between the current-carrying contacts. In
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Figure 1. Mcasurcment configuration for the two-tcrminal rcsistance R2t, the four-
tcrminal Hall rcsistance /?//, and the longitudinal rcsistance /?£,. The edge channels
at the Fcrmi levcl arc indicated, arrows point in the dircction of motion of edgc channels
filled by the source contact at chemical potcntial Er + δμ. The current is cquiparti-
tioned among the edge channels at the uppcr cdge, corresponding to the casc of local
equilibrium (from Ref. [17]).

v.
n = 3

Figure 2. Cross-scction of the elcctrostatic potcntial
V(x, y), along a line perpcndicular to the Hall bar in Fig. 1.
The location of the statcs at the Fcrmi level is indicalccl by
dots and crosscs (depending on the dircction of molion).
The value of EG for cach n is indicated by the clashcd line
(from Ref. [17]).

the case of local equil ibrium thcsc t wo resistanccs arc the same, T?// = R2t — h / N e 2 , sec
Fig. 1. One can also read off from Fig. l that the (four-tcrminal) longitudinal rosistance
RL vanishes, RL — 0. The distinction bctwecn a longitudinal and Hall rcsistance is
topological: A four-terminal resistance mcasuremcnt gives RU if current and voltage
contacts alternate along the boundary of the conductor, and RL if that is not the case.
There is no need to für t her characterize the contacts in the case of local equilibrium at
the edge.

If the edges arc not in local equilibrium, the mcasurcd resistance depends on the
properties of the contacts. Büttikcr h äs dcvcloped the formalism [12] to trcat anomalies
in the integer QIIE due to the absence of local equilibrium, when mcasured with non-
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ideal contacts. To illustrate this formalism we consider, following [17], a Situation in
which the edge channcls at the lower edge are in cquilibrium at chemical potcntial Ep·,
while the edge channels at the uppcr edge are not in local equilibrium. The currcnt
at the upper edge is then not equipartitioned among the Af edge channels. Let /„ be
the fraction of the total current / which is carriccl by states above EF in the ?i-th edge
channel at the upper edge, /„ = /„/. The voltage contact at the lowcr edge measures
a chemical potential Ep, regardless of its properties. The voltage contact at the upper
edge, however, will mcasure a chemical potential which dcpends on how it couples to
each of the edge channels. The transrnission probability Tn is the fraction of In which
is Iransmitted through the voltage probe to a rcservoir at chemical potential EF + δμ.
The incoming current

7V N

Λ»1' with

has to be balanced by an outgoing current

N

I0ut = γδμ 2_^ Tn (5)
71=1

of equal magnitude, so that the voltage probe clraws no nct current. (In eq. (5) we
have applied a sum rule to identify the total transmission probabilitics of outgoing and
incoming edge channcls, see [17].) The requirement Im = Iout determines δμ and hence
the Hall resistance _ß// — δμ/cl,

(6)

The Hall resistance has its regulär quantized valuc RJJ = h/Ne2 only if eithcr /„ = l/N
orTn = l, for n = 1 ,2 , . . . 7V. The first case corresponds to local equilibrium (the currcnt
is equipartitioned among the edge channcls), the sccond case to an ideal contact (all edge
channcls are fully Iransmitted).

A non-equilibrium population of the edge channcls is gcnerally the rcsult of se-
lective backscattering. Because edge channels at opposite edgcs of the sample move in
opposite directions, backscattering requires scattcring from one edge to the othcr. Se-
lective backscattering of edge channels with n > «o is induccd by a potential barrier
across the sample, if its hcight is bctwcen the guiding centcr cnergies of edge channel
n0 and n0 — l (recall that the edge channel with a largcr indcx n has a smaller value
of EG)· Selective backscattering can also occur naturally in the abscnce of an imposcd
potential barrier. The edge channel with the highest indcx n = N is sclcctivcly backscat-
tcred when the Fermi level approaches the cnergy (7V — |) 1ιω0 of the 7V-th bulk Landau
levcl. The guiding center cnergy of the N-th edge channel thcn approaches zcro, and
backscattering eithcr by tunneling or by thcrmally activatcd processes becomes effcctive
- but for that edge channel only, which remains almost complctcly dccoupled from the
other 7V — l edge channels over distances äs largc äs [13,28,29] 250 /tm (although on lhat
length scale the edge channcls with n < N — l have cquilibrated to a large cxtcnt [14]).

Wc conclude this section by emphasizing that the cdgc channel formulation of the
QHE by no means implies that the currcnt flows within a fcw magnctic lengths from
the edge. This assumption woukl bc untcnable experimentally, see [30]. The flow lines
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in Fig. l only show the location of the extcnded statcs at the equilibrium Fermi Icvel.
A determination of the spatial current distribution, rather than just the total current,
requires consideration of all the states below the Fermi level, which acquirc a net drift
velocity because of the Hall field. Within the ränge of validity of a linear response theory,
however, knowledge of the current distribution is not necessary to know the resistance
(see [17] for a further discussion of this point).

3 Fractional Edge Channels

In this section we show, following [15], how the concept of an edge channel can be gen-
eralizcd to the fractional QIIE, in the case of a smoothly varying clectrostatic potcntial.
This is the case of rclevance for experiments on adiabatic transport in the fractional
QHE, see section 4. Our result is phrased in terms of a generalized Landauer formula,
in which the edge channels contribute with a fractional weight. Hcnce the name "frac-
tional" edge channels. The different generalization of the Landauer formula proposcd by
MacDonald [16] is discussed in section 5.

Considcr first the equilibrium state of the System. If the clectrostatic potential
energy V(x,y) varies slowly in the 2DEG, Ihen the equilibrium density distribution
n(x,y) follows by requiring that the local electrochemical potential V(r) + du/'dn has
the same value μ at each point r in the 2 DEG. Here du/'dn is the chcmical potential of the
uniform 2 DEG with density n(r). It is a remarkable fact [3,5,6] that the inteinal energy
density u(n) of a uniform interacting 2 DEG in a strong magnetic field has downward
cusps at densities n = vpBe/h corresponding to certain fractional filling factors vf. The
chemical potential au/dn thus has a discontinuity (an energy gap) at v = vp, with
dup jdn and du~/dn the two limiting valucs äs v —» vp. The size of the gap is the
cyclotron energy Τιω0 when i>p is an integer, and of the order of the Coulomb energy
e2/e/m when vp is a fraction (ε is the dielectric constant). An ordcr of magnitude for
the energy gap is lOmeV at B = 6 T. As notcd by Ilalperin [31], when μ — V lies in the
energy gap the filling factor is pinned at the value vp:

n = VpBe/h, if dup /dn < μ — V < du^/dn,

(i U
1- F(r) = μ, otherwise. (7)

Note that V(r) itself depends on n(r), and thus has to be determined selfconsistently
from eq. (7) taking the electrostatic screening in the 2 DEG into account. We do not
need to explicitly solve for n(r), but can idcntify the edge channels from the following
general considerations [15].

At the edge of the 2 DEG the electron density decreases from its bulk value to
zcro. Equation (7) implies that this decreasc is stepwise, äs illustrated in Fig. 3. The
requirement on the smoothness of V for the appearance of a well-defined region at the
edge in which v is pinned at the fractional value vp, is that the change in V within
the magnetic length lm is small compared to the energy gap dup/dn and dw~/dn .
This ensures that the width of this region is large compared to /m, which is a necessary
(and presumably sufficicnt) condition for the formation of the fractional QHE state.
Depending on the smoothness of V, one thus obtains a series of steps at v — i/p(p =
1,2,. . . P), äs one moves from the edge towards the bulk. The series terminates in the
filling factor vp = vt,uik of the bulk, assuming that in the bulk the chemical potential
μ —V lies in an energy gap. The regions of constant v at the edge form bands extending
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Channel 1

Channel 2

Channel 3

Figurc 3. Schematic drawing of the Variation in filling fac-
tor v, clectrostatic potential V, and chcmical potential
du/dn, at a sraooth boundary in a 2 DEG. The dashed line
in the bottom pancl denotes the constant electrochemical
potential μ = V + du/an. The dottcd intervals indicate
a discontinuity (energy gap) in du/dn, and correspond in
the top pancl lo regions of constant fractional filling fac-
tor z/p which spatially separate the edge channcls. The
width of the cdge channel regions shrinks to zcro in the
integer QHE, since the comprcssibility χ of these regions
is infinitely large in thal case (from Ref. [15]).

along the conductor. These incompressible bands (in which the compressibility χ =
(?i2d2u/d?i2) = 0) alternate with bands in which μ — V does not lie in an energy gap.
The latter cornpressible bands (in which χ > 0) may be identified äs the edge channels of
the transport problem, äs will be discussed below. To resolve a misunderstancling [32],
we note that the particular potential and density profilc illustrated in Fig. 3 (in which
the edge channels have a non-zcro width) assumes that the compressibility of the edge
channels is not infinitely large - but that the analysis givcn below is independcnt of this
assumption.

The conductancc is calculated by bringing onc end of the conductor in contact with
a reservoir at a slightly higher eleclrochcmical potential μ + Δ/ί. We are concerned with
the linear response current, so that the electrostatic potential landscape V(r) is kept at
its equilibrium form. The rcsulting change Δ?ι in elcctron density is

δη
Δη = —

δμ
Δ/t = —- (8)

where δ denotes a functional derivative. In the second equality in eq. (8) it has bcen uscd
that n is a functional of μ — V, by virtue of eq. (7). In a strong magnetic field, this excess
density moves along equipotentials with the guiding-center-drift velocity given by eq. (3).
The component Vfcijt °f the drift velocity in the ?y-direction (along the conductor) is

(9)
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Figure 4. Schematic drawing of the incompressible bands
(hatched) of fractional filling faclor i/p, altcrnating with
the edge channels (arrows indicate the direction of electron
motion in each channel). (a) a uniform conductor; (b)
a conductor containing a barrier of reduced filling factor
(from Ref. [15]).

The current density j — bccomcs simply

It follows from eq. (10) that the incompressible bands of constant v do not con-
tribute to j. The reservoir injects the current into the compressible bands at one edge
of the conductor only (for which the sign of dv / ' dx is such that j moves away from
the reservoir). The edge channel with index p = 1,2, . . . P is defined äs that compress-
ible band which is flanked by incompressible bands at filling factors vp and vp-\. The
outermost band from the center of the conductor, which is the p = l edge channel, is
included by defining formally v$ = 0. The arrangement of altcrnating edge channels
and compressible bands is illustrated in Fig. 4a. Note that different edges may have
a different series of edge channels at the same magnetic ficld value, dcpending on the
smoothness of the potential V at the edge (which, äs discussed above, determines the
incompressible bands that exist at the edge). This is in conlrast to the Situation in the
integer QHE, whcre a one-to-one correspondence cxists between edge channels and bulk
Landau levels (scction 2). In the fractional QHE an infinite hierarchy of cnergy gaps
exists, in principlc, corresponding to an infinite numbcr of possible edge channels - of
which only a small number (corresponding to the largest encrgy gaps) will be realized in
practice.

The current Ip = (ε/Λ)Δμ (yp — vp-i) injected into edge channel p by the reservoir
follows directly from eq. (10), on Integration over x. The total current / through the
conductor is / = J^ =1 IPTP, if a fraction Tp of the injected current Ip is transmitted to
the reservoir at the other end of the conductor (the remainder returning via the opposite
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edge). For the conductance G = 6//Δ/Ζ one thus obtains the generalized Landauer
formula for a two-terminal conductor [15]

G = j T p ^ p , (11)
p=l

which differs from the usual two-tcrminal Landauer formula [18] by the presence of the
fractional weight factors Δί/ρ = vp — VP-I. In the integer QHE, Δι>ρ = l for all p, so that
eq. (11) reduccs to the Landauer formula with unit weight factors.

A multi-terminal generalization of eq. (11) for a two-terminal conductor is easily
constructed, following Büttiker [19]:

Ia = -τναμα -γΣ Τοβμβ, (12)
n n

Ταβ = ΣτΡιαβΔνρ. (13)
p=l

Here Ia is the current in Icad a, connected to a reservoir at clcctrochemical potential /i„,
and with fractional filling factor va. Equation (13) defines the transmission probability
Taß from reservoir β to reservoir a (or the reflection probability, for a = /?), in terms
of a sum over the generalized edge channels in lead ß. The contribution from each edge
channel p = 1,2,. . . Pß contains the weight factor Δζ/ρ Ξ νρ — z>p_i, and the fraction Tp<aß
of the current injected by reservoir β into the p-th edge channel of lead β which reaches
reservoir a. Apart from the fractional weight factors, the structure of eqs. (12) and (13)
is the same äs that of the usual Büttiker formula [19].

Applying the generalized Landauer formula eq. (11) to the ideal conductor in
Fig. 4a, wherc Tp = l for all p, one finds the quantized two-terminal conductance

p=l

The four-terminal Hall conductance GH has the same value, because each edge is in local
equilibrium. In the presence of disorder this edge channel formulation of the fractional
QHE is generalized in an analogous way äs in the integer QHE, by including localized
states in the bulk. In a smoothly varying disorder potential these localized states take
the form of circulating edge channels, äs in Fig. 1. In this way the filling factor of the
bulk can locally deviate from vp without a change in the Hall conductance, leading to
the formation of a platcau in the magnetic field dependence of G//. In a narrow channel,
localized states are not required for a finite plateau width, because the edge channels
make it possible for the chemical potential to lie in an energy gap for a finite magnetic
field interval. The Hall conductance then remains quantized at Vp(e2/h) äs long äs μ — V
in the bulk lies between άιΐρ/dn and dup/dn.
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Figure 5. Two-terminal conductance of a constriction con-
taining a potential barrier, äs a function of t he voltage on
the split gate dcilning the constriction, at a fixed mag-
netic field of 7 T. The conductance is quantized according
to eq. (15) (from Ref. [33]).

4 Experiments

We now apply the generalized Landauer formula eq. (11) to some recent experiments on
adiabatic transport in the fractional QHE regime. Consider first a conductor containing
a potential barrier. The potential barrier corresponds to a region of reduced filling factor
vpmia Ξ j/nun separating two regions of filling factor ^pmax = fmax· The arrangement of
edge channels and incompressible bands is illustrated in Fig. 4b. We assume that the
potential barrier is sufficiently smooth that scattering between the edge channels at
opposite edges can be neglected. All transmission probabilities are then either zero or
one: Tp = l for l < p < P^ and Tp = 0 for P^n <p< Pmax. Equation (11) then teils
us that the two-terminal conductance is

e"
T (15)

In Fig. 5 we have reproduced experimental data by Kouwenhoven et al. [33] on the
fractionally quantized two-terminal conductance of a constriction containing a potential
barrier. The constriction (or point contact [29]) is defined by a split gate on top of a
GaAs-AlGaAs heterostructure. The conductance in Fig. 5 is shown for a fixed magnetic
field of 7 T äs a function of the gate voltage. Increasing the negative gate voltage increases
the barrier height, thereby reducing G below the Hall conductance corresponding to
fmax — l in the wide 2DEG. The curve in Fig. 5 shows plateaus corresponding to
Vmm = 1)2/3 and 1/3 in eq. (15). The 2/3 plateau is not exactly quantized, but is too
low by a few percent. The constriction width on this plateau is estimated [33] at W =
500 nm, which is a factor of 50 larger than the magnetic length at B — 7 T. It would
seem that scattering between fractional edge channels at opposite edges (necessary to
reduce the conductance below its quantized value) can only occur via states in the bulk
for this large ratio of W/lm.
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Timp et al. [34] havc measured thc four-terminal Hall conductance in a narrow cross
geometry (W = 90 nm). They find, in addition to quantized plateaus near 1/3, 2/5, and
2/3xe2//i, also a plateau-like feature around l /2xe 2 /h. (This evcn-denominator fraction
is special because it is not observcd äs a Hall plateau in a bulk 2 DEG). Notice, however,
that the 500 nm wide constriction of Fig. 5 has a conductance which is featureless at
e2/2/i. A narrower constriction (W = 150 nm) studied by Kouwenhoven et al. [33] shows
more fluctuations on the plateaus at 1/3 and 2/3 x e2//i, but no plateau-like feature at
1/2 X e2/h. The origin of the difference between these two expcriments[33,34] remains
to be undcrstood.

A four-terminal measurement of the fractional QIIE in a conductor containing a
potential barrier can be analyzcd by means of cqs. (12) and (13). The longitudinal
resistance RL of the barrier (measured by two adjacent voltage probes, one at each side
of the barrier) is given by

This result follows from eqs. (12) and (13) providcd either the edge channcls transmitted
across thc barrier have equilibralcd with the extra edge channcls available outside the
barrier region; or the voltage contacts are ideal, i.e. they have unit transmission proba-
bility for all fractional edge channcls. In the case of thc integer QIIE, eq. (16) (with v

integer) was derived some time ago by Van Honten et al. [35] and (indcpendently) by
Büttiker [12], and was found to be in agreement with experiments [35-37]. Chang and
Cunningham [38] have measured RL in the fractional QIIE, using a 1.5/.«m widc 2 DEG
channel with a gate across a segment of the channel. Contacts to the gated and ungated
regions allowed vmm and ;'max to be determined independcntly. Equation (16) was found

to hold to within 0.5% accuracy.
adiabatic transport in thc fractional QHE has been demonstrated [11] by the selec-

tive population and detcction of fractional edge channels, achievcd by means of barriers
in two closely separated current and voltage contacts. The geometry is illustrated in
Fig. 6a. It is essentially the same äs the geometry employed by Van Wees et al. [10]
for the sclective population and detection of Landau levels in the integer QHE. Fig. 6b
illustrates the arrangement of fraclional edge channels and incompressible bands for the

case that the chemical potential lies in an energy gap for the bulk 2 DEG (at v — ι-ναΟ,

äs well äs for the two barriers (at ;// and vy for the barrier in thc current and voltage
lead, respectively). Adiabatic transport is assumed over the barrier, äs well äs from bar-
rier / to barrier V (for thc magnetic field direction indicated in Fig. 6). Equation (12)
for this case reduces to

/,ι/νΟμ/) (17)

so that the Hall conductance GH = el/μγ becomcs

e2 e2

GH = j- max(z//, vv) < y «'buik- (18)

The quantized Hall plateaus are determined by the fractional filling factors of the current

and voltage leads, not of the bulk 2 DEG.
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Figure 6. (a) Schematic drawing of thc experimcntal gc-
omclry of Kouwenhovcn et al. [11]. The crossed squarcs
are contacts to the 2DEG. One currcnt lead and one volt-
age Icad conlain a barricr (shaded), of which Ihe hciglil
can be adjuslcd by mcans of a gate (not drawn). The cur-
rent / flows betwccn contacts l and 3, the voltage V is
mcasured bctween conlacts 2 and 4. (b) Arrangement of
incomprcssible bands (hatchcd) and cdge channcls ncar the
two barriers. In the absence of scattciing betwcen the t wo
fractional cdge channcls one would measurc a Hall conduc-
tancc GH = I/V which is fiactionally quantizcd at |xe 2//«,
although thc bulk has unit f i l l ing factoi (from Ref. [15]).

Kouwenhovcn et al. [11] have demonslratcd thc sclectivc population and detection
of fractional edgc channcls in a device with a 2 μτη Separation of thc gates in thc currcnt
and voltage leads. Thc gates cxtcndcd over a Icngth of 40 μτη along thc 2 DEG boundary.
In Fig. 7 wc reprocluce one of thcir cxpeiimcntal traccs. Thc Hall conductancc is shown
for a fixed magnetic field of 7.8 T äs a function of the gate voltage (all gates bcing at the
same voltage). As the banier heights in the iwo leads arc incrcascd, thc Hall conductance
dccrcases from the bulk value l χ e 2 / h to Ihc value | χ e 2 /h clctcrmincd by the leads - in
accord with eq. (18). A more gencral formula for GH valid also in betwcen thc quantizcd
plateaus is shown in [11] to be in quantitative agrecmcnt with the cxperiment.
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Figure 7. Anomalously quantizcd Hall concluctance in the
gcomctry of Fig. 6, in accord with cq. (18) (f'buik — l;'7/ —
Vy clccrcases from l to 2/3 äs Ihe negative gatc voltage is
increased). The temperaturc is 20niK. The rapidly rising
pari (dotted) is an artifact due to barrier pinch-ofT (from
Ref. [11]).

5 Open Problems

5.1 What Charge does the Resistance Measure?

The fractional quantization of the conductance in the cxpcriments discusscd above is
undcrstood äs a conscquence of the fractional weight factors in the gcncralizcd Landauer
formula cq. (11). These weight factors Δί/ρ = vp — ;/p_j arc not in gcncral equal to e*/e,
with e* the fractional charge of the quasi-particle cxcitations of Laughlin's incompressible
state. The reason for the absence of a onc-to-onc corrcspondcnce betwccn A f p and
e* is that the cclge channels themselves are not incorapressiblc [15], The transmission
probabilitics in eq. (11) rcfer to charged "gapless" excitations of the cdge channels, which
are not identical to the charge e* excitations abovc the cnergy gap in the incompressible
bands (the lattcr charge might be obtained from thermal activation mcasurements, see
[39]).

It is an interesting and (to date) unsolved problem to delermine the charge of
the cdge channcl excitations. Kivelson and Pokrovsky [40] havc suggested performing
tunncling expcrimcnts in the fractional QIIE regimc for such a purpose, by using the
charge depcndcnce of the magnetic length (Ti/eB)1/2 (which determines the penctration
of the wavc function in a tunnel barrier, and hencc the transmission probability through
the barrier). Altcrnativcly, one could use the h/e pcriodicity of thc Aharonov-Bohm
magnctorcsistancc oscillations äs a measure of thc cdge channcl charge. Simmons et al.
[41] find that the charactcristic field scale of quasi-pcriodic rcsistance fluctuations in a
2/tm wide Hall bar iucreases from 0.016 T ± 30% ncar v = 1,2,3,4 to 0.05 T ± 30% ncar
;/ = i This is suggestive of a reduction in charge from e to e/3, but not conclusivc since
thc arca for thc Aharonov-Bohm effcct is not wcll-cleflncd in a Hall bar.

5.2 Electron and Hole Channels

MacDonakl has, indcpcndently of [15], proposcd a clifferent generalizcd Landauer formula
for the fractional QIIE [16] in a smooth elertrostatic potent ial . Thc difference with
eq. (11) is that thc weight factors in MacDonald's formula can lake 011 both positive and
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negative values - corrcsponding to clectron and hole channcls, rcspectivcly. In the case of
local equilibrium at the edge, the sum of weight factors is such tliat the t wo formulations

give idcntical results. The results differ in the abscnce of local equilibrium, if fractional
edge channels are selectively populatcd and detectcd. For cxample, MacDonald predicts
Ά negative longitudinal resistance in a conductor at filling factor v = 2/3 containing a
segmcnt at v = f. Another implication of [16], äs we undcrstand it, is that the two-
terminal conductance G of a conductor at vmä.K — \ containing a potential barrier at
filling factor vmn is reduced to | X e2/h if i/mm = 1/3 (in accord with eq. (15)), but
remains at l X e2/h if νιτ^η = 2/3. That this is not observcd experimentally (see Fig. 5)
could be due to inter-cdge channel scattering, äs argued by MacDonald. The experimcnt
by Kouwenhoven et al. [11] (Fig. 7), howevcr, is apparently in the adiabatic regime,
and was interpreted in Fig. 6 in tcrms of an edge channel of weight 1/3 at the edge of
a conductor at v — l. In MacDonald's formulation, the conductor at v — l has only a
single edge channel of weight 1. This would have to be rcconciled with the experimental
observation of quantization of the Hall conductance at 2/3 x e2/h. What is needcd is
a theory which allows one to introduce edge channels not only for the case of a smooth
potential at the edge (considered in [15] and [16]), but also for an abrupt confincmcnt.
Such a theory exists for the integer QHE [23] but not yet for the fractional effect.

The presence of both positive and negative weights in a generalized Landauer for-
mula has an interesting implication for the accuracy of the fractional QIIE. As we clis-
cusscd in section 2 for the integer QHE, accurate quantization of the Hall resistance
requircs either a local equilibrium at the edge, or ideal contacts (i.e. contacls which fully
transmit all available edge channcls [12]). The rcduction of inler-cdge channel scattering
in strong magnetic fields leads to deviations from local equilibrium (i.e. the current is
not cquipartitioned among the cdgc channels). Ideal contacts then becomc nccessary
for accurate quantization. A contact is esscntially a region with a high clectron density
connected to the low-density elcctron gas, scc Fig. Sa. An ideal contact is rcalized by a
smooth increase in density in the contact region, so that the cclge channcls in the 2DEG
are transmitted adiabatically into the contact. The contact then induces a local equilib-
rium by redistributing the current among the edge channels. This is illustratcd in Fig. Sb
by means of arrows, which indicatc the current-carrying edge channels: One incoming
edge channel carries the current, whereas both outgoing cdgc channels are populatcd by
the contact. These considerations for the integer QHE carry ovcr complctely to the frac-
tional edge channels dcscribed in section 3. Ilowcvcr, if both clectron and hole channcls
are prcsent in the 2DEG, then the Situation is diiferent. A hole channel is reflected on
approaching a region with a smoothly increasing clectron density [16]. In other words, a
contact can not be "ideal" (i.e. fully transmitting) for both electron and hole channels.
As shown in Fig. 8c, the contact is then not able to redistributc the current among the
edge channels. The accuracy of the fractional QIIE would thus be limitcd by the ex-
tent to which inelastic scattering is cffective in establishing a local equilibrium betwecn
electron and hole channcls - rcgarclless of the idcality of the contacts. This conclusion
is of importance not only for adiabatic transport in the fractional QIIE, but for othcr
situations äs well in which coexisting electron and hole channels are believed to occur.
One example is the integer QHE in a periodic potential discussed by MacDonald in this
volume. Another is the integer QHE in parallely conducting clectron and hole gases,
present in certain semiconductor heterostructurcs.
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2DEG

hole
2DEG

Figure 8. (a) Schematic drawing of the botlom of Ihe con-
duction band Ec and the Fermi cncrgy Ep at the tran-
sition from a low-density to a high-density region in a
2DEG. (b,c) Top view of a 2DEG near a contact, mod-
eled by a high-density region (shaded) äs in (a). The con-
tact is ideal (i.e. fully transmitting) for electron channels
(b), but not for hole channels (c). The arrows indicate
the current-carrying cdge channels. This figure illustrates
why a contact is cffective in cstablishing local equilibrium
arnong electron channels, but not among electron and hole
channels. In case (c) one woulcl mcasure anomalies in the
Hall conductance, due to the absence of local equilibrium.
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