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1 Introduction

The quantum Hall effect (QHE) is the phenomenon that the Hall conductance Gy is
quantized in units of e?/h, as expressed by the formula

(1)

pe’
Gy = v
(p and ¢ being mutually prime integers). The integer QHE (¢ = 1) was discovered
10 years ago by von Klitzing, Dorda, and Pepper [1] in the two-dimensional electron
gas (2DEQG) confined to a Si inversion layer. The fractional QHE (¢ > 1 and odd)
was first observed by Tsui, Stormer, and Gossard [2] in the 2DEG at the interface
of a Al.Ga;_,As/GaAs heterostructure. Microscopically the two effects are entirely
different. The integer QHE, on the one hand, can be explained satisfactorily in terms
of the states of non-interacting electrons in a magnetic field (the Landau levels). The
fractional QHE, on the other hand, exists only because of electron-electron interactions
[3]. Phenomenologically, however, the integer and fractional QHE are quite similar. In
an unbounded 2 DEG this similarity is understood from Laughlin’s general argument [4]
that: (1) The Hall conductance shows a plateau as a function of magnetic field (or Fermi
energy) whenever the quasi-particle excitations in the bulk of the 2 DEG are localized by
disorder; and that: (2) The value of Gy on the plateau is precisely an integer multiple p
of ee*/h, where e* = ¢/q is the quasi-particle charge. (The product ee* appears because
one e is needed to change the unit of conductance from Amperes per electron Volts to
Amperes per Volts). Theory and experiment on the QHE in an unbounded 2 DEG have
been reviewed in the books by Prange and Girvin [5] and by Chakraborty and Pietildinen
[6] (see also the article by MacDonald in the present volume).

In the past few years, a variety of experiments have uncovered a novel phenomenol-
ogy of the QHE on short length scales. For example, in small sub-micron-size samples
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the QHE can occur in the absence of disorder [7,8] and can show deviations from precise
quantization [9]. An anomalous quantization of the Hall conductance has been observed
[10] in samples which are large but which contain a pair of closely spaced current and
voltage contacts: quantization of Gy then occurs at multiples of €?/h determined by the
properties of the contacts, rather than of the bulk 2 DEG. Indeed, it has been possible
in such an experiment to measure the fractional QHE in a 2 DEG which by conventional
measurements shows the integer effect [11].

These anomalies are not easily understood within the conventional description of
the QIIE, which determines the quantized value of G’y from the charge of a quasi-particle
excitation localized in the bulk of the 2DEG. One necds a description which can be
applied to small samples without disorder and which explicitly includes the properties of
the current and voltage contacts. For the integer QIIE the Landauer-Bittiker formalism
provides such a description [12]. A central concept in this formulation is the concept of an
edge channel, which is the collection of states at the Fermi energy within a given Landau
level. These states are extended along the cdges of the 2 DEG whencver the Fermi level
lies between two Landau levels in the bulk. Many of the anomalies in the integer QIIE
can be understood as resulting from the absence of local equilibrium at the edge, which
in turn is a consequence of the reduction of scatiering between edge channels in a strong
magnetic field [10,13,14]. On short length scales the electron transport becomes fully
adiabalic, i.e. without inter-edge channel scattering. Edge channels in the integer QITE
are defined in one-to-one correspondence with bulk Landau levels. This single-electron
description is not applicable to the fractional QIE, which is fundamentally a many-body
effect. In this article we review recent work towards a generalization of the concept of
adiabatic transport in edge channels, with the aim of providing a unified description of
anomalies in the integer and fractional QIIE.

We first summarize, in section 2, the Landauer-Bittiker formalism for the integer
QHE. Our generalization [15] to the fractional QHE is described in section 3 and applied
to experiments in section 4. Two open problems are addressed in section 5. One is
the question: »What charge does the resistance measure?” The other refers to an alter-
native generalized Landauer formula proposed by MacDonald [16]. We will argue that
the appearance of both ”electron” and "hole” channels in this formula implies a novel
limitation to the accuracy of the fractional QHE. Much of the material in the present
article is bascd on a review with a wider scope written in collaboration with H. van

ITouten [17].

2 Integer Edge Channels

The Landaucr-Biittiker formalism [18,19] is a linear response formalism which expresses
the conductance (a non-equilibrium property) in terms of an equilibrium Fermi level
property of the conductor. That property consists of a rational function of transmission
probabilities between current and voltage contacts of propagating modes with the Fermi
energy. In a strong magnetic field in the QHE regime the propagating modes are extended
along the edges of the conductor, because all Fermi level states in the bulk are localized.
The Landaucr-Bittiker formalism thus describes the integer QHE in terms of properties
of edge states. We review this description in the present section.

We restrict the discussion to the case of a smoothly varying potential energy land-
scape V(z,y) in the 2DEG. The smoothness criterion is that V should vary by less
than the Landau level separation fw, = heB/m over a magnetic length [, = (I‘L/eB)l/2
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(which plays the role of the wavelength in a strong magnetic field B). In such a smooth
potential the quantized cyclotron motion energy (n — %) fiw, (being the eneigy of the
n-th Landau level, n = 1,2,...) is a constant of the motion. The total encrgy Ep of an
electron at the Fermi level is the sum of this Landau level energy and the energy Eg
from the electrostatic potential,

Ee=Ep — (n - %) hw,. (2)

(The spin-splitting of the Landau levels by the Zeeman cnergy is ignored here, for sim-
plicity.) The constancy of the Landau level index n for smooth V implies that the motion
of the electron is along the equipotential V(z,y) = Eg. Classically, the center of the
cyclotron orbit is guided along equipotentials by the combined effects of the Coulomb
and Lorentz forces. lence the name guiding center energy for Eg. The drift velocity
Varge Of the orbit center (known as the guiding center drift) follows by balancing the
Coulomb and Lorentz forces,

1
Virift = EVV x B. (3)

The wavefunctions of states al the Fermi level have an appreciable amplitude within
[ of the cquipotentials at Fg. One can distinguish between eztended statcs near the
sample boundaries, and localized states encircling potential maxima and minima in the
bulk, as illustrated in Fig. 1. The extended states with the same Landau level index n
are referred 1o collectively as the n—th edge channel. The edge channel with the smallest
index n is closest to the sample boundary, becausc it has the largest Eg (eq. (2)). This
is scen more clearly in a cross-sectional plot of V(z,y) (Fig. 2). Notice that if the peaks
and dips of the potential in the bulk have amplitudes below hw,/2, then only states with
the highest Landau level index can exist in the bulk at the Fermi level.

The simplicity of the guiding center drift along equipotentials has becn originally
used in the percolation theory [20-22] of the QIE, soon after its experimental discovery
[1]. In this theory the existence of edge statcs is ignored, and the Hall resistance is
expressed in terms of propertlies of extended states in the bulk of the sample. Since
in equilibtium all Fermi level states in the bulk are localized in general, the percolation
theory requires for its applicability a threshold electric field to create extended bulk states
(it is thus not a linear response theory). A description of the QIIE based on extended edge
states and localized bulk states, as in Fig. 1, was first put forward by Halperin [23], and
further developed by several authors [12,24-27]. With the exception of Biittiker [12], these
authors assume local equilibrium at the edge. In the presence of a chemical potential
difference éu betwcen the edges, each edge channel can be shown to carry a current
(e/h)6u, and thus to contribute e?/h to the Hall conductance. The equipariitioning of
current among the edge channels is characteristic for a local equilibrium. The total
number of cdge channels NV at the Fermi level is cqual to the number of bulk Landau
levels below the Fermi level (because of the one-to-one correspondence belween edge
channels and bulk Landau levels). In this casc of local equilibrium one thus has the
usual integer QHE, Ry = h/Ne?, with Ry = 1/Gpy the Hall resistance (we disregard for
convenience of notation the two-fold spin degeneracy of each Landau level).

The Hall resistance Ry is a four-terminal resistance, meaning that the voltage
contacts are distinct from the contacts through which the current is passed. For the two-
terminal resistance Rs; the voltage is measurcd between the current-carrying contacts. In
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Figure 1. Mcasurement configuration for the two-terminal resistance Ry, the four-
terminal Iall resistance Ry, and the longitudinal resistance [t;,. The edge channels
at the Fermi level arc indicated, arrows point in the direction of motion of edge channels
filled by the source contact at chemical potential Fp 4+ §u. The current is cquiparti-
tioned among the cdge channels at the upper cdge, corresponding to the case of local
equilibrium (from Ref. [17]).

Figure 2. Cross-scction of the elcctrostatic potential
V(z,y), along a line perpendicular to the Hall bar in Tig. 1.

The location of the stales al the Fermi level is indicated by
dots and crosses (depending on the dircction of motion).
The value of Eg for cach n is indicated by the dashed line

(from Ref. [17]).

the case of local equilibrium these two resistances arc the same, Ry = Ry, = h/Ne?, sce
Fig. 1. One can also read off from Fig. 1 that the (four-terminal) longitudinal resistance
Ry, vanishes, Ry, = 0. The distinction between a longitudinal and Iall resistance is
topological: A four-lerminal resistance measurement gives Ry if current and vollage
contacts altcrnate along the boundary of the conductor, and Ry, if that is not the case.
There is no need to further characterize the contacts in the case of local equilibrium at
the edge.

If the edges ate not in local equilibrium, the measured resistance depends on the
properties of the contacts. Blttiker has developed the formalism [12] to treat anomalies
in the integer QIIE due to the absence of local equilibrium, when measured with non-
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ideal contacts. To illustrate this formalismm we consider, following [17], a situation in
which the edge channcls at the lower edge are in cquilibrium at chemical potential Ep,
while the edge channels at the upper edge are not in local equilibrium. The current
at the upper edge is then not equipartitioned among the N cdge channels. Let [, be
the fraction of the total current [ which is carried by states above Ep in the n-th edge
channel al the upper cdge, I, = f,I. The vollage contact at the lower edge measures
a chemical potential Fp, regardless of its properties. The voltage contact at the upper
cdge, however, will mecasure a chemical potential which depends on how it couples to
each of the edge channels. The transmission probability T;, is the {raction of [, which
is transmitted through the voltage probe to a reservoir at chemical potential Er + &p.
The incoming current

N N
L= TufuI, with Z fo=1, (4)
n=1 n=1

has to be balanced by an outgoing current

N
(&
]ou = _6 Tn
=g )

ol equal magnitude, so thal the voltage probe draws no nect current. (In eq. (5) we
have applied a sum rule to identify the total transmission probabilitics of outgoing and
incoming edgc channcls, see [17].) The requirement I, = I,y determines §u and hence
the Hall resistance Ry = du/cl,

h(X N -1
Ry = (Z Tnfn> <Z Tn> : (6)

The Hall resistance has its regular quantized value Ry = h/Ne? only il either f, =1/N
ord, =1,forn=1,2,... N. The first case corresponds to local equilibrium (the current
is cquipartitioned among the edge channels), the sccond case to an ideal contact (all edge
channels are fully transmitted).

A non-equilibrium population of the edge channcls is generally the result of se-
lective backscaltering. Because edge channcls at opposite edges of the sample move in
opposite directions, backscatiering requires scattering from one edge to the other. Se-
lective backscatiering of edge channels with n > ng is induced by a potential barrier
across the sample, if its height is between the guiding center energics of edge channel
no and ng — 1 (recall that the edge channel with a larger index n has a smaller value
of Eg). Selective backscaticring can also occur naturally in the absence of an imposed
potential barrier. The edge channel with the highest index n = N is sclectively backscat-
tered when the Fermi level approaches the cnergy (N — %) hw, of the N-th bulk Landau
level. The guiding center encrgy of the N-th cdge channel then approaches zero, and
backscattering cither by tunneling or by thermally activated processes becomes effective
— but for that edge channel only, which remains almost completely decoupled from the
other V —1 cdge channels over distances as large as [13,28,29] 250 pm (although on that
length scale the edge channcls with n < N — 1 have cquilibrated to a large extent [14]).

We conclude this section by emphasizing that the edge channel formulation of the
QIE by no means implies that the current flows within a few magnetic lengths from
the edge. This assumption would be untenable experimentally, see [30]. The flow lines
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in Fig. 1 only show the location of the extended states at the equilibrium Fermi level.
A determination of the spatial current distribution, rather than just the total current,
requires consideration of all the states below the Fermi level, which acquire a net drift
velocity because of the Hall field. Within the range of validity of a lincar response theory,
however, knowledge of the current distribution is not necessary to know the resistance
(see [17] for a further discussion of this point).

3 Fractional Edge Channels

In this section we show, following [15], how the concept of an edge channel can be gen-
eralized to the fractional QIIE, in the case of a smoothly varying clectrostatic potential.
This is the case of rclevance for experiments on adiabatic transport in the fractional
QHE, see section 4. Our result is phrased in terms of a generalized Landaucr formula,
in which the cdge channels contribute with a fractional weight. Hence the name ”{rac-
tional” edge channels. The different generalization of the Landauer formula proposed by
MacDonald [16] is discussed in section 5.

Consider first the equilibrium state of the system. If the clectrostatic potential
energy V(z,y) varies slowly in the 2DEG, then the equilibrium density distribution
n(z,y) follows by requiring that the local electrochemical potential V(r) + du/dn has
the same value i at each point rin the 2 DEG. Here du/dn is the chemical potential of the
uniform 2 DEG with density n(r). It is a remarkable {act [3,5,6] that the inteinal energy
density u(n) of a uniform interacting 2DEG in a strong magnetic field has downward
cusps at densities n = v, Be/h corresponding to certain {ractional filling factors v,. The
chemical potential du/dn thus has a discontinuity (an encrgy gap) at v = v,, with
du} /dn and du, /dn the two limiting valucs as ¥ — r,. The size of the gap is the
cyclotron encrgy hw, when v, is an integer, and of the order of the Coulomb energy
e?/el,, when v, is a fraction (e is the dielectric constant). An order of magnitude for
the energy gap is 10meV at B = 6 T. As noted by Ilalperin [31], when g — V lies in the
energy gap the filling factor is pinned at the value v,

n = vy,Be/h, if duy/dn < p—V <duf/dn,

El% + V(r) =y, otherwise. (7)
Note that V(r) itself depends on n(r), and thus has to be determined sellconsistently
from eq. (7) taking the electrostatic screening in the 2DEG into account. We do not
need to explicitly solve for n(r), but can identily the edge channcls from the following
general considerations [13].

At the edge of the 2DEG the clectron density decreases from its bulk value to
zero. Equation (7) implies that this decreasc is stepwise, as illustrated in Tig. 3. The
requirement on the smoothness of V for the appearance of a well-defined region at the
edge in which v is pinned at the fractional valuc »,, is that the change in V within
the magnetic length I is small compared to the energy gap duf/dn and duy/dn .
This ensures that the width of this region is large compared to {,,, which is a necessary
(and presumably sufficicnt) condition for the formation of the fractional QHE state.
Depending on the smoothness of V| one thus obtains a series of steps at v = v,(p =
1,2,... P), as one moves from the edge towards the bulk. The series terminates in the
filling factor vp = vpuk of the bulk, assuming that in the bulk the chemical potential
i —V lies in an energy gap. The regions of constant v at the edge form bands extending
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Figure 3. Schemalic drawing of the variation in filling fac-
tor v, clectrostatic potential V, and chemical potential
du/dn, at a smooth boundary in a 2DEG. The dashed line
in the bottom pancl denotes the constant electrochemical
potential g = V 4 du/dn. The dotted intervals indicate
a discontinuity (energy gap) in du/dn, and correspond in
the top pancl to regions of constant fractional filling fac-
tor v, which spatially separate the edge channcls. The
width of the cdge channel regions shrinks to zcro in the
integer QHE, since the compressibility x of these regions
is infinitely large in that case (from Ref. [15]).

along the conductor. Thesc incompressible bands {in which the compressibility y =
(n?d%u/dn?)"" = 0) alternate with bands in which g — V does not lie in an energy gap.
The latter compressible bands (in which x > 0) may be identilied as the edge channels of
the transport problem, as will be discussed below. To resolve a misunderstanding [32],
we note that the particular potential and density profile illustrated in Fig. 3 (in which
the edge channels have a non-zcro width) assumes that the compressibility of the edge
channels is not infinitely large — but that the analysis given below is independent of this
assumption.

The conductance is calculated by bringing onc end of the conductor in contact with
a reservoir at a slightly higher elecirochemical potential p 4+ Ap. We are concerned with
the linear response current, so that the electrostalic potential landscape V(r) is kept at
its equilibrium form. The resulting change An in electron density is
én

Ap = ——
v %

on
ATL: 5_,u

A, (8)
I

where § denotes a [unctional derivative. In the second equality in eq. (8) it has been used
that n is a functional of g~ V, by virtue of eq. (7). In a strong magnetic field, this excess
density moves along equipotentials with the guiding-center-drift velocity given by eq. (3).
The component vy, of the drift velocity in the y-direction (along the conductor) is

L oV

varige = ¥ (VV x BfeB?) = B oz 9)
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Figure 4. Schematic drawing of the incompressible bands
(hatched) of fractional filling factor v,, altcrnating with
the edge channels (arrows indicate the direction of electron
motion in each channel). (a) a uniform conductor; (b)
a conductor containing a barrier of reduced filling factor

(from Ref. [15]).

The current densily j = —eAnuvg,;5; becomes simply
e, Ov
= ——Ap—. 10
J P (10)

It {follows from eq. (10) that the incompressible bands of constant v = v, do not con-
tribute to j. The reservoir injects the current into the compressible bands at one edge
of the conductor only (for which the sign of dr/0z is such that j moves away from
the reservoir). The edge channel with index p = 1,2,... P is defined as that compress-
ible band which is flanked by incompressible bands at filling factors v, and v,_y. The
outermost band from the center of the conductor, which is the p = 1 edge channel, is
included by defining formally 19 = 0. The arrangement of alternating edge channcls
and compressible bands is illustrated in I'ig. 4a. Note that different edges may have
a different series of edge channels at the same magnetic field value, depending on the
smoothness of the potential V' ai the edge (which, as discussed above, determines the
incompressible bands that exist at the edge). This is in contrast to the situation in the
integer QHE, where a one-to-one correspondence cxists between edge channels and bulk
Landau levels (scction 2). In the fractional QHE an infinite hierarchy of cnergy gaps
exists, in principle, corresponding to an infinite number of possible edge channels — of
which only a small number (corresponding to the largest encrgy gaps) will be realized in
practice.

The current I, = (e/h)Ap (yp — vp—1) injected into edge channel p by the reservoir
follows directly from eq. (10), on integration over z. The total current I through the
conductor is I = Zle LTy, if a fraction T, of the injected current I, is transmitted to
the reservoir a$ the other end of the conductor (the remainder returning via the opposite
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edge). For the conductance G = el/Ap one thus obtains the generalized Landauer
formula for a two-terminal conductor [15]

2 P
€
G = Ipz:;:rpzxy,g, (11)

which differs from the usual two-terminal Landauer formula [18] by the presence of the
fractional weight factors Av, = v, — 1. In the integer QHE, Ay, = 1 {or all p, so that
eq. (11) reduces to the Landauer formula with unit weight factors.

A multi-terminal generalization of eq. (11) for a two-terminal conductor is easily
constructed, following Blittiker [19]:

e e

Lo = Vot = 7 zﬁ: Topiis, (12)
Ps

Top = ZTP,aﬁA’/p' (13)
p=1

Here I, is the current in lead «, connected to a reservoir at clectrochemical potential u,,
and with fractional filling factor v,. Equation (13) defines the transmission probability
Top from rescrvoir § to reservoir o (or the reflection probability, for o = ), in terms
of a sum over the generalized edge channels in lead 8. The contribution from each edge
channel p = 1,2,... P contains the weight factor Av, = v, —v,_4, and the fraction T}, 45
of the current injected by reservoir £ into the p-th edge channel of lead 3 which reaches
reservoir . Apart from the fractional weight factors, the structure of eqs. (12) and (13)
is the same as that of the usual Biittiker formula [19].

Applying the generalized Landauer formula eq. (11) to the ideal conductor in
Iig. 4a, where T, = 1 for all p, one finds the quantized two-terminal conductance

c &

2
G = —h—pzzlAI/p = TVP. (14)

The four-terminal Hall conductance Gg has the same value, because each edge is in local
equilibrium. In the presence of disorder this edge channel formulation of the fractional
QHE is generalized in an analogous way as in the intcger QHLE, by including localized
states in the bulk. In a smoothly varying disorder potential these localized states take
the form of circulating edge channels, as in I'ig. 1. In this way the filling factor of the
bulk can locally deviate from vp without a change in the Hall conductance, leading to
the formation of a platcau in the magnetic field dependence of G'y. In a narrow channel,
localized states are not required for a finite plateau width, because the edge channels
make il possible for the chemical potential to lie in an energy gap for a finite magnetic
field interval. The Hall conductance then remains quantized at vp(e?/h) as long as y—V
in the bulk lies belween du}/dn and dup/dn.
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Figure 5. Two-terminal conductance of a constriction con-
taining a potential barrier, as a function of the voltage on
the split gate defining the constriction, at a fixed mag-
netic field of 7T. The conductance is quantized according

to eq. (15) (from Ref. [33]).

4 Experiments

We now apply the generalized Landauer formula eq. (11) to some recent experiments on
adiabatic transport in the fractional QHE regime. Consider first a conductor containing
a potential barrier. The potential barrier corresponds to a region of reduced filling factor
VP, = Vmin separating two regions of filling factor vp, ., = Vmax- The arrangement of
edge channels and incompressible bands is illustrated in Fig. 4b. We assume that the
polential barrier is sufficiently smooth that scattering between the edge channels at
opposite edges can be neglected. All transmission probabilities are then either zero or
one: 1, = 1for 1 < p < Pyyn and T, = 0 for Prin < p < Prax. Equation (11) then tells
us that the two-terminal conductance is

62

G = 5 V- (15)

In Fig. 5 we have reproduced experimental data by Kouwenhoven et al. [33] on the
fractionally quantized two-terminal conductance of a constriction containing a potential
barrier. The constriction (or point contact [29]) is defined by a split gate on top of a
GaAs-AlGaAs heterostructure. The conductance in Fig. 5 is shown for a fixed magnetic
field of 7T as a function of the gate voltage. Increasing the negative gate voltage increases
the barrier height, thereby reducing G below the Hall conductance corresponding to
Vmax = 1 in the wide 2DEG. The curve in Fig. 5 shows plateaus corresponding to
Vmin = 1,2/3 and 1/3 in eq. (15). The 2/3 plateau is not exactly quantized, but is too
low by a few percent. The constriction width on this plateau is estimated [33] at W =
500 nm, which is a factor of 50 larger than the magnetic length at B = 7T. It would
seem that scattering between fractional edge channels at opposite edges (necessary to
reduce the conductance below its quantized value) can only occur via states in the bulk
for this large ratio of W/i,,.
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Timp et al. [34] have measured the four-terminal I1all conductance in a narrow cross
geometry (W = 90nm). They find, in addition to quantized platecaus near 1/3, 2/5, and
2/3x€?/h, also a plateau-like feature around 1/2xe?/A. (This even-denominator fraction
is special because it is not observed as a ITall plateau in a bulk 2 DEG). Notice, however,
that the 500 nm wide constriction of Fig. 5 has a conductance which is featureless at
e?/2h. A narrower constriction (W = 150 nm) studied by Kouwenhoven et al. [33] shows
more fluctuations on the plateaus at 1/3 and 2/3 x €?/h, bul no plateau-like feature at
1/2 x €?/h. The origin of the difference between these two expcriments[33,34] remains
to be understood.

A four-terminal measurement of the fractional QIIE in a conductor containing a
potential barrier can be analyzed by means of eqs. (12) and (13). The longitudinal
resistance Ry, of the barrier (measured by two adjacent voltage probes, one at each side
of the barrier) is given by

RL:’—‘<1 - 1). (16)

2
€ Ymin v

max

This result {ollows from cqgs. (12) and (13) provided ewther the edge channcls transmitted
across the barrier have equilibrated with the extra edge channcls available outside the
barrier region; or the voltage contacts are ideal, i.e. they have unit transmission proba-
bility for all fractional edge channels. In the case of the integer QIIE, eq. (16) (with v
integer) was derived some time ago by Van Houten et al. [35] and (independently) by
Bittiker [12], and was found to be in agreement with experiments [35-37]. Chang and
Cunningham [38] have measured Ry, in the fractional QIIE, using a 1.5um wide 2DEG
channel with a gatle across a segment of the channel. Contacts to the gated and ungated
regions allowed vy, and v,y to be determined independently. Equation (16) was found
to hold to within 0.5% accuracy.

adiabatic transport in the fractional QHE has been demonstrated [11] by the selec-
tive population and detection of {ractional edge channels, achieved by means of barriers
in two closely separated current and voltage contacts. The geometry is illustrated in
Fig. 6a. It is essentially the same as the geometry employed by Van Wees et al. [10]
for the sclective population and detection of Landau levels in the integer QHE. Fig. 6b
illustrates the arrangement of fractional edge channels and incompressible bands for the
case that the chemical potential lies in an energy gap for the bulk 2DEG (at v = vpan),
as well as for the two barriers (at vy and vy for the barrier in the current and voltage
lead, respectively). Adiabatic transport is assumed over the barrier, as well as from bar-
rier I to barrier V (for the magnetic field direction indicated in Fig. 6). Equation (12)
for this case reduces to

e
I = I—I/INI,
)
e e .
= —vypy — —min(vy, vy )i, (17)
h h

so that the Hall conductance Gy = el /py becomes

e? e?
Gy = — max(v, vv) £ —Vpulk- (18)
h h
The quantized Hall plateaus are determined by the fractional filling factors of the current
and voltage leads, not of the bulk 2DEG.
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Figure 6. (a) Schematic drawing ol the experimental ge-
ometry of Kouwenhoven et al. [11]. The crossed squarcs
are contacts to the 2DEG. One current lead and onc volt-
age lecad contain a barrier (shaded), of which the height
can be adjusted by means of a gate (not drawn). The cur-
rent [ flows belween contacts 1 and 3, the voltage V is
mcasured between contacts 2 and 4. (b) Arrangement of
incompressible bands (hatched) and cdge channels near the
two barricers. In the absence of scattcring between the two
fractional edge channcls one would measurc a Iall conduc-
tance Gy = I/V which is fiactionally quantized at %xaz/h7
although the bulk has unit filling factor (from Refl. [15]).

Kouwenhoven et al. [11] have demonstrated the sclective population and detection
of fractional edge channcls in a device with a 2 em scparation of the gates in the current
and voltage leads. The gates extended over a length of 40 pm along the 2 DEG boundary.
In Fig. 7 we reproduce one of their experimental traces. The Hall conductance is shown
for a fixed magnetic field of 7.8 T as a function of the gate voltage (all gates being at the
same vollage). As the bartier heights in the two leads are increased, the ITall conductance
decrcases from the bulk value 1 x e2/h to the value 2 x ¢2/h determined by the leads — in
accord with eq. (18). A more gencral formula for G/ valid also in between the quantized

plateaus is shown in [11] to be in quantitative agreement with the experiment.
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[Figure 7. Anomalously quantized Iall conductance in the
geometry of TFig. 6, in accord with eq. (18) (vpux = 1,v7 =
vy decreases from 1 to 2/3 as the negative gate voltage is
increased). The temperature is 20 mK. The rapidly rising
part (dotted) is an artifact due to barrier pinch-ofl ({rom

Rel. [11]).

5 Open Problems
5.1 What Charge does the Resistance Measure?

The [ractional quantization of the conductance in the cxperiments discussed above is
understood as a consequence of the fractional weight factors in the generalized Landauer
formula cq. (11). These weight factors Av, = v, — v,—y are nol in gencral equal to e*/e,
with e* the fractional charge of the quasi-particle excitations of Laughlin’s incompressible
state. The reason for the absence of a onc-to-onc correspondence between Aw, and
e* is that the cdge channels themselves are not incompressible [15]. The transmission
probabilitics in eq. (11) refer to charged ”gapless” excitations of the edge channels, which
are not identical to the charge e* excitations above the ecnergy gap in the incompressible
bands (the latter charge might be obtained from thermal activation mcasurements, see
[39))-

It is an interesting and (to date) unsolved problem to determine the charge of
the cdge channel excitations. Kivelson and Pokrovsky [40] have suggested performing
tunncling experiments in the [ractional QIIE regime for such a purpose, by using the
charge dependence of the magnetic length (5/eB)Y/? (which determines the penctration
of the wave [unction in a tunnel barrier, and hence the transmission probability through
the barricr). Altcrnatively, one could use the h/e periodicily of the Aharonov-Bohm
magnecloresistance oscillations as a measure of the edge channel charge. Simmons et al.
[41] find that the characteristic field scale of quasi-periodic resistance fluctuations in a
2um wide Hall bar increases [rom 0.016 T # 30% ncar v = 1,2,3,4 t0 0.05 T &£ 30% ncar
V= % This is suggestive of a reduction in charge [rom e to ¢/3, bul not conclusive since
the arca for the Aharonov-Bohm effect is not well-defined in a Ilall bar.

5.2 Electron and Hole Channels

MacDonald has, independently of {15], proposed a diflerent generalized Landaucr formula
for the fractional QIE [16] in a smooth electrostatic potential. The difference with
eq. (11) is that the weight factors in MacDonald’s formula can take on both positive and
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negatwe values — corresponding to clectron and hole channels, respectively. In the case of
local equilibrium at the edge, the sum of weight factors is such that the two formulations

give identical results. The results differ in the absence of local equilibrium, if fractional
edge channels are selectively populated and detected. For example, MacDonald predicts
a negatwe longitudinal resistance in a conductor at filling factor v = 2/3 containing a
segment at » = 1. Another implication of [16], as we undcrstand it, is that the two-
terminal conductance G of a conductor at v,,c = 1 containing a potential barrier al
filling factor vy, is reduced to % X €2/h if vy = 1/3 (in accord with eq. (15)), but
remains at 1 X €®/h if v = 2/3. That this is not observed experimentally (see Fig. 5)
could be due to inter-cdge channel scattering, as argued by MacDonald. The experiment
by Kouwenhoven et al. [11] (Fig. 7), however, is apparcntly in the adiabatic regime,
and was interpreted in I'ig. 6 in terms of an edge channel of weight 1/3 at the edge of
a conductor at ¥ = 1. In MacDonald’s formulation, the conductor at » = 1 has only a
single edge channel of weight 1. This would have to be reconciled with the experimental
observation of quantization of the Hall conductance at 2/3 x e2/h. What is needed is
a theory which allows one to introduce edge channels not only for the case of a smooth
potential at the edge (considered in [15] and [16]), but also for an abrupt confincment.
Such a theory exists for the integer QHE [23] but not yet for the fractional effect.

The presence of both positive and negative weights in a gencralized Landauer for-
mula has an interesting implication for the accuracy of the fractional QIIE. As we dis-
cussed in section 2 for the integer QHE, accurate quantization of the Ilall resistance
requires either a local equilibrium at the edge, or ideal contacts (i.e. conlacts which fully
transmit all available edge channels [12]). The reduction of inter-edge channel scattering
in strong magnctic fields leads to deviations from local ecquilibrium (i.e. the current is
not cquipartitioned among the edge channels). Idcal contacts then become necessary
for accurate quantization. A contact is essentially a region with a high clectron density
connecled to the low-density electron gas, sce Iig. 8a. An ideal contact is realized by a
smooth increase in density in the contact region, so that the cdge channels in the 2DEG
are transmitted adiabatically into the contact. The contact then induces a local equilib-
rium by redistributing the current among the edge channels. This is illustrated in I'ig. 8b
by mecans of arrows, which indicate the current-carrying edge channels: One incoming
edge channcl carrics the current, whereas both outgoing edge channels arc populated by
the contact. These considerations for the integer QHE carry over completely to the frac-
tional cdge channels described in section 3. However, if both clectron and hole channcls
are present in the 2DEG, then the situation is different. A hole channel is reflected on
approaching a region with a smoothly increasing clectron density [16]. In other words, a
contact can not be "ideal” (i.e. fully transmitting) for both electron and hole channels.
As shown in Fig. 8c, the contact is then not able to redistribute the current among the
edge channels. The accuracy of the fractional QIIE would thus be limited by the ex-
tent to which inelastic scattering is cffective in establishing a local equilibrium betwecn
electron and hole channcls — regardless of the idcality of the contacts. This conclusion
is of importance not only for adiabatic transport in the fractional QIIE, but for other
situations as well in which coexisting electron and hole channels are believed to occur.
One example is the integer QHE in a periodic potential discussed by MacDonald in this
volume. Another is the integer QHE in parallely conducting electron and hole gascs,
present in certain semiconductor heterostructures.
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Figure 8. (a) Schematic drawing of the bottom of the con-
duction band E. and the Fermi cnergy EF at the tran-
sition from a low-density to a high-density region in a
2DEG. (b,c) Top view of a 2DEG near a contact, mod-
eled by a high-density region (shaded) as in (a). The con-
tact is ideal (i.e. fully transmitting) for electron channels
(b), but not for hole channcls (c). The arrows indicate
the current-carrying edge channels. This figure illustrates
why a contact is cffective in cstablishing local equilibrium
among clectron channels, but not among electron and hole
channcls. In case (c) one would mcasure anomalies in the
Hall conductance, due to the absence of local equilibrium.
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