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HOMOGENEOUS NUCLEATION FOR GLAUBER AND KAWASAKI
DYNAMICS IN LARGE VOLUMES AT LOW TEMPERATURES

BY ANTON BOVIER1, FRANK DEN HOLLANDER2 AND CRISTIAN SPITONI

Rheinische Friedrich–Wilhelms-Universitaet Bonn, Leiden University and
EURANDOM and Leiden University and EURANDOM

In this paper, we study metastability in large volumes at low tempera-
tures. We consider both Ising spins subject to Glauber spin-flip dynamics and
lattice gas particles subject to Kawasaki hopping dynamics. Let β denote the
inverse temperature and let �β ⊂ Z

2 be a square box with periodic bound-
ary conditions such that limβ→∞ |�β | = ∞. We run the dynamics on �β ,
starting from a random initial configuration where all of the droplets (clus-
ters of plus-spins and clusters of particles, respectively) are small. For large
β and for interaction parameters that correspond to the metastable regime,
we investigate how the transition from the metastable state (with only small
droplets) to the stable state (with one or more large droplets) takes place un-
der the dynamics. This transition is triggered by the appearance of a sin-
gle critical droplet somewhere in �β . Using potential-theoretic methods, we
compute the average nucleation time (the first time a critical droplet appears
and starts growing) up to a multiplicative factor that tends to 1 as β → ∞.
It turns out that this time grows as Ke�β/|�β | for Glauber dynamics and as
Kβe�β/|�β | for Kawasaki dynamics, where � is the local canonical (resp.
grand-canonical) energy, to create a critical droplet and K is a constant re-
flecting the geometry of the critical droplet, provided these times tend to in-
finity (which puts a growth restriction on |�β |). The fact that the average
nucleation time is inversely proportional to |�β | is referred to as homoge-
neous nucleation because it says that the critical droplet for the transition
appears essentially independently in small boxes that partition �β .

1. Introduction and main results.

1.1. Background. In a recent series of papers, Gaudillière et al. [12–14] study
a system of lattice gas particles subject to Kawasaki hopping dynamics in a large
box at low temperature and low density. Using the so-called pathwise approach to
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metastability (see Olivieri and Vares [23]), they show that the transition time be-
tween the metastable state (the gas phase with only small droplets) and the stable
state (the liquid phase with one or more large droplets) is inversely proportional to
the volume of the large box, provided that the latter does not grow too fast with the
inverse temperature. This type of behavior is called homogeneous nucleation be-
cause it corresponds to the situation where the critical droplet triggering the nucle-
ation appears essentially independently in small boxes that partition the large box.
The nucleation time (the first time a critical droplet appears and starts growing) is
computed up to a multiplicative error that is small on the scale of the exponential
of the inverse temperature. The techniques developed in [12–14] center around the
idea of approximating the low temperature and low density Kawasaki lattice gas
by an ideal gas without interaction and showing that this ideal gas stays close to
equilibrium while exchanging particles with droplets that are growing and shrink-
ing. In this way, the large system is shown to behave essentially like the union of
many small independent systems, leading to homogeneous nucleation. The proofs
are long and complicated, but they provide considerable detail about the typical
trajectory of the system prior to and shortly after the onset of nucleation.

In the present paper, we consider the same problem, both for Ising spins subject
to Glauber spin-flip dynamics and for lattice gas particles subject to Kawasaki
hopping dynamics. Using the potential-theoretic approach to metastability (see
Bovier [5]), we improve upon an aspect of the results in [12–14], namely, we
compute the average nucleation time up to a multiplicative error that tends to 1
as the temperature tends to 0, thereby providing a very sharp estimate of the time
at which the gas starts to condensate.

We have no results about the typical time it takes for the system to grow a
large droplet after the onset of nucleation. This is a difficult problem that will
be addressed in future work. All that we can prove is that the dynamics has a
negligible probability to shrink down a supercritical droplet once it has managed
to create one. At least this shows that the appearance of a single critical droplet
indeed represents the threshold for nucleation, as was shown in [12–14]. A further
restriction is that we need to draw the initial configuration according to a class
of initial distributions on the set of subcritical configurations, called the last-exit
biased distributions since these are particularly suitable for the use of potential
theory. It remains a challenge to investigate to what extent this restriction can be
relaxed. This problem is addressed with some success in [12–14] and will also be
tackled in future work.

Our results are an extension to large volumes of the results for small volumes
obtained in Bovier and Manzo [8] (resp. Bovier, den Hollander and Nardi [7]).
In large volumes, even at low temperatures, entropy is competing with energy be-
cause the metastable state and the states that evolve from it under the dynamics
have a highly nontrivial structure. Our main goal in the present paper is to extend
the potential-theoretic approach to metastability in order to be able to deal with
large volumes. This is part of a broader program where the objective is to adapt
the potential-theoretic approach to situations where entropy cannot be neglected.
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In the same direction, Bianchi, Bovier, and Ioffe [3] study the dynamics of the
random field Curie–Weiss model on a finite box at a fixed positive temperature.

As we will see, the basic difficulty in estimating the nucleation time is to obtain
sharp upper and lower bounds on capacities. Upper bounds follow from the Dirich-
let variational principle, which represents a capacity as an infimum over a class of
test functions. In [3], a new technique is developed, based on a variational princi-
ple due to Berman and Konsowa [2], which represent a capacity as a supremum
over a class of unit flows. This technique allows for lower bounds to be obtained
and it will also be exploited here.

1.2. Ising spins subject to Glauber dynamics. We will study models in finite
boxes, �β , in the limit as both the inverse temperature, β , and the volume of the
box, |�β |, tend to infinity. Specifically, we let �β ⊂ Z

2 be a square box with
odd side length, centered at the origin with periodic boundary conditions. A spin
configuration is denoted by σ = {σ(x) :x ∈ �β}, with σ(x) representing the spin
at site x, and is an element of Xβ = {−1,+1}�β . It will frequently be convenient to
identify a configuration σ with its support, defined as supp[σ ] = {x ∈ �β :σ(x) =
+1}.

The interaction is defined by the the usual Ising Hamiltonian

Hβ(σ) = −J

2

∑
(x,y)∈�β

x∼y

σ (x)σ (y) − h

2

∑
x∈�β

σ(x), σ ∈ Xβ,(1.1)

where J > 0 is the pair potential, h > 0 is the magnetic field and x ∼ y means that
x and y are nearest neighbors. The Gibbs measure associated with Hβ is

μβ(σ) = 1

Zβ

e−βHβ(σ), σ ∈ Xβ,(1.2)

where Zβ is the normalizing partition function.
The dynamics of the model will the continuous-time Markov chain, (σ (t))t≥0,

with state space Xβ , whose transition rates are given by

cβ(σ, σ ′) =
{

e−β[Hβ(σ ′)−Hβ(σ)]+, for σ ′ = σx for some x ∈ �β ,
0, otherwise,

(1.3)

where σx is the configuration obtained from σ by flipping the spin at site x and [·]+
denotes the positive part. We refer to this Markov process as Glauber dynamics. It
is ergodic and reversible with respect to its unique invariant measure, μβ , that is,

μβ(σ)cβ(σ, σ ′) = μβ(σ ′)cβ(σ ′, σ ) ∀σ,σ ′ ∈ Xβ.(1.4)

Glauber dynamics exhibits metastable behavior in the regime

0 < h < 2J, β → ∞.(1.5)

To understand this, let us briefly recall what happens in a finite β-independent box
� ⊂ Z

2. Let �� and �� denote the configurations where all spins in � are −1



664 A. BOVIER, F. DEN HOLLANDER AND C. SPITONI

FIG. 1. A critical droplet for Glauber dynamics on �. The shaded area represents the (+1)-spins;
the unshaded area represents the (−1)-spins [see (1.6)].

(resp. +1). As was shown by Neves and Schonmann [22], for Glauber dynamics
restricted to � with periodic boundary conditions and subject to (1.5), the critical
droplets for the crossover from �� to �� are elements of the set of all those
configurations where the (+1)-spins form an �c × (�c − 1) quasi-square (in either
of the both orientations) with a protuberance attached to one of its longest sides,
where

�c =
⌈

2J

h

⌉
(1.6)

(see Figures 1 and 2; for nondegeneracy reasons, it is assumed that 2J/h /∈ N).
The quasi-squares without the protuberance are called proto-critical droplets.

Let us now return to our setting with finite β-dependent volumes �β ⊂ Z
2. We

will start our dynamics on �β from initial configurations in which all droplets
are “sufficiently small.” To make this notion precise, let CB(σ), σ ∈ Xβ , be the

FIG. 2. A nucleation path from �� to �� for Glauber dynamics. � in (1.10) is the minimal energy
barrier the path has to overcome under the local variant of the Hamiltonian in (1.1).
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configuration that is obtained from σ by a “bootstrap percolation map,” that is,
by circumscribing all of the droplets in σ with rectangles and continuing to do so
in an iterative manner until a union of disjoint rectangles is obtained (see Kotecký
and Olivieri [19]). We call CB(σ) subcritical if all of its rectangles fit inside proto-
critical droplets and are at distance ≥ 2 from each other (i.e., are noninteracting).

DEFINITION 1.1. (a) S = {σ ∈ Xβ :CB(σ) is subcritical};
(b) P = {σ ∈ S : cβ(σ, σ ′) > 0 for some σ ′ ∈ S c};
(c) C = {σ ′ ∈ S c : cβ(σ, σ ′) > 0 for some σ ∈ S}.

We refer to S , P and C as the set of subcritical, proto-critical and critical con-
figurations, respectively. Note that, for every σ ∈ Xβ , each step in the bootstrap
percolation map σ → CB(σ) deceases the energy and therefore the Glauber dy-
namics moves from σ to CB(σ) in a time of order 1. This is why CB(σ), rather
than σ , appears in the definition of S .

For �1, �2 ∈ N, let R�1,�2(x) ⊂ �β be the �1 × �2 rectangle whose lower-left
corner is x. We always take �1 ≤ �2 and allow for both orientations of the rectan-
gle. For L = 1, . . . ,2�c − 3, let QL(x) denote the Lth element in the canonical
sequence of growing squares and quasi-squares

R1,2(x),R2,2(x),R2,3(x),R3,3(x), . . . ,R�c−1,�c−1(x),R�c−1,�c (x).(1.7)

In what follows, we will choose to start the dynamics in a way that is suitable
for the use of potential theory, as follows. First, we take the initial law to be con-
centrated on one of the sets SL ⊂ S defined by

SL = {σ ∈ S : each rectangle in CB(σ)
(1.8)

fits inside QL(x) for some x ∈ �β},
where L is any integer satisfying

L∗ ≤ L ≤ 2�c − 3
(1.9)

with L∗ = min
{

1 ≤ L ≤ 2�c − 3 : lim
β→∞

μβ(SL)

μβ(S)
= 1

}
.

In words, SL is the subset of those subcritical configurations whose droplets fit
inside a square or quasi-square labeled L, with L chosen large enough so that SL

is typical within S under the Gibbs measure μβ as β → ∞ (our results will not
depend on the choice of L subject to these restrictions). Second, we take the initial
law to be biased according to the last exit of SL for the transition from SL to a
target set in S c. (Different choices will be made for the target set and the precise
definition of the biased law will be given in Section 2.2.) This is a highly specific
choice, but clearly one of physical interest.
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REMARKS. (1) Note that S2�c−3 = S , which implies that the range of L-
values in (1.9) is nonempty. The value of L∗ depends on how fast �β grows
with β . In Appendix C.1, we will show that, for every 1 ≤ L ≤ 2�c − 4,
limβ→∞ μβ(SL)/μβ(S) = 1 if and only if limβ→∞ |�β |e−β�L+1 = 0, with �L+1
the energy needed to create a droplet QL+1(0) at the origin. Thus, if |�β | = eθβ ,
then L∗ = L∗(θ) = (2�c − 3) ∧ min{L ∈ N :�L+1 > θ}, which increases stepwise
from 1 to 2�c − 3 as θ increases from 0 to � defined in (1.10).

(2) If we draw the initial configuration σ0 from some subset of S that has a
strong recurrence property under the dynamics, then the choice of initial distribu-
tion on this subset should not matter. This issue will be addressed in future work.

To state our main theorem for Glauber dynamics, we need some further nota-
tion. The key quantity for the nucleation process is

� = J [4�c] − h[�c(�c − 1) + 1],(1.10)

which is the energy needed to create a critical droplet of (+1)-spins at a given
location in a sea of (−1)-spins (see Figures 1 and 2). For σ ∈ Xβ , let Pσ denote
the law of the dynamics starting from σ and, for ν a probability distribution on X ,
put

Pν(·) = ∑
σ∈Xβ

Pσ (·)ν(σ ).(1.11)

For a nonempty set A ⊂ Xβ , let

τA = inf{t > 0 :σt ∈ A, σt− /∈ A}(1.12)

denote the first time that the dynamics enters A. For nonempty and disjoint sets
A, B ⊂ Xβ , let νB

A denote the last-exit biased distribution on A for the crossover
to B defined in (2.9) in Section 2.2. Put

N1 = 4�c, N2 = 4
3(2�c − 1).(1.13)

For M ∈ N with M ≥ �c, define

DM = {σ ∈ Xβ :∃x ∈ �β such that supp[CB(σ)] ⊃ RM,M(x)},(1.14)

that is, the set of configurations containing a supercritical droplet of size M . For
our results below to be valid, we need to assume that

lim
β→∞|�β | = ∞, lim

β→∞|�β |e−β� = 0.(1.15)

THEOREM 1.2. In the regime (1.5), subject to (1.9) and (1.15), the following
hold:

(a)

lim
β→∞|�β |e−β�

E
νSc

SL

(τS c ) = 1

N1
;(1.16)
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(b)

lim
β→∞|�β |e−β�

E
ν

Sc\C
SL

(τS c\C ) = 1

N2
;(1.17)

(c)

lim
β→∞|�β |e−β�

E
ν

DM
SL

(τDM
) = 1

N2
∀�c ≤ M ≤ 2�c − 1.(1.18)

The proof of Theorem 1.2 will be given in Section 3. Part (a) says that the av-
erage time to create a critical droplet is [1 + o(1)]eβ�/N1|�β |. Parts (b) and (c)
say that the average time to go beyond this critical droplet and to grow a droplet
that is twice as large is [1 + o(1)]eβ�/N2|�β |. The factor N1 counts the num-
ber of shapes of the critical droplet, while |�β | counts the number of locations.
The average times to create a critical and a supercritical droplet differ by a fac-
tor N2/N1 < 1. This is because once the dynamics is “on top of the hill” C , it
has a positive probability to “fall back” to S . On average, the dynamics makes
N1/N2 > 1 attempts to reach the top C before it finally “falls over” to S c \ C . After
that, it rapidly grows a large droplet (see Figure 2).

REMARKS. (1) The second condition in (1.15) will not actually be used in the
proof of Theorem 1.2(a). If this condition fails, then there is a positive probability
to see a proto-critical droplet in �β under the starting measure νS c

SL
and nucleation

sets in immediately. Theorem 1.2(a) continues to be true, but it no longer describes
metastable behavior.

(2) In Appendix D, we will show that the average probability under the Gibbs
measure μβ of destroying a supercritical droplet and returning to a configuration in
SL is exponentially small in β . Hence, the crossover from SL to S c \ C represents
the true threshold for nucleation and Theorem 1.2(b) represents the true nucleation
time.

(3) We expect Theorem 1.2(c) to hold for values of M that grow with β as
M = eo(β). As we will see in Section 3.3, the necessary capacity estimates carry
over, but the necessary equilibrium potential estimates are not yet available. This
problem will be addressed in future work.

(4) Theorem 1.2 should be compared with the results in Bovier and Manzo [8]
for the case of a finite β-independent box � (large enough to accommodate a
critical droplet). In that case, if the dynamics starts from ��, then the average
time it needs to hit C� (the set of configurations in � with a critical droplet),
respectively, �� equals

Keβ�[1 + o(1)] with K = K(�,�c) = 1

N

1

|�| for N = N1(resp. N2).(1.19)

(5) Note that in Theorem 1.2, we compute the first time when a critical droplet
appears anywhere (!) in the box �β . It is a different issue to compute the first
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time when the plus-phase appears near the origin. This time, which depends on
how a supercritical droplet grows and eventually invades the origin, was studied
by Dehghanpour and Schonmann [10, 11], Shlosman and Schonmann [24] and,
more recently, by Cerf and Manzo [9].

1.3. Lattice gas subject to Kawasaki dynamics. We next consider the lattice
gas subject to Kawasaki dynamics and state a similar result for homogeneous nu-
cleation. Some aspects are similar to what we have seen for Glauber dynamics, but
there are notable differences.

A lattice gas configuration is denoted by σ = {σ(x) :x ∈ Xβ}, with σ(x) repre-
senting the number of particles at site x, and is an element of Xβ = {0,1}�β . The
Hamiltonian is given by

Hβ(σ) = −U
∑

(x,y)∈�β

x∼y

σ (x)σ (y), σ ∈ Xβ,(1.20)

where −U < 0 is the binding energy and x ∼ y means that x and y are neighboring
sites. Thus, we are working in the canonical ensemble, that is, there is no term
analogous to the second term in (1.1). The number of particles in �β is

nβ = �ρβ |�β |�,(1.21)

where ρβ is the particle density, which is chosen to be

ρβ = e−β�, � > 0.(1.22)

Put

X (nβ)

β = {σ ∈ Xβ : | supp[σ ]| = nβ},(1.23)

where supp[σ ] = {x ∈ �β :σ(x) = 1}.

REMARK. If we were to work in the grand-canonical ensemble, then we
would have to consider the Hamiltonian

Hgc(σ ) = −U
∑

(x,y)∈�β

x∼y

σ (x)σ (y) + �
∑

x∈�β

σ(x), σ ∈ Xβ,(1.24)

where � > 0 is an activity parameter taking over the role of h in (1.1). The second
term would mimic the presence of an infinite gas reservoir with density ρβ outside
�β . Such a Hamiltonian was used in earlier work on Kawasaki dynamics, when
a finite β-independent box with open boundaries was considered (see, e.g., den
Hollander, Olivieri and Scoppola [18], den Hollander et al. [17] and Bovier, den
Hollander and Nardi [7]).
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The dynamics of the model will be the continuous-time Markov chain, (σt )t≥0,

with state space X (nβ)

β , whose transition rates are

cβ(σ, σ ′) =
⎧⎨
⎩

e−β[Hβ(σ ′)−Hβ(σ)]+,

for σ ′ = σx,y for some x, y ∈ �β with x ∼ y,

0, otherwise,
(1.25)

where σx,y is the configuration obtained from σ by interchanging the values at
sites x and y. We refer to this Markov process as Kawasaki dynamics. It is ergodic
and reversible with respect to the canonical Gibbs measure

μβ(σ) = 1

Z
(nβ)

β

e−βHβ(σ), σ ∈ X (nβ)

β ,(1.26)

where Z
(nβ)

β is the normalizing partition function. Note that the dynamics preserves
particles, that is, it is conservative.

Kawasaki dynamics exhibits metastable behavior in the regime

U < � < 2U, β → ∞.(1.27)

This is again inferred from the behavior of the model in a finite β-independent box
� ⊂ Z

2. Let �� (resp. ��) denote the configurations where all of the sites in �

are vacant (resp. occupied). For Kawasaki dynamics on � with an open boundary,
where particles are annihilated at rate 1 and created at rate e−�β , it was shown
in den Hollander, Olivieri, and Scoppola [18] and in Bovier, den Hollander, and
Nardi [7] that, subject to (1.27) and for the Hamiltonian in (1.24), the critical
droplets for the crossover from �� to �� are the set of all those configurations
where the particles form either:

(1) an (�c − 2) × (�c − 2) square with four bars attached to the four sides with
total length 3�c − 3; or

(2) an (�c − 1) × (�c − 3) rectangle with four bars attached to the four sides with
total length 3�c − 2,

plus a free particle anywhere in the box, where

�c =
⌈

U

2U − �

⌉
(1.28)

[see Figures 3 and 4; for nondegeneracy reasons, it is assumed that U/(2U −�) /∈
N].

Let us now return to our setting with finite β-dependent volumes. We define a
reference distance, Lβ , as

L2
β = e(�−δβ)β = 1

ρβ

e−δββ(1.29)
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FIG. 3. A critical droplet for Kawasaki dynamics on � (a proto-critical droplet plus a free particle).
The shaded area represents the particles; the unshaded area represents the vacancies [see (1.28)].
The proto-critical droplet for Kawasaki dynamics drawn in the figure has the same shape as the
critical droplet for Glauber dynamics, but there are other shapes as well [see (1) and (2) below
(1.27)]. A proto-critical droplet for Kawasaki dynamics becomes critical when a free particle is
added.

with

lim
β→∞ δβ = 0, lim

β→∞βδβ = ∞,(1.30)

FIG. 4. A nucleation path from �� to �� for Kawasaki dynamics on � with open boundary.
� in (1.33) is the minimal energy barrier the path has to overcome under the local variant of the
grand-canonical Hamiltonian in (1.24).
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that is, Lβ is marginally below the typical inter-particle distance. We assume Lβ

to be odd and write BLβ,Lβ (x), x ∈ �β , for the square box with side length Lβ

whose center is x.

DEFINITION 1.3. (a) S = {σ ∈ X (nβ)

β : | supp[σ ]∩BLβ,Lβ (x)| ≤ �c(�c−1)+1
∀x ∈ �β};

(b) P = {σ ∈ S : cβ(σ, σ ′) > 0 for some σ ′ ∈ S c};
(c) C = {σ ′ ∈ S c : cβ(σ, σ ′) > 0 for some σ ∈ S};
(d) C− = {σ ∈ C :∃x ∈ �β such that BLβ,Lβ (x) contains a proto-critical droplet

plus a free particle at distance Lβ};
(e) C+ = the set of configurations obtained from C− by moving the free particle

to a site at distance 2 from the proto-critical droplet, that is, next to its boundary;
(f) C̃ = the set of configurations “interpolating” between C− and C+, that is, the

free particle is somewhere between the boundary of the proto-critical droplet and
the boundary of the box of size Lβ around it.

As before, we refer to S , P and C as the set of subcritical, proto-critical and
critical configurations, respectively. Note that, for every σ ∈ S , the number of
particles in a box of size Lβ does not exceed the number of particles in a proto-
critical droplet. These particles do not have to form a cluster or to be near each
other because the Kawasaki dynamics brings them together in a time of order L2

β =
o(1/ρβ).

The initial law will again be concentrated on sets SL ⊂ S , this time defined by

SL = {
σ ∈ X (nβ)

β : | supp[σ ] ∩ BLβ,Lβ (x)| ≤ L∀x ∈ �β

}
,(1.31)

where L is any integer satisfying

L∗ ≤ L ≤ �c(�c − 1) + 1
(1.32)

with L∗ = min
{

1 ≤ L ≤ �c(�c − 1) + 1 : lim
β→∞

μβ(SL)

μβ(S)
= 1

}
.

In words, SL is the subset of those subcritical configurations for which no box of
size Lβ carries more than L particles, with L again chosen such that SL is typical
within S under the Gibbs measure μβ as β → ∞.

REMARK. Note that S�c(�c−1)+1 = S . As for Glauber dynamics, the value
of L∗ depends on how fast �β grows with β . In Appendix C.2, we will show
that for every 1 ≤ L ≤ �c(�c − 1), limβ→∞ μβ(SL)/μβ(S) = 1 if and only if
limβ→∞ |�β |e−β(�L+1−�) = 0, with �L+1 the energy needed to create a droplet
of L + 1 particles, closest in shape to a square or quasi-square, in BLβ,Lβ (0)

under the grand-canonical Hamiltonian on this box. Thus, if |�β | = eθβ , then
L∗ = L∗(θ) = [�c(�c − 1) + 1] ∧ min{L ∈ N :�L+1 − � > θ}, which increases
stepwise from 1 to �c(�c − 1) + 1 as θ increases from � to � defined in (1.33).
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Set

� = −U [(�c − 1)2 + �c(�c − 1) + 1] + �[�c(�c − 1) + 2],(1.33)

which is the energy of a critical droplet at a given location with respect to the
grand-canonical Hamiltonian given by (1.24) (see Figures 3 and 4). Put N =
1
3�2

c(�
2
c − 1). For M ∈ N with M ≥ �c, define

DM = {σ ∈ Xβ :∃x ∈ �β such that supp[(σ )] ⊃ RM,M(x)},(1.34)

that is, the set of configurations containing a supercritical droplet of size M . For
our results below to be valid, we need to assume that

lim
β→∞|�β |ρβ = ∞, lim

β→∞|�β |e−β� = 0.(1.35)

This first condition says that the number of particles tends to infinity and ensures
that the formation of a critical droplet somewhere does not globally deplete the
surrounding gas.

THEOREM 1.4. In the regime (1.27), subject to (1.32) and (1.35), the follow-
ing hold:

(a)

lim
β→∞|�β | 4π

β�
e−β�

E
ν

(Sc\C̃)∪C+
SL

(
τ(S c\C̃)∪C+

) = 1

N
;(1.36)

(b)

lim
β→∞|�β | 4π

β�
e−β�

E
ν

DM
SL

(τDM
) = 1

N
∀�c ≤ M ≤ 2�c − 1.(1.37)

The proof of Theorem 1.4, which is an analog of Theorem 1.2, will be given
in Section 4. Part (a) says that the average time to create a critical droplet is [1 +
o(1)](β�/4π)eβ�N |�β |. The factor β�/4π comes from the simple random walk
that is performed by the free particle “from the gas to the proto-critical droplet”
(i.e., the dynamics goes from C− to C+), which slows down the nucleation. The
factor N counts the number of shapes of the proto-critical droplet (see Bovier, den
Hollander and Nardi [7]). Part (b) says that once the critical droplet is created, it
rapidly grows to a droplet that has twice the size.

REMARKS. (1) As for Theorem 1.2(c), we expect Theorem 1.4(b) to hold for
values of M that grow with β as M = eo(β). See Section 4.2 for more details.

(2) In Appendix D, we will show that the average probability under the Gibbs
measure μβ of destroying a supercritical droplet and returning to a configuration
in SL is exponentially small in β . Hence, the crossover from SL to S c \ C̃ ∪ C+
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represents the true threshold for nucleation and Theorem 1.4(a) represents the true
nucleation time.

(3) It was shown in Bovier, den Hollander and Nardi [7] that the average
crossover time in a finite box � equals

Keβ�[1 + o(1)] with K = K(�,�c) ∼ log |�|
4π

1

N |�| ,� → Z
2.(1.38)

This matches the |�β |-dependence in Theorem 1.4, with the logarithmic factor
in (1.38) accounting for the extra factor β� in Theorem 1.4 compared to Theo-
rem 1.2. Note that this factor is particularly interesting since it says that the effec-
tive box size responsible for the formation of a critical droplet is Lβ .

1.4. Outline. The remainder of this paper is organized as follows. In Sec-
tion 2, we present a brief sketch of the basic ingredients of the potential-theoretic
approach to metastability. In particular, we exhibit a relation between average
crossover times and capacities and we state two variational representations for
capacities, the first of which is suitable for deriving upper bounds and the sec-
ond for deriving lower bounds. Section 3 contains the proof of our results for the
case of Glauber dynamics. Technically, this will be relatively easy and will give
a first flavor of how our method works. In Section 4, we deal with Kawasaki dy-
namics. Here, we will encounter several rather more difficult issues, all coming
from the fact that Kawasaki dynamics is conservative. The first issue is to under-
stand why the constant �, representing the local energetic cost to create a critical
droplet, involves the grand-canonical Hamiltonian, even though we are working in
the canonical ensemble. This mystery will, of course, be resolved by the observa-
tion that the formation of a critical droplet reduces the entropy of the system: the
precise computation of this entropy loss yields � via equivalence of ensembles.
The second problem is to control the probability of a particle moving from the
gas to the proto-critical droplet at the last stage of the nucleation. This nonlocality
issue will be dealt with via upper and lower estimates. Appendices A–D collect
some technical lemmas that are needed in Sections 3 and 4.

The extension of our results to higher dimensions is limited only by the com-
binatorial problems involved in the computation of the number of critical droplets
(which is hard in the case of Kawasaki dynamics) and of the probability for sim-
ple random walk to hit a critical droplet of a given shape when coming from
far. We will not pursue this generalization here. The relevant results for a β-
independent box in Z

3 can be found in Ben Arous and Cerf [1] (Glauber) and den
Hollander, Nardi, Olivieri and Scoppola [17] (Kawasaki). For recent overviews on
droplet growth in metastability, we refer the reader to den Hollander [15, 16] and
Bovier [4, 5]. A general overview on metastability is given in the monograph by
Olivieri and Vares [23].

2. Basic ingredients of the potential-theoretic approach. The proofs of
Theorems 1.2 and 1.4 use the potential-theoretic approach to metastability de-
veloped in Bovier et al. [6]. This approach is based on the following three ob-
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servations. First, most quantities of physical interest can be represented in terms
of Dirichlet problems associated with the generator of the dynamics. Second, the
Green function of the dynamics can be expressed in terms of capacities and equi-
librium potentials. Third, capacities satisfy variational principles that allow upper
and lower bounds to be obtained in a flexible way. We will see that in the current
setting, the implementation of these observations provides very sharp results.

2.1. Equilibrium potential and capacity. The fundamental quantity in the the-
ory is the equilibrium potential, hA,B , associated with two nonempty disjoint sets

of configurations, A, B ⊂ X (Xβ or X (nβ)

β ), which, probabilistically, is given by

hA,B(σ ) =
⎧⎨
⎩

Pσ (τA < τB), for σ ∈ (A ∪ B)c,
1, for σ ∈ A,
0, for σ ∈ B,

(2.1)

where

τA = inf{t > 0 :σt ∈ A, σt− /∈ A},(2.2)

(σt )t≥0 is the continuous-time Markov chain with state space X and Pσ is its
law starting from σ . This function is harmonic and is the unique solution of the
Dirichlet problem

(LhA,B)(σ ) = 0, σ ∈ (A ∪ B)c,

hA,B(σ ) = 1, σ ∈ A,(2.3)

hA,B(σ ) = 0, σ ∈ B,

where the generator is the matrix with entries

L(σ,σ ′) = cβ(σ, σ ′) − δσ,σ ′cβ(σ ), σ, σ ′ ∈ X ,(2.4)

where cβ(σ ) is the total rate at which the dynamics leaves σ ,

cβ(σ ) = ∑
σ ′∈X \{σ }

cβ(σ, σ ′), σ ∈ X .(2.5)

A related quantity is the equilibrium measure on A, which is defined as

eA,B(σ ) = −(LhA,B)(σ ), σ ∈ A.(2.6)

The equilibrium measure also has a probabilistic meaning, namely,

Pσ (τB < τA) = eA,B(σ )

cβ(σ )
, σ ∈ A.(2.7)

The key object we will work with is the capacity, which is defined as

CAP(A, B) = ∑
σ∈A

μβ(σ)eA,B(σ ).(2.8)
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2.2. Relation between crossover time and capacity. The first important ingre-
dient of the potential-theoretic approach to metastability is a formula for the aver-
age crossover time from A to B. To state this formula, we define the probability
measure νB

A on A which we already referred to in Section 1, namely,

νB
A(σ ) =

⎧⎨
⎩

μβ(σ)eA,B(σ )

CAP(A, B)
, for σ ∈ A,

0, for σ ∈ Ac.
(2.9)

The following proposition is proved in, for example, Bovier [5].

PROPOSITION 2.1. For any two nonempty disjoint sets A, B ⊂ X ,

∑
σ∈A

νB
A(σ )Eσ (τB) = 1

CAP(A, B)

∑
σ∈Bc

μβ(σ )hA,B(σ ).(2.10)

REMARKS. (1) Due to (2.7) and (2.8), the probability measure νB
A(σ ) can be

written as

νB
A(σ ) = μβ(σ)cβ(σ )

CAP(A, B)
Pσ (τB < τA), σ ∈ A,(2.11)

and thus has the flavor of a last-exit biased distribution. Proposition 2.1 explains
why our main results on average crossover times stated in Theorem 1.2 and 1.4 are
formulated for this initial distribution. Note that

μβ(A) ≤ ∑
σ∈Bc

μβ(σ )hA,B(σ ) ≤ μβ(Bc).(2.12)

We will see that in our setting, μβ(Bc \ A) = o(μβ(A)) as β → ∞ so that the sum
in the right-hand side of (2.10) is ∼ μβ(A) and the computation of the crossover
time reduces to the estimation of CAP(A, B).

(2) For a fixed target set B, the choice of the starting set A is free. It is tempt-
ing to choose A = {σ } for some σ ∈ X . This was done for the case of a finite
β-independent box �. However, in our case (and, more generally, in cases where
the state space is large) such a choice would give intractable numerators and de-
nominators in the right-hand side of (2.10). As a rule, to make use of the identity
in (2.10), A must be so large that the harmonic function hA,B “does not change
abruptly near the boundary of A” for the target set B under consideration.

As noted above, average crossover times are essentially governed by capacities.
The usefulness of this observation comes from the computability of capacities, as
will be explained next.

2.3. The Dirichlet principle: a variational principle for upper bounds. The
capacity is a boundary quantity because eA,B > 0 only on the boundary of A.
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The analog of Green’s identity relates it to a bulk quantity. Indeed, in terms of the
Dirichlet form defined by

E (h) = 1

2

∑
σ,σ ′∈X

μβ(σ)cβ(σ, σ ′)[h(σ) − h(σ ′)]2, h : X → [0,1],(2.13)

it follows, via (2.1) and (2.7) and (2.8), that

CAP(A, B) = E (hA,B).(2.14)

Elementary variational calculus shows that the capacity satisfies the Dirichlet prin-
ciple.

PROPOSITION 2.2. For any two nonempty disjoint sets A, B ⊂ X ,

CAP(A, B) = min
h : X →[0,1]

h|A≡1,h|B≡0

E (h).(2.15)

The importance of the Dirichlet principle is that it yields computable upper
bounds for capacities by means of suitable choices of the test function h. In
metastable systems, with the proper physical insight, it is often possible to guess a
reasonable test function. In our setting, this will be seen to be relatively easy.

2.4. The Berman–Konsowa principle: a variational principle for lower bounds.
We will describe a little-known variational principle for capacities that is originally
due to Berman and Konsowa [2]. Our presentation will follow the argument given
in Bianchi, Bovier and Ioffe [3].

In the following, it will be convenient to think of X as the vertex set of a
graph (X , E ) whose edge set E consists of all pairs (σ, σ ′), σ,σ ′ ∈ X , for which
cβ(σ, σ ′) > 0.

DEFINITION 2.3. Given two nonempty disjoint sets A, B ⊂ X , a loop-free
nonnegative unit flow, f , from A to B is a function f : E → [0,∞) such that:

(a) (f (e) > 0 �⇒ f (−e) = 0) ∀e ∈ E ;
(b) f satisfies Kirchoff’s law, that is,∑

σ ′∈X
f (σ,σ ′) = ∑

σ ′′∈X
f (σ ′′, σ ) ∀σ ∈ X \ (A ∪ B);(2.16)

(c) f is normalized, that is,∑
σ∈A

∑
σ ′∈X

f (σ,σ ′) = 1 = ∑
σ ′′∈X

∑
σ∈B

f (σ ′′, σ );(2.17)

(d) any path from A to B along edges e such that f (e) > 0 is self-avoiding.

The space of all loop-free nonnegative unit flows from A to B is denoted by
UA,B .
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A natural flow is the harmonic flow, which is constructed from the equilibrium
potential hA,B as

fA,B(σ, σ ′) = 1

CAP(A, B)
μβ(σ )cβ(σ, σ ′)[hA,B(σ ) − hA,B(σ ′)]+,

(2.18)
σ,σ ′ ∈ X .

It is easy to verify that fA,B satisfies (a)–(d). Indeed, (a) is obvious, (b) uses the
harmonicity of hA,B , (c) follows from (2.6) and (2.8), while (d) comes from the
fact that the harmonic flow only moves in directions where hA,B decreases.

A loop-free nonnegative unit flow f is naturally associated with a probability
measure P

f on self-avoiding paths, γ . To see this, define F(σ) = ∑
σ ′∈X f (σ,σ ′),

σ ∈ X \ B. Then P
f is the Markov chain (σn)n∈N0 with initial distribution

P
f (σ0) = F(σ0)1A(σ0) and transition probabilities

qf (σ, σ ′) = f (σ,σ ′)
F (σ )

, σ ∈ X \ B,(2.19)

such that the chain is stopped upon arrival in B. In terms of this probability mea-
sure, we have the following proposition (see [3] for a proof).

PROPOSITION 2.4. Let A, B ⊂ X be two nonempty disjoint sets. Then, with
the notation introduced above,

CAP(A, B) = sup
f ∈UA,B

E
f

([∑
e∈γ

f (el, er)

μβ(el)cβ(el, er)

]−1)
,(2.20)

where e = (el, er) and the expectation is with respect to γ . Moreover, the supre-
mum is realized for the harmonic flow fA,B .

The nice feature of this variational principle is that any flow gives a computable
lower bound. In this sense, (2.15) and (2.20) complement each other. Moreover,
since the harmonic flow is optimal, a good approximation of the harmonic function
hA,B by a test function h leads to a good approximation of the harmonic flow fA,B
by a test flow f after putting h instead of hA,B into (2.18). Again, in metastable
systems, with the proper physical insight, it is often possible to guess a reasonable
flow. We will see in Sections 3–4 how this is put to work in our setting.

3. Proof of Theorem 1.2.

3.1. Proof of Theorem 1.2(a). To estimate the average crossover time from
SL ⊂ S to S c, we will use Proposition 2.1. With A = SL and B = S c, (2.10) reads

∑
σ∈SL

νS c

SL
(σ )Eσ (τS c ) = 1

CAP(SL, S c)

∑
σ∈S

μβ(σ)hSL,S c (σ ).(3.1)
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The left-hand side is the quantity of interest in (1.16). In Sections 3.1.1 and 3.1.2,
we estimate

∑
σ∈S μβ(σ)hSL,S c (σ ) and CAP(SL, S c). The estimates will show

that

r.h.s. (3.1) = 1

N1|�β |e
β�[1 + o(1)], β → ∞.(3.2)

3.1.1. Estimate of
∑

σ∈S μβ(σ)hSL,S c (σ ).

LEMMA 3.1.
∑

σ∈S μβ(σ)hSL,S c (σ ) = μβ(S)[1 + o(1)] as β → ∞.

PROOF. Write, using (2.1),∑
σ∈S

μβ(σ)hSL,S c (σ ) = ∑
σ∈SL

μβ(σ )hSL,S c (σ ) + ∑
σ∈S\SL

μβ(σ )hSL,S c (σ )

(3.3)
= μβ(SL) + ∑

σ∈S\SL

μβ(σ )Pσ (τSL
< τS c ).

The last sum is bounded above by μβ(S \ SL), but μβ(S \ SL) = o(μβ(S)) as
β → ∞ by our choice of L in (1.9). �

3.1.2. Estimate of CAP(SL, S c).

LEMMA 3.2. CAP(SL, S c) = N1|�β |e−β�μβ(S)[1 + o(1)] as β → ∞ with
N1 = 4�c.

PROOF. The proof proceeds via upper and lower bounds.
Upper bound. We use the Dirichlet principle and a test function that is equal

to 1 on S to get the upper bound

CAP(SL, S c) ≤ CAP(S, S c) = ∑
σ∈S,σ ′∈S c

cβ(σ,σ ′)>0

μβ(σ)cβ(σ, σ ′)

(3.4)
= ∑

σ∈S,σ ′∈S c

cβ(σ,σ ′)>0

[μβ(σ) ∧ μβ(σ ′)] ≤ μβ(C),

where the second equality uses (1.4) in combination with the fact that cβ(σ, σ ′) ∨
cβ(σ ′, σ ) = 1, by (1.3). Thus, it suffices to show that

μβ(C) ≤ N1|�β |e−β�[1 + o(1)] as β → ∞.(3.5)

For every σ ∈ P , there are one or more rectangles R�c−1,�c (x), x = x(σ ) ∈ Xβ ,
that are filled by (+1)-spins in CB(σ). If σ ′ ∈ C is such that σ ′ = σy for some



HOMOGENEOUS NUCLEATION 679

FIG. 5. R�c−1,�c
(x) (shaded box) and [R�c+1,�c+2(x − (1,1))]c (complement of dotted box).

y ∈ �β , then σ ′ has a (+1)-spin at y situated on the boundary of one of these
rectangles. Let

Ŝ(x) = {σ ∈ S : supp[σ ] ⊆ R�c−1,�c (x)},
(3.6)

Š(x) = {
σ ∈ S : supp[σ ] ⊆ [

R�c+1,�c+2
(
x − (1,1)

)]c}
.

For every σ ∈ P , we have σ = σ̂ ∨ σ̌ for some σ̂ ∈ Ŝ(x) and σ̌ ∈ Š(x), uniquely
decomposing the configuration into two noninteracting parts inside R�c−1,�c (x)

and [R�c+1,�c+2(x − (1,1))]c (see Figure 5). We have

Hβ(σ) − Hβ(�) = [Hβ(σ̂ ) − Hβ(�)] + [Hβ(σ̌ ) − Hβ(�)].(3.7)

Moreover, for any y /∈ supp[CB(σ)], we have

Hβ(σy) ≥ Hβ(σ) + 2J − h.(3.8)

Hence,

μβ(C) = 1

Zβ

∑
σ∈P

∑
x∈�β

σx∈C

e−βHβ(σx)

≤ 1

Zβ

N1e
−β[2J−h−Hβ(�)] ∑

x∈�β

∑
σ̌∈Š(x)

e−βHβ(σ̌ )
∑

σ̂∈Ŝ(x)

σ̂∨σ̌∈P

e−βHβ(σ̂ )

(3.9)

≤ [1 + o(1)] 1

Zβ

N1|�β |e−β�
∑

σ̌∈Š(0)

e−βHβ(σ̌ )

= [1 + o(1)]N1|�β |e−β�μβ(Š(0)),

where the first inequality uses (3.7)–(3.8), with N1 = 2 × 2�c = 4�c counting the
number of critical droplets that can arise from a proto-critical droplet via a spin
flip (see Figure 1), and the second inequality uses the fact that

σ̂ ∈ Ŝ(0), σ̂ ∨ σ̌ ∈ P
(3.10)

�⇒ Hβ(σ̂ ) ≥ Hβ(R�c−1,�c (0)) = � − (2J − h) + Hβ(�)
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FIG. 6. Canonical order to break down a critical droplet.

with equality in the right-hand side if and only if supp[σ̂ ] = R�c−1,�c (0). Combin-
ing (3.4) and (3.9) with the inclusion Š(0) ⊂ S , we get the upper bound in (3.5).

Lower bound. We exploit Proposition 2.4 by making a judicious choice for the
flow f . In fact, in the Glauber case, this choice will be simple: with each configu-
ration σ ∈ SL, we associate a configuration in C ⊂ S c with a unique critical droplet
and a flow that, from each such configuration, follows a unique deterministic path
along which this droplet is broken down in the canonical order (see Figure 6) until
the set SL is reached, that is, a square or quasi-square droplet with label L is left
over [recall (1.7)–(1.8)].

Let w(β) be such that

lim
β→∞w(β) = ∞, lim

β→∞
1

β
logw(β) = 0, lim

β→∞|�β |/w(β) = ∞(3.11)

and define

W = {σ ∈ S : | supp[σ ]| ≤ |�β |/w(β)}.(3.12)

Let CL ⊂ C ⊂ S c be the set of configurations obtained by picking any σ ∈ SL ∩ W
and adding somewhere in �β a critical droplet at distance ≥ 2 from supp[σ ]. Note
that the density restriction imposed on W guarantees that adding such a droplet
is possible almost everywhere in �β for β large enough. Denoting by P(y)(x) the
critical droplet obtained by adding a protuberance at y along the longest side of
the rectangle R�c−1,�c (x), we may write

CL = {
σ ∪ P(y)(x) :σ ∈ S ∩ W, x, y ∈ �β, (x, y)⊥σ

}
,(3.13)

where (x, y)⊥σ stands for the restriction that the critical droplet P(y)(x) is not
interacting with supp[σ ], which implies that Hβ(σ ∪ P(y)(x)) = Hβ(σ) + � (see
Figures 7 and 8).

FIG. 7. The critical droplet P(y)(x).
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FIG. 8. Going from SL to CL by adding a critical droplet P(y)(x) somewhere in �β .

Now, for each σ ∈ CL, we let γσ = (γσ (0), γσ (1), . . . , γσ (K)) be the canonical
path from σ = γσ (0) to SL along which the critical droplet is broken down, where
K = v(2�c − 3) − v(L) with

v(L) = |QL(0)|(3.14)

[recall (1.7)]. We will choose our flow such that

f (σ ′, σ ′′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ν0(σ ), if σ ′ = σ,σ ′′ = γσ (1) for some σ ∈ CL,∑
σ̃∈CL

f
(
γσ̃ (k − 1), γσ (k)

)
,

if σ ′ = γσ (k), σ ′′ = γσ (k + 1)

for some k ≥ 1, σ ∈ CL,

0, otherwise.

(3.15)

Here, ν0 is some initial distribution on CL that will turn out to be arbitrary as long
as its support is all of CL.

From (3.15), we see that the flow increases whenever paths merge. In our case,
this happens only after the first step, when the protuberance at y is removed. There-
fore, we get the explicit form

f (σ ′, σ ′′) =

⎧⎪⎪⎨
⎪⎪⎩

ν0(σ ), if σ ′ = σ , σ ′′ = γσ (1) for some σ ∈ CL,
Cν0(σ ), if σ ′ = γσ (k), σ ′′ = γσ (k + 1)

for some k ≥ 1, σ ∈ CL,
0, otherwise,

(3.16)

where C = 2�c is the number of possible positions of the protuberance on the
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proto-critical droplet (see Figure 6). Using Proposition 2.4, we therefore have

CAP(SL, S c) = CAP(S c, SL) ≥ CAP(CL, SL)

≥ ∑
σ∈CL

ν0(σ )

[
K−1∑
k=0

f (γσ (k), γσ (k + 1))

μβ(γσ (k))cβ(γσ (k), γσ (k + 1))

]−1

(3.17)

= ∑
σ∈CL

[
1

μβ(σ)cβ(γσ (0), γσ (1))

+
K−1∑
k=1

C

μβ(γσ (k))cβ(γσ (k), γσ (k + 1))

]−1

.

Thus, all we have to do is to control the sum between square brackets.
Because cβ(γσ (0), γσ (1)) = 1 (removing the protuberance lowers the energy),

the term with k = 0 equals 1/μβ(σ ). To show that the terms with k ≥ 1 are of
higher order, we argue as follows. Abbreviate � = h(�c − 2). For every k ≥ 1 and
σ(0) ∈ CL, we have [see Figure 9 and recall (1.2) and (1.3)]

μβ(γσ (k))cβ

(
γσ (k), γσ (k + 1)

) = 1

Zβ

e−β[Hβ(γσ (k))∨Hβ(γσ (k+1))]

(3.18)
≥ μβ(σ0)e

β[2J−h−�] = μβ(σ)eβδ,

where δ = 2J − h − � = 2J − h(�c − 1) > 0 [recall (1.6)]. Therefore,

K−1∑
k=1

C

μβ(γσ (k))cβ(γσ (k), γσ (k + 1))
≤ 1

μβ(σ)
CKe−δβ(3.19)

FIG. 9. Visualization of (3.18).
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and so, from (3.17), we get

CAP(SL, S c) ≥ ∑
σ∈CL

μβ(σ )

1 + CKe−βδ
= μβ(CL)

1 + CKe−βδ
= [1 + o(1)]μβ(CL).(3.20)

The last step is to estimate, with the help of (3.13),

μβ(CL) = 1

Zβ

∑
σ∈CL

e−βHβ(σ) = 1

Zβ

∑
σ∈SL∩W

∑
x,y∈�β

(x,y)⊥σ

e−βHβ(σ∪P(y)(x))

= e−β� 1

Zβ

∑
σ∈SL∩W

e−βHβ(σ)
∑

x,y∈�β

(x,y)⊥σ

1(3.21)

≥ e−β�μβ(SL ∩ W)N1|�β |[1 − (�c + 1)2/w(β)].
The last inequality uses the fact that |�β |(�c +1)2/w(β) is the maximal number of
sites in �β where it is not possible to insert a noninteracting critical droplet [recall
(3.12) and note that a critical droplet fits inside an �c × �c square]. According to
Lemma A.1 in Appendix A, we have

μβ(SL ∩ W) = μβ(SL)[1 + o(1)],(3.22)

while conditions (1.8) and (1.9) imply that μβ(SL) = μβ(S)[1+o(1)]. Combining
the latter with (3.20) and (3.21), we obtain the desired lower bound. �

3.2. Proof of Theorem 1.2(b). We use the same technique as in Section 3.1,
which is why we only give a sketch of the proof.

To estimate the average crossover time from SL ⊂ S to S c \ C , we will use
Proposition 2.1. With A = SL and B = S c \ C , (2.10) reads

∑
σ∈SL

ν
S c\C

SL
(σ )Eσ (τS c\C ) = 1

CAP(SL, S c \ C)

∑
σ∈S∪C

μβ(σ)hSL,S c\C (σ ).(3.23)

The left-hand side is the quantity of interest in (1.17).
In Sections 3.2.1 and 3.2.2 we estimate

∑
σ∈S∪C μβ(σ)hSL,S c\C (σ ) and

CAP(SL, S c \ C). The estimates will show that

the right-hand side of (3.23) = 1

N2|�β |e
β�[1 + o(1)], β → ∞.(3.24)

3.2.1. Estimate of
∑

σ∈S∪C μβ(σ)hSL,S c\C (σ ).

LEMMA 3.3.
∑

σ∈S∪C μβ(σ)hSL,S c\C (σ ) = μβ(S)[1 + o(1)] as β → ∞.
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PROOF. Write, using (2.1),∑
σ∈S∪C

μβ(σ)hSL,S c\C (σ )

(3.25)
= μβ(SL) + ∑

σ∈(S\SL)∪C
μβ(σ)Pσ (τSL

< τS c\C ).

The last sum is bounded above by μβ(S \ SL) + μβ(C). As before, μβ(S \ SL) =
o(μβ(S)) as β → ∞. But (1.35) and (3.9) imply that μβ(C) = o(μβ(S)) as
β → ∞. �

3.2.2. Estimate of CAP(SL, S c \ C).

LEMMA 3.4. CAP(S, S c \ C) = N2|�β |e−β�μβ(S)[1 + o(1)] as β → ∞
with N2 = 4

3(2�c − 1).

PROOF. The proof is similar to that of Lemma 3.2, except that it takes care of
the transition probabilities away from the critical droplet.

Upper bound. Recalling (2.13)–(2.15) and noting that Glauber dynamics does
not allow transitions within C , we have, for all h : C → [0,1],

CAP(SL, S c \ C) ≤ CAP(S, S c \ C)
(3.26)

≤ ∑
σ∈C

μβ(σ)
[
ĉσ

(
h(σ) − 1

)2 + čσ

(
h(σ) − 0

)2]
,

where ĉσ = ∑
η∈S cβ(σ, η) and čσ = ∑

η∈S c\C cβ(σ, η). The quadratic form in the
right-hand side of (3.26) achieves its minimum for h(σ) = ĉσ /(ĉσ + čσ ), so

CAP(SL, S c \ C) ≤ ∑
σ∈C

Cσμβ(σ )(3.27)

with Cσ = ĉσ čσ /(ĉσ + čσ ). We have

∑
σ∈C

Cσμβ(σ ) = 1

Zβ

∑
σ∈P

∑
x∈�β

σx∈C

Cσxe−βHβ(σx)

= e−β(2J−h) 1

Zβ

∑
σ∈P

e−βHβ(σ)2
(

1

2
4 + 2

3
(2�c − 4)

)
(3.28)

= e−β(2J−h)μβ(P)N2 = 1

N1
μβ(C)N2,

where, in the second line, we use the fact that Cσ = 1
2 if σ has a protuberance in a

corner (2 × 4 choices) and Cσ = 2
3 otherwise [2 × (2�c − 4) choices].
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FIG. 10. Canonical order to break down a proto-critical droplet plus a double protuberance. In the
first step, the double protuberance has probability 1

2 to be broken down in either of the two possible
ways. The subsequent steps are deterministic, as in Figure 6.

Lower bound. In analogy with (3.13), denoting by P 2
(y)(x) the droplet obtained

by adding a double protuberance at y along the longest side of the rectangle
R�c−1,�c (x), we define the set DL ⊂ S c \ C by

DL = {
σ ∪ P 2

(y)(x) :σ ∈ SL ∩ W, x, y ∈ �β, (x, y)⊥σ
}
.(3.29)

As in (3.15), we may choose any starting measure on DL. We choose the flow as
follows. For the first step, we choose

f (σ ′, σ ) = 1
2ν0(σ ), σ ′ ∈ DL,σ ∈ CL,(3.30)

which reduces the double protuberance to a single protuberance [compare (3.13)
and (3.29)]. For all subsequent steps, we follow the deterministic paths γσ used
in Section 3.1.2, which start from γσ (0) = σ (see Figure 10). Note, however, that
we get different values for the flows f (γσ (0), γσ (1)) depending on whether or
not the protuberance sits in a corner. In the former case, it has only one possible
antecedent, and so

f (γσ (0), γσ (1)) = 1
2ν0(σ ),(3.31)

while in the latter case it has two antecedents, and so

f (γσ (0), γσ (1)) = ν0(σ ).(3.32)

This time, the terms k = 0 and k = 1 are of the same order, while, as in (3.19), all
of the subsequent steps give a contribution that is a factor O(e−δβ) smaller. Indeed,
in analogy with (3.17), we obtain, writing σ ∼ σ ′ when cβ(σ ′, σ ) > 0,

CAP(SL, S c \ C)

= CAP(S c \ C, SL) ≥ CAP(DL, SL)

≥ ∑
σ ′∈DL

1

2

∑
σ∈CL

σ∼σ ′

[
f (σ ′, σ )

μβ(σ )
+ f (σ, γσ (1))

μβ(σ )

+
K−1∑
k=1

f (γσ (k), γσ (k + 1))

μβ(γσ (k))cβ(γσ (k), γσ (k + 1))

]−1

(3.33)
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≥ ∑
σ ′∈DL

1

2

∑
σ∈CL

σ∼σ ′

μβ(σ)[f (σ ′, σ ) + f (σ, γσ (1)) + CKe−βδ]−1

= [1 + o(1)]μβ(CL)

(
2�c − 4

2�c

1

1 + 1/2
+ 1

2

4

2�c

1

1/2 + 1/2

)

= [1 + o(1)]μβ(CL)
N2

N1
.

Using (3.21) and the remarks following it, we get the desired lower bound. �

3.3. Proof of Theorem 1.2(c). Write∑
σ∈Dc

M

μβ(σ )hSL,DM
(σ)

= ∑
σ∈SL

μβ(σ )hSL,DM
(σ) + ∑

σ∈Dc
M\SL

μβ(σ )hSL,DM
(σ)(3.34)

= μβ(SL) + ∑
σ∈Dc

M\SL

μβ(σ )Pσ (τSL
< τDM

).

The last sum is bounded above by μβ(S \ SL) + μβ(Dc
M \ S). But μβ(S \ SL) =

o(μβ(S)), as β → ∞ by our choice of L in (1.9), while μβ(Dc
M \ S) = o(μβ(S))

as β → ∞ because of the restriction �c ≤ M2�c −1. Indeed, under that restriction,
the energy of a square droplet of size M is strictly larger than the energy of a critical
droplet.

PROOF OF THEOREM 1.2(c). The proof follows along the same lines as
that of Theorems 1.2(a) and (b) in Sections 3.1 and 3.2. The main point is to
prove that CAP(SL, DM) = [1 + o(1)]CAP(SL, S c \ C). Since CAP(SL, DM) ≤
CAP(SL, S c \ C), which was estimated in Section 3.2, we need only prove a lower
bound on CAP(SL, DM). This is done by using a flow that breaks down an M ×M

droplet to a square or quasi-square droplet QL in the canonical way, which takes
M2 − v(L) steps [recall Figure 6 and (3.14)]. The leading terms are still the proto-
critical droplet with a single and a double protuberance. With each M ×M droplet
is associated a unique critical droplet so that the pre-factor in the lower bound is
the same as in the proof of Theorem 1.2(b).

Note that we can even allow M to grow with β as M = eo(β). Indeed, (3.11)
and (3.12) show that there is enough room to add a droplet of size eo(β) almost
everywhere in �β and the factor M2e−δβ replacing Ke−δβ in (3.20) is still o(1).

�
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4. Proof of Theorem 1.4.

4.1. Proof of Theorem 1.4(a).

4.1.1. Estimate of
∑

σ∈S∪(C̃\C+) μβ(σ )hSL,(S c\C̃)∪C+(σ ).

LEMMA 4.1.
∑

σ∈S∪(C̃\C+) μβ(σ )hSL,(S c\C̃)∪C+(σ ) = μβ(S)[1 + o(1)] as
β → ∞.

PROOF. Write, using (2.1),∑
σ∈S∪(C̃\C+)

μβ(σ )hSL,(S c\C̃)∪C+(σ )

(4.1)
= μβ(SL) + ∑

σ∈(S\SL)∪(C̃\C+)

μβ(σ )Pσ

(
τSL

< τ(S c\C̃)∪C+
)
.

The last sum is bounded above by μβ(S \ SL) + μβ(C̃ \ C+), but μβ(S \ SL) =
o(μβ(S)) as β → ∞ by our choice of L in (1.32). In Lemma B.3 in Appendix B.3,
we will show that μβ(C̃ \ C+) = o(μβ(S)) as β → ∞. �

4.1.2. Estimate of CAP(SL, (S c \ C̃) ∪ C+).

LEMMA 4.2. CAP(SL, (S c \ C̃) ∪ C+) = N |�β | 4π
β�

e−β�μβ(S)[1 + o(1)] as

β → ∞ with N = 1
3�2

c(�
2
c − 1).

PROOF. The argument is in the same spirit as that in Section 3.1.2. However, a
number of additional obstacles that arise from the conservative nature of Kawasaki
dynamics need to be overcome. The proof proceeds via upper and lower bounds
and takes up quite a bit of space.

Upper bound. The proof consists of seven steps.
1. Proto-critical droplet (see Figure 11) and free particle. We have

CAP
(

SL, (S c \ C̃) ∪ C+)
≤ CAP(S ∪ C−, (S c \ C̃) ∪ C+)(4.2)

= min
h : X

(nβ )

β →[0,1]
h|S∪C−≡1,h|

(Sc\C̃)∪C+≡0

1

2

∑
σ,σ ′∈X

(nβ )

β

μβ(σ )cβ(σ, σ ′)[h(σ) − h(σ ′)]2.

Split the right-hand side into a contribution coming from σ,σ ′ ∈ C̃ and the rest:

right-hand side of (4.2) = I + γ1(β),(4.3)
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FIG. 11. Schematic picture of the sets S , C−, C+ defined in Definition 1.3 and the set C̃ interpo-
lating between C− and C+.

where

I = min
h : C̃→[0,1]

h|C−≡1,h|C+≡0

1

2

∑
σ,σ ′∈C̃

μβ(σ)cβ(σ, σ ′)[h(σ) − h(σ ′)]2(4.4)

and γ1(β) is an error term that will be estimated in Step 7. This term will turn

out to be small because μβ(σ)cβ(σ, σ ′) is small when either σ ∈ X (nβ)

β \ C̃ or

σ ′ ∈ X (nβ)

β \ C̃ . Next, partition C̃ , C−, C+ into sets C̃(x), C−(x), C+(x), x ∈ �β ,
by requiring that the lower-left corner of the proto-critical droplet is in the center
of the box BLβ,Lβ (x). Then, because cβ(σ, σ ′) = 0 when σ ∈ C̃(x) and σ ′ ∈ C̃(x′)
for some x �= x′, we may write

I = |�β | min
h : C̃(0)→[0,1]

h|C−(0)≡1,h|C+(0)≡0

1

2

∑
σ,σ ′∈C̃(0)

μβ(σ )cβ(σ, σ ′)[h(σ) − h(σ ′)]2.(4.5)

2. Decomposition of configurations. Define [cf. (3.6)]

Ĉ(0) = {
σ1BLβ,Lβ

(0) :σ ∈ C̃(0)
}
,

(4.6)
Č(0) = {

σ1[BLβ,Lβ
(0)]c :σ ∈ C̃(0)

}
.

Every σ ∈ C̃(0) can then be uniquely decomposed as σ = σ̂ ∨ σ̌ for some σ̂ ∈ Ĉ(0)

and σ̌ ∈ Č(0). Note that Ĉ(0) has K = �c(�c −1)+2 particles and Č(0) has nβ −K

particles [and recall that, by the first half of (1.35), nβ → ∞ as β → ∞]. Define

C fp(0) = {σ ∈ C̃(0) :Hβ(σ) = Hβ(σ̂ ) + Hβ(σ̌ )},(4.7)

that is, the set of configurations consisting of a proto-critical droplet and a free par-
ticle inside BLβ,Lβ (0) not interacting with the particles outside BLβ,Lβ (0). Write
C fp,−(0) [resp. C fp,+(0)] to denote the subsets of C fp(0) where the free particle is
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at distance Lβ (resp. 2) from the proto-critical droplet. Split the right-hand side of
(4.5) into a contribution coming from σ,σ ′ ∈ C fp(0) and the rest:

right-hand side of (4.5) = |�β |[II + γ2(β)],(4.8)

where

II = min
h : C fp(0)→[0,1]

h|Cfp,−(0)
≡1,h|Cfp,+(0)

≡0

1

2

∑
σ,σ ′∈C fp(0)

μβ(σ )cβ(σ, σ ′)[h(σ) − h(σ ′)]2(4.9)

and γ2(β) is an error term that will be estimated in Step 6. This term will turn out
to be small because of loss of entropy when the particle is at the boundary.

3. Reduction to capacity of simple random walk. Estimate

II = min
h : C fp(0)→[0,1]

h|Cfp,−(0)
≡1,h|Cfp,+(0)

≡0

1

2

∑
σ̌ ,σ̌ ′∈Č(0)

∑
σ̂ ,σ̂ ′∈Ĉ(0):

σ̂∨σ̌ ,σ̂ ′∨σ̌ ′∈C fp(0)

μβ(σ̂ ∨ σ̌ )

× cβ(σ̂ ∨ σ̌ , σ̂ ′ ∨ σ̌ ′)

× [h(σ̂ ∨ σ̌ ) − h(σ̂ ′ ∨ σ̌ ′)]2(4.10)

≤ min
g : Ĉ(0)→[0,1]

g|Ĉ−(0)
≡1,g|Ĉ+(0)

≡0

1

2

∑
σ̌∈Č(0)

∑
σ̂ ,σ̂ ′∈Ĉ(0):

σ̂∨σ̌ ,σ̂ ′∨σ̌∈C fp(0)

μβ(σ̂ ∨ σ̌ )cβ(σ̂ ∨ σ̌ , σ̂ ′ ∨ σ̌ )

× [g(σ̂ ) − g(σ̂ ′)]2,

where Ĉ−(0) [resp. Ĉ(0)+] denote the subsets of Ĉ(0) where the free particle is at
distance Lβ (resp. 2) from the proto-critical droplet and the inequality comes from
substituting

h(σ̂ ∨ σ̌ ) = g(σ̂ ), σ̂ ∈ Ĉ(0), σ̌ ∈ Č(0),(4.11)

and afterwards replacing the double sum over σ̌ , σ̌ ′ ∈ Č(0) by the single sum over
σ̌ ∈ Č(0) because cβ(σ̂ ∨ σ̌ , σ̂ ′ ∨ σ̌ ′) > 0 only if either σ̂ = σ̂ ′ or σ̌ = σ̌ ′ (the
dynamics updates one site at a time). Next, estimate

right-hand side of (4.10)

≤ ∑
σ̌∈Č(0)

1

Z
(nβ)

β

e−βHβ(σ̌ )

(4.12)

× min
g : Ĉ(0)→[0,1]

g|Ĉ−(0)
≡1,g|Ĉ+(0)

≡0

1

2

∑
σ̂ ,σ̂ ′∈Ĉ(0)

σ̂∨σ̌ ,σ̂ ′∨σ̌∈C fp(0)

e−βHβ(σ̂ )cβ(σ̂ , σ̂ ′)

× [g(σ̂ ) − g(σ̂ ′)]2,
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where we have used Hβ(σ) = Hβ(σ̂ ) + Hβ(σ̌ ) from (4.7) and have written
cβ(σ̂ , σ̂ ′) to denote the transition rate associated with the Kawasaki dynamics re-
stricted to BLβ,Lβ (0), which clearly equals cβ(σ̂ ∨ σ̌ , σ̂ ′ ∨ σ̌ ) for every σ̌ ∈ Č(0)

such that σ̂ ∨ σ̌ , σ̂ ′ ∨ σ̌ ∈ C fp(0) because there is no interaction between the par-
ticles inside and outside BLβ,Lβ (0). The minimum in the right-hand side of (4.12)
can be estimated from above by

minimum in (4.12) ≤ ∑
σ∈P(0)

Vβ(σ )(4.13)

with P(0) the set of proto-critical droplets with lower-left corner at 0 and

Vβ(σ ) = min
f : Z2→[0,1]

f |Pσ (0)≡1,f |[BLβ ,Lβ
(0)]c≡0

1

2

∑
x,x′∈Z2

x∼x′

[f (x) − f (x′)]2,(4.14)

where Pσ (0) is the support of the proto-critical droplet in σ and x ∼ x′ means that
x and x′ are neighboring sites. Indeed, (4.13) is obtained from the expression in
(4.12) by dropping the restriction σ̂ ∨ σ̌ , σ̂ ′ ∨ σ̌ ∈ C fp(0), substituting

g
(
Pσ (0) ∪ {x}) = f (x), σ ∈ P(0), x ∈ BLβ,Lβ (0) \ Pσ (0),(4.15)

and noting that cβ(Pσ (0) ∪ {x},Pσ (0) ∪ {x′}) = 1 when x ∼ x′ and 0 otherwise.
What (4.14) says is that

Vβ(σ ) = CAP(Pσ (0), [BLβ.Lβ (0)]c)(4.16)

is the capacity of simple random walk between the proto-critical droplet Pσ (0) in
σ and the exterior of BLβ.Lβ (0). Now, define

Ž
(n−K)
β (0) = ∑

σ̌∈Č(0)

e−βHβ(σ̌ ).(4.17)

We then obtain from (4.12) and (4.13) that

right-hand side (4.12) ≤ e−β�∗ Ž
(n−K)
β (0)

Z
(nβ)

β

∑
σ∈P(0)

Vβ(σ ),(4.18)

where �∗ = −U [(�c − 1)2 + �c(�c − 1) + 1] is the binding energy of the proto-
critical droplet [cf. (1.33)].

4. Capacity estimate. For future reference, we state the following estimate on
capacities for simple random walk.

LEMMA 4.3. Let U ⊂ Z
2 be any set such that {0} ⊂ U ⊂ Bk,k(0), with k ∈

N∪{0} independent of β . Let V ⊂ Z
2 be any set such that [BKLβ,KLβ (0)]c ⊂ V ⊂

[BLβ,Lβ (0)]c, with K ∈ N independent of β . Then

CAP({0}, [BKLβ,KLβ (0)]c) ≤ CAP(U,V )
(4.19)

≤ CAP(Bk,k(0), [BLβ,Lβ (0)]c).
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Moreover, via (1.29) and (1.30),

CAP(Bk,k(0), [BKLβ,KLβ (0)]c) = [1 + o(1)] 2π

log(KLβ) − log k
(4.20)

= [1 + o(1)] 4π

β�
, β → ∞.

PROOF. The inequalities in (4.19) follow from standard monotonicity proper-
ties of capacities. The asymptotic estimates in (4.20) for capacities of concentric
boxes are standard (see, e.g., Lawler [20], Section 2.3) and also follow by compar-
ison to Brownian motion. �

We can apply Lemma 4.3 to estimate Vβ(σ ) in (4.16) since the proto-critical
droplet with lower-left corner in 0 fits inside the box B2�c,2�c (0). This gives

Vβ(σ ) = 4π

β�
[1 + o(1)] ∀σ ∈ P(0), β → ∞.(4.21)

Moreover, from Bovier, den Hollander and Nardi [7], Lemmas 3.4.2 and 3.4.3, we
know that N = |P(0)|, the number of shapes of the proto-critical droplet, equals
N = 1

3�2
c(�

2
c − 1).

5. Equivalence of ensembles. According to Lemma B.1 in Appendix B, we have

Ž
(nβ−K)

β (0)

Z
(nβ)

β

= (ρβ)Kμβ(S)[1 + o(1)], β → ∞.(4.22)

This is an “equivalence of ensembles” property relating the probabilities to find
nβ − K (resp. nβ ) particles inside [BLβ,Lβ (0)]c [recall (4.6)]. Combining (4.2),
(4.3), (4.5), (4.8), (4.10), (4.12), (4.18), (4.21) and (4.22), we get

CAP(S, C+) ≤ γ1(β) + |�β |γ2(β) + N |�β | 4π

β�
e−β�μβ(S)[1 + o(1)],

(4.23)
β → ∞,

where we have used the fact that �∗ + �K = � defined in (1.33). This completes
the proof of the upper bound, provided that the error terms γ1(β) and γ2(β) are
negligible.

6. Second error term. To estimate the error term γ2(β), note that the configura-
tions in C̃(0)\ C fp(0) are those for which, inside BLβ,Lβ (0), there is a proto-critical
droplet whose lower-left corner is at 0 and a particle that is at the boundary and
attached to some cluster outside BLβ,Lβ (0). Recalling (4.5)–(4.9), we therefore
have

γ2(β) ≤ ∑
σ∈C̃(0)\C fp(0)

∑
σ ′∈C̃(0)

μβ(σ )cβ(σ, σ ′)[h(σ) − h(σ ′)]2

(4.24)
≤ 6μβ

(
C̃(0) \ C fp(0)

)
,



692 A. BOVIER, F. DEN HOLLANDER AND C. SPITONI

where we have used the facts that h : C̃(0) → [0,1], μβ(σ)cβ(σ, σ ′) = μβ(σ) ∧
μβ(σ ′) and there are six possible transitions from C̃(0) \ C fp(0) to C̃(0): three
through a move by the particle at the boundary of BLβ,Lβ (0) and three through a
move by a particle in the cluster outside BLβ,Lβ (0). Since

Hβ(σ) ≥ Hβ(σ̂ ) + Hβ(σ̌ ) − U, σ ∈ C̃(0) \ C fp(0),(4.25)

it follows from the same argument as in Steps 3 and 5 that

μβ

(
C̃(0) \ C fp(0)

) ≤ Ne−β�∗
(ρβ)K+1μβ(S)eβU 4(K − 1)[1 + o(1)],(4.26)

where (ρβ)K+1 comes from the fact that nβ − (K + 1) particles are outside
BLβ−1,Lβ−1(0) (again, use Lemma B.1 in Appendix B), eβU comes from the gap
in (4.25) and 4(K − 1) counts the maximal number of places at the boundary of
BLβ,Lβ (0) where the particle can interact with particles outside BLβ,Lβ (0) due
to the constraint that defines S [recall Definition 1.3(a)]. Since ρβeβU = o(1) by
(1.27), we therefore see that γ2(β) is indeed small compared to the main term of
(4.23).

7. First error term. To estimate the error term γ1(β), we define the sets of pairs
of configurations

I1 = {
(σ, η) ∈ [

X (nβ)

β

]2 :σ ∈ S, η ∈ S c \ C̃
}
,

(4.27)
I2 = {

(σ, η) ∈ [
X (nβ)

β

]2 :σ ∈ C̃, η ∈ S c \ C̃
}

and estimate

γ1(β) ≤ 1

2

2∑
i=1

∑
(σ,η)∈Ii

μβ(σ )cβ(σ, η) = 1

2
�(I1) + 1

2
�(I2).(4.28)

The sum �(I1) can be written as

�(I1) = |�β | ∑
σ∈P

∑
η∈S c\C̃

cβ(η, σ )1{| supp[η] ∩ BLβ,Lβ (0)| = K}
(4.29)

× 1

Z
(nβ)

β

e−βHβ(η),

where we have used the facts that μβ(σ)cβ(σ, η) = μβ(η)cβ(η, σ ), σ,η ∈ X (nβ)

β

and cβ(η, σ ) = 0, η ∈ S c \ C̃ , σ /∈ P [recall Definition 1.3(b)]. We have

Hβ(η) ≥ Hβ(η̂) + Hβ(η̌) − kU, η ∈ S c \ C̃,(4.30)

where k counts the number of pairs of particles interacting across the boundary of
BLβ,Lβ (0). Moreover, since η /∈ C̃, we have

Hβ(η̂) ≥ �∗ + U.(4.31)
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Inserting (4.30) and (4.31) into (4.29), we obtain

�(I1) ≤ |�β |e−β�∗
μβ(S)[1 + o(1)]

K∑
k=0

(ρβ)K+k[4(K − 1)]keβ(k−1)U

(4.32)
= |�β |e−β�μβ(S)[1 + o(1)]e−βU ,

where (ρβ)K+k comes from the fact that nβ − (K + k) particles are outside
BLβ−1,Lβ−1(0) (again, use Lemma B.1 in Appendix B) and the inequality again
uses an argument similar to the arguments used in Steps 3 and 5. Therefore, �(I1)

is small compared to the main term of (4.23). The sum �(I2) can be estimated as

�(I2) = ∑
σ∈C̃

∑
η∈S c\C̃

μβ(σ)cβ(σ, η)

= |�β | ∑
σ∈C̃(0)

μβ(σ )
∑

η∈S c\C̃(0)

cβ(σ, η)(4.33)

≤ |�β |μβ(C̃(0)){e−βU + (4Lβ)ρβ[1 + o(1)]},
where the first term comes from detaching a particle from the critical droplet and
the second term from a extra particle entering BLβ,Lβ (0). The term between braces

is o(1). Moreover, μβ(C̃(0)) = μβ(C fp(0)) + μβ(C̃(0) \ C fp(0)). The second term
was estimated in (4.26) and the first term can again be estimated as in Steps 3
and 5:

μβ(C fp(0)) = ∑
σ̂∈Ĉ(0)

∑
σ̌∈Č(0)

σ̂∨σ̌∈Cfp(0)

μβ(σ̂ ∨ σ̌ ) = Ne−β�∗ Ž
(nβ−K)

β (0)

Z
(nβ)

β

(4.34)
= Ne−β�μβ(S)[1 + o(1)].

Therefore, �(I2) is also small compared to the main term of (4.23).
Lower bound. The proof of the lower bound follows the same line of argument

as for Glauber dynamics, in that it relies on the construction of a suitable unit flow.
This flow will, however, be considerably more difficult. In particular, we will no
longer be able to get away with choosing a deterministic flow and the full power of
the Berman–Konsowa variational principle has to be harnessed. The proof consists
of five steps.

For future reference, we state the following property of the harmonic function
for simple random walk on Z

2.

LEMMA 4.4. Let g be the harmonic function of simple random walk on
B2Lβ,2Lβ (0) (which is equal to 1 on {0} and 0 on [B2Lβ,2Lβ (0)]c). There then
exists a constant C < ∞ such that∑

e

[g(z) − g(z + e)]+ ≤ C/Lβ ∀z ∈ [BLβ,Lβ (0)]c.(4.35)
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PROOF. See, for example, Lawler, Schramm and Werner [21], Lemma 5.1.
The proof can be given via the estimates in Lawler [20], Section 1.7, or via a
coupling argument. �

1. Starting configurations. We start our flow on a subset of the configurations in
C+ that is sufficiently large and sufficiently convenient. Let C+

2 ⊂ C+ denote the
set of configurations having a proto-critical droplet with lower-left corner at some
site x ∈ �β , a free particle at distance 2 from this proto-critical droplet, no other
particles in the box B2Lβ,2Lβ (x) and satisfying the constraints in SL, that is, all
other boxes of size 2Lβ carry no more particles than there are in a proto-critical
droplet. This is the same as C+, except that the box around the proto-critical droplet
has size 2Lβ rather than Lβ .

Let K = �c(�c − 1) + 2 be the volume of the critical droplet and let S (nβ−K)

2
be the analog of S when the total number of particles is nβ − K and the boxes in
which we count particles have size 2Lβ (cf. Definition 1.3). Similarly as in (3.17),
our task is to derive a lower bound for CAP(SL, (S c \ C̃) ∪ C+) = CAP((S c \ C̃) ∪
C+, SL) ≥ CAP(CL, SL), where CL ⊂ C+

2 ⊂ C+ defined by

CL = {
σ ∪ P(y)(x, z) :σ ∈ S (nβ−K)

2 , x, y ∈ �β, (x, y, z) ⊥ σ
}

(4.36)

is the analog of (3.13), namely, the set of configurations obtained from S (nβ−K)

2 by
adding a critical droplet somewhere in �β (lower-left corner at x, protuberance at
y, free particle at z) such that it does not interact with the particles in σ and has an
empty box of size 2Lβ around it. Note that the nβ − K particles can block at most
nβ(2Lβ)2 = o(|�β |) sites from being the center of an empty box of size 2Lβ , and
so the critical particle can be added at |�β | − o(|�β |) locations.

We partition CL into sets CL(x), x ∈ �β , according to the location of the proto-
critical droplet. It suffices to consider the case where the critical droplet is added
at x = 0 because the union over x trivially produces a factor |�β |.

2. Overall strategy. Starting from a configuration in CL(0), we will successively
pick K − L particles from the critical droplet (starting with the free particle at z

at distance 2) and move them out of the box BLβ,Lβ (0), placing them essentially
uniformly in the annulus B2Lβ,2Lβ (0) \ BLβ,Lβ (0). Once this has been achieved,
the configuration is in SL. Each such move will produce an entropy of order L2

β ,
which will be enough to compensate for the loss of energy in tearing down the
droplet (recall Figure 4). The order in which the particles are removed follows
the canonical order employed in the lower bound for Glauber dynamics (recall
Figure 6). As with Glauber dynamics, we will use Proposition 2.4 to estimate

CAP(CL, SL) ≥ |�β | ∑
σ∈CL(0)

∑
γ : γ0=σ

P
f (γ )

τ(γ )∑
k=0

[
f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)

]−1

(4.37)
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for a suitably constructed flow f and associated path measure P
f , starting from

some initial distribution on CL(0) (which, as with Glauber, will be irrelevant),
and τ(γ ) being the time at which the last of the K − L particles exits the box
BLβ,Lβ (0).

The difference between Glauber and Kawasaki is that, while in Glauber the
droplet can be torn down via single spin-flips, in Kawasaki, after we have detached
a particle from the droplet, we need to move it out of the box BLβ,Lβ (0), which
takes a large number of steps. Thus, τ(γ ) is the sum of K − L stopping times, all
but the first of which are themselves sums of two stopping times, one to detach
the particle and one to move it out of the box BLβ,Lβ (0). With each motion of a
single particle, we need to gain an entropy factor of order close to 1/ρβ . This will
be done by constructing a flow that involves only the motion of this single particle,
based on the harmonic function of the simple random walk in the box B2Lβ,2Lβ (0)

up to the boundary of the box BLβ,Lβ (0). Outside BLβ,Lβ (0), the flow becomes
more complex: we modify it in such a way that a small fraction of the flow, of
order L−1+ε

β for some ε > 0 small enough, is going in the direction of removing
the next particle from the droplet. The reason for this choice is that we want to
make sure that the flow becomes sufficiently small, of order L−2+ε

β , so that this
can compensate for the fact that the Gibbs weight in the denominator of the lower
bound in (2.20) is reduced by a factor e−βU when the protuberance is detached.
The reason for the extra ε is that we want to make sure that, along most of the paths,
the protuberance is detached before the first particle leaves the box B2Lβ,2Lβ (0).

Once the protuberance detaches itself from the proto-critical droplet, the first
particle stops and the second particle moves in the same way as the first particle
did when it moved away from the proto-critical droplet, and so on. This is re-
peated until no more than L particles remain in BLβ,Lβ (0), by which time we have
reached SL. As we will see, the only significant contribution to the lower bound
comes from the motion of the first particle (as with Glauber dynamics),and this
coincides with the upper bound established earlier. The details of the construction
are, to some extent, arbitrary and there are many other choices imaginable.

3. First particle. We first construct the flow that moves the particle at distance 2
from the proto-critical droplet to the boundary of the box BLβ,Lβ (0). This flow
will consist of independent flows for each fixed shape and location of the critical
droplet. This first part of the flow will be seen to produce the essential contribution
to the lower bound.

We label the configurations in CL(0) by σ , describing the shape of the critical
droplet, as well as the configuration outside the box B2Lβ,2Lβ (0), and we label the
position of the free particle in σ by z1(σ ).

Let g be the harmonic function for simple random walk with boundary condi-
tions 0 on [B2Lβ,2Lβ (0)]c and 1 on the critical droplet. We then choose our flow to
be

f (σ(z), σ (z′)) =
{

C1[g(z) − g(z + e)]+, if z′ = z + e, ‖e‖ = 1,
0, otherwise,

(4.38)
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where σ(z) is the configuration obtained from σ by placing the first particle at
site z. The constant C1 is chosen to ensure that f defines a unit flow in the sense
of Definition 2.3, that is,∑

σ∈CL(0)

C1
∑

z1(σ ),e

[
g(z1(σ )) − g

(
z1(σ ) + e

)]
(4.39)

= C1
∑

σ∈CL(0)

CAP(Pσ (0), [B2Lβ,2Lβ (0)]c) = 1,

where Pσ (0) denotes the support of the proto-critical droplet in σ and the capacity
refers to the simple random walk.

Now, let z1(k) be the location of the first particle at time k, and

τ 1 = inf{k ∈ N : z1(k) ∈ [BLβ,Lβ (0)]c}(4.40)

be the first time when, under the Markov chain associated with the flow f , it exits
BLβ,Lβ (0). Let γ be a path of this Markov chain. Then, by (4.38) and (4.39), we
have

τ 1∑
k=0

f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)
= C1[g(z1(0)) − g(z1(τ 1))]

μβ(γ0)
,(4.41)

where the sum over the g’s is telescoping because only paths along which the g-
function decreases carry positive probability, and cβ(γk, γk+1) = 1 for all 0 ≤ k ≤
τ 1 because the first particle is free. We have g(z1(0)) = 1, while, by Lemma 4.4,
there exists a C < ∞ such that

g(x) ≤ C/ logLβ, x ∈ [BLβ,Lβ (0)]c.(4.42)

Therefore,

τ 1∑
k=0

f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)
= C1

μβ(γ0)
[1 + o(1)].(4.43)

Next, by Lemma 4.3, we have

CAP(Pσ (0), [B2Lβ,2Lβ (0)]c) = 4π

β�
[1 + o(1)], σ ∈ CL(0), β → ∞(4.44)

[because {0} ⊂ Pσ (0) ⊂ B2�c.2�c (0) for all σ ∈ CL(0)]. Since N = |CL(0)|, it fol-
lows from (4.39) that

1

C1
= N

4π

β�
[1 + o(1)],(4.45)

and so (4.43) becomes[
τ 1∑

k=0

f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)

]−1

= μβ(γ0)N
4π

β�
[1 + o(1)], β → ∞.(4.46)



HOMOGENEOUS NUCLEATION 697

This is the contribution we want because when we sum (4.46) over γ0 = σ ∈ CL(0)

[recall (4.37)], we get a factor

μβ(CL(0)) = e−β�μβ(S)[1 + o(1)].(4.47)

To see why (4.47) is true, recall from (4.36) that CL(0) is obtained from S (nβ−K)

2
by adding a critical droplet with lower-left corner at the origin that does not interact
with the nβ − K particles elsewhere in �β . Hence,

μβ(CL(0)) = e−β�∗ Z̃
(nβ−K)

β (0)

Z
(nβ)

β

,(4.48)

where Z̃
(nβ−K)

β (0) is the analog of Ž
(nβ−K)

β (0) [defined in (4.17)] obtained by
requiring that the nβ − K particles are in [R�c,�c (0)]c instead of [BLβ,Lβ (0)]c.
However, it will follow from the proofs of Lemmas B.1 and B.2 in Appendix B
that, just as in (4.22),

Z̃
(nβ−K)

β (0)

Z
(nβ)

β

= (ρβ)Kμβ(S)[1 + o(1)], β → ∞,(4.49)

which yields (4.47) because � = �∗ + K�. For the remaining part of the con-
struction of the flow, it therefore suffices to ensure that the sum beyond τ 1 gives a
smaller contribution.

4. Second particle. Once the first particle (i.e., the free particle) has left the box
BLβ,Lβ (0), we need to allow the second particle (i.e., the protuberance) to detach
itself from the proto-critical droplet and to move out of BLβ,Lβ (0) as well. The
problem is that detaching the second particle reduces the Gibbs weight appearing
in the denominator by e−Uβ , while the increments of the flow are reduced to only
about 1/Lβ . Thus, we cannot immediately detach the second particle. Instead, we
only do this with probability Lβ .

The idea is that once the first particle is outside BLβ,Lβ (0), we leak some of
the flow that drives the motion of the first particle into a flow that detaches the
second particle. To do this, we have to first construct a leaky flow in B2Lβ,2Lβ (0) \
BLβ,Lβ (0) for simple random walk. This is done as follows.

Let p(z, z+ e) denote the transition probabilities of simple random walk driven
by the harmonic function g on B2Lβ,2Lβ (0). Put

p̃(z, z + e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(z, z + e),

if z ∈ BLβ,Lβ (0),

(1 − L−1+ε
β )p(z, z + e),

if z ∈ B2Lβ,2Lβ (0) \ BLβ,Lβ (0).

(4.50)

Use the transition probabilities p̃(z, z + e) to define a path measure P̃ . This path
measure describes simple random walk driven by g, but with a killing probability
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L−1+ε
β inside the annulus B2Lβ,2Lβ (0) \ BLβ,Lβ (0). Put

k(z, z + e) = ∑
γ

P̃ (γ )1(z,z+e)∈γ , z ∈ B2Lβ,2Lβ (0).(4.51)

This edge function satisfies the following equations:

• k(z, z + e) = [g(z) − g(z + e)]+
if z ∈ BLβ,Lβ (0);

• k(z, z + e) = 0

if z ∈ B2Lβ,2Lβ (0) \ BLβ,Lβ (0) and [g(z) − g(z + e)]+ = 0;(4.52)

• (1 − L−1+ε
β )

∑
e

k(z + e, z)1g(z+e)−g(z)>0

= ∑
e

k(z, z + e)1g(z)−g(z+e)>0

if z ∈ B2Lβ,2Lβ (0) \ BLβ,Lβ (0).

Note that inside the annulus B2Lβ,2Lβ (0) \ BLβ,Lβ (0) at each site, the flow out is

less than the flow in by a leaking factor 1 − L−1+ε
β . We pick ε > 0 sufficiently

small that

eβU is exponentially smaller in β than L2−ε
β(4.53)

[which is possible by (1.27) and (1.29) and (1.30)]. The important fact for us is that
this leaky flow is dominated by the harmonic flow associated with g, in particular,
the flow in satisfies∑

e

k(z + e, z) ≤ ∑
e

[g(z + e) − g(z)]+ ∀z ∈ B2Lβ,2Lβ (0)(4.54)

(and the same applies for the flow out). This inequality holds because g satisfies the
same equations as in (4.50) and (4.51), but without the leaking factor 1 − L−1+ε

β .
Using this leaky flow, we can now construct a flow involving the first two parti-

cles, as follows:

• f
(
σ(z1, a), σ (z1 + e, a)

) = C1k(z1, z1 + e)

if z1 ∈ B2Lβ,2Lβ (0);
• f (σ(z1, a), σ (z1, b)) = C1L

−1+ε
β

∑
e

k(z1, z1 + e)

if z1 ∈ B2Lβ,2Lβ (0) \ BLβ,Lβ (0);(4.55)

• f
(
σ(z1, z2), σ (z1, z2 + e)

) =
{
C1L

−1+ε
β

∑
e

k(z1, z1 + e)

}

× [g(z2) − g(z2 + e)]+
if z1 ∈ B2Lβ,2Lβ (0) \ BLβ,Lβ (0), z2 ∈ BLβ,Lβ (0) \ Pσ (0).
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Here, we write a and b for the respective locations of the second particle prior
to and after it detaches itself from the proto-critical droplet, and σ(z1, z2) for the
configuration obtained from σ by placing the first particle (that was at distance 2
from the proto-critical droplet) at site z1 and the second particle (that was the
protuberance) at site z2. The flow for other motions is zero and the constant C1 is
the same as in (4.38)–(4.39).

We next define two further stopping times, namely,

ζ 2 = inf{k ∈ N : z2(γk) = b},(4.56)

that is, the first time the second particle (the protuberance) detaches itself from the
proto-critical droplet and

τ 2 = inf{k ∈ N : z2(γk) ∈ [BLβ,Lβ (0)]c},(4.57)

that is, the first time the second particle exits the box BLβ,Lβ (0). Note that since
we choose the leaking probability to be L−1+ε , the probability that ζ 2 is larger
than the first time the first particle exits B2Lβ,2Lβ (0) is of order exp[−Lε

β] and is
hence negligible. We will disregard the contributions of such paths in the lower
bound. Paths with this property will be called good.

We will next show that (4.41) also holds if we extend the sum along any path
of positive probability up to ζ 2. The reason for this lies in Lemma 4.4. Let γ be a
path that has a positive probability under the path measure P

f associated with f

stopped at τ 2. We will assume that this path is good in the sense described above.
To that end, we decompose

τ 2∑
k=0

f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)

=
τ 1∑

k=0

f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)
+

ζ 2−2∑
k=τ 1+1

f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)

(4.58)

+
τ 2∑

k=ζ 2−1

f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)

= I + II + III.

The term I was already estimated in (4.41)–(4.47). To estimate II, we use (4.42),
(4.54) and (4.55) to bound [cf. (4.41)]

II ≤ C1
g(z1(ζ 2)) − g(z1(τ 1))

μβ(γ0)
≤ C1

[C/ logLβ]
μβ(γ0)

,(4.59)



700 A. BOVIER, F. DEN HOLLANDER AND C. SPITONI

which is negligible compared to I , due to the factor C/ logLβ . It remains to esti-
mate III. Note that

III = f (γζ 2−1, γζ 2)

μβ(γζ 2−1)cβ(γζ 2−1, γζ 2)
+

τ 2∑
k=ζ 2

f (γk, γk+1)

μβ(γk)cβ(γk, γk+1)
.(4.60)

The first term corresponds to the move when the protuberance detaches itself
from the proto-critical droplet. Its numerator is given by f (σ(z1, a), σ (z1, b)) (for
some z1 ∈ [BLβ,Lβ (0)]c), which, by Lemma 4.4, (4.54) and (4.55), is smaller than

C1L
−1+ε
β CL−1

β = C1CL−2+ε
β . On the other hand, its denominator is given by

μ(γζ 2−1)cβ(γζ 2−1, γζ 2) = μβ(γ0)e
−Uβ.(4.61)

The same holds for the denominators in all the other terms in III, while the numer-
ators in these terms satisfy the bound

f (γk, γk+1) ≤ C1CL−2+ε
β [g(z2(γk)) − g(z2(γk+1))].(4.62)

Adding up the various terms, we get that

III ≤ C1

μβ(γ0)
L−2+ε

β eβU (
1 + [g(z2(ζ 2)) − g(z2(τ 2))])

(4.63)

≤ 2C1

μβ(γ0)
L−2+ε

β eβU .

The right-hand side is smaller than I by a factor L−2+ε
β eβU , which, by (4.53), is

exponentially small in β .
5. Remaining particles. The lesson from the previous steps is that we can con-

struct a flow with the property that each time we remove a particle from the droplet,
we gain a factor L−2+ε

β , that is, almost e−�β . (This entropy gain corresponds to the
gain from the magnetic field in Glauber dynamics or from the activity in Kawasaki
dynamics on a finite open box.) We can continue our flow by tearing down the
critical droplet in the same order as we did for Glauber dynamics. Each removal
corresponds to a flow that is built in the same way as described in Step 4 for the
second particle. There will be some minor modifications involving a negligible
fraction of paths where a particle hits a particle that was moved out earlier, but this
is of no consequence. As a result of the construction, the sums along the remain-
ders of these paths will give only negligible contributions.

Thus, we have shown that the lower bound coincides, up to a factor 1 + o(1),
with the upper bound, and so the lemma is proved. �

4.2. Proof of Theorem 1.4(b). The same observation holds as in (3.34).

PROOF OF THEOREM 1.4(b). The proof follows along the same lines as
that of Theorem 1.4(a). The main point is to prove that CAP(DM, SL) = [1 +
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o(1)]CAP(C+, SL). Since CAP(SL, DM) ≤ CAP(SL, C+), we need only prove a
lower bound on CAP(DM, SL). This is done in almost exactly the same way as
for Glauber dynamics, by using the construction given there and substituting each
Glauber move by a flow involving the motion of just two particles.

Note that as long as M = eo(β), an M × M droplet can be added at |�β | −
o(|�β |) locations to a configuration σ ∈ S [cf. (4.36)]. The only novelty is that we
have to eventually remove the cloud of particles that is produced in the annulus
B2Lβ,2Lβ (0) \BLβ,Lβ (0). This is done in much the same way as before. As long as
only eo(β) particles have to be removed, potential collisions between particles can
be ignored, as they are sufficiently unlikely. �

APPENDIX A: SPARSENESS OF SUBCRITICAL DROPLETS

Recall Definition 1.1(a), (3.11) and (3.12). In this section, we prove (3.22).

LEMMA A.1. limβ→∞ 1
β

log μβ(S\W)

μβ(S)
= −∞.

PROOF. We will prove that limβ→∞ 1
β

logμβ(S \ W)/μβ(�) = −∞. Since
� ∈ S , this will prove the claim.

Let w(β) be the function satisfying (3.11). We begin by noting that

μβ(S \ W) ≤ μβ(I) with I = {σ ∈ S : | supp[CB(σ)]| > |�β |/w(β)}(A.1)

because the bootstrap percolation map increases the number of (+1)-spins. Let
D(k) denote the set of configurations whose support consists on k noninteracting
subcritical rectangles. Put C1 = (�c + 2)(�c + 1). Since the union of a subcritical
rectangle and its exterior boundary has at most C1 sites, it follows that in I , there
are at least |�β |/C1w(β) noninteracting rectangles. Thus, we have

μβ(I) ≤
Kmax∑

k=|�β |/(C1w(β))

F (k) with F(k) = 1

Zβ

∑
σ∈Xβ :

C(σ)∈D(k)

e−βHβ(σ),(A.2)

where Kmax ≤ |�β |.
Next, note that

F(k) ≤ (2C1)k
1

Zβ

∑
σ∈D(k)

e−βHβ(σ).(A.3)

Since the bootstrap percolation map is downhill, the energy of a subcritical rectan-
gle is bounded below by C2 = 2J − h (recall Figure 9) and the number of ways to
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place k rectangles in �β is at most
(|�β |

k

)
, it follows that

F(k) ≤ 2C1k

( |�β |
k

)
μβ(�)e−C2βk ≤ 2C1k(C1ew(β))kμβ(�)e−C2βk

(A.4)

≤ μβ(�) exp
[
−1

2
C2βk

]
,

where the second inequality uses the fact that k! ≥ kke−k , k ∈ N, and the third
inequality uses the fact that w(β) = eo(β). We thus have

Kmax∑
k=|�β |/(C1w(β))

F (k) ≤ 2μβ(�)w(β)
|�β |
w(β)

exp
[
−1

2

C2

C1
β

|�β |
w(β)

]
,(A.5)

which is the desired estimate because |�β |/w(β) tends to infinity. �

APPENDIX B: EQUIVALENCE OF ENSEMBLES AND
TYPICALITY OF HOLES

For m ∈ N, let

S (m) = {
σ ∈ X (m)

β : | supp[σ ] ∩ BLβ,Lβ (x)| ≤ �c(�c − 1) + 1 ∀x ∈ �β

}
(B.1)

and

Č(m)(0) = {
σ1∈BLβ,Lβ

(0) :σ ∈ S (m)},
(B.2)

Ž
(m)
β (0) = ∑

σ∈Č(m)(0)

e−βH(σ).

The latter is the partition sum restricted to BLβ,Lβ (0) when it carries m parti-
cles. In Appendix B.1, we prove a lemma about ratios of partition sums that
was used in (4.22), (4.26), (4.32) and (4.49). In Appendix B.2, we prove that
limβ→∞ μβ(Š(0))/μβ(S) = 1, which is needed in the proof of this lemma.

B.1. Equivalence of ensembles. Recall (1.22), (4.6) and (4.17).

LEMMA B.1. Ž
(nβ−s)

β (0)/Z
(nβ)

β = (ρβ)sμβ(S)[1 + o(1)] as β → ∞ for all
s ∈ N.

PROOF. The proof proceeds via upper and lower bounds.
Upper bound. Let

Š(0) = {σ ∈ S : supp[σ ] ∩ BLβ,Lβ (0) = ∅}.(B.3)
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Write

μβ(Š(0)) = 1

Z
(nβ)

β
(B.4)

× ∑
σ̌∈Č(0)

∑
ζ⊂[BLβ,Lβ

(0)]c\supp[σ̌ ]
|ζ |=s

(
nβ

s

)−1
1{σ̌∨ζ∈Š(0)}e

−βHβ(σ̌∨ζ ).

This relation simply says that nβ particles can be placed outside BLβ,Lβ (0) by
first placing nβ − s particles and then placing another s particles. Because the
interaction is attractive, we have

Hβ(σ̌ ∨ ζ ) ≤ Hβ(σ̌ ) + Hβ(ζ ) and Hβ(ζ ) ≤ 0 ∀σ̌ , ζ.(B.5)

Consequently,

μβ(Š(0)) ≥
(

nβ

s

)−1 1

Z
(nβ)

β
(B.6)

× ∑
σ̌∈Č(0)

e−βHβ(σ̌ )
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌ ]

|ζ |=s

1{σ̌∨ζ∈Š(0)}.

We next estimate the second sum, uniformly in σ̌ . When we add the s parti-
cles, we must make sure not to violate the requirement that all boxes BLβ,Lβ (x),

x ∈ �β , carry not more than K particles [note that Š(0) ⊂ S and recall Defini-
tion 1.3(a)]. Partition �β \ BLβ,Lβ (0) into boxes of size Lβ . The total number of
boxes containing K particles is at most nβ/K . Hence, the total number of sites
where we cannot place a particle is at most (nβ/K)(3Lβ)2. Therefore,∑

ζ⊂[BLβ,Lβ
(0)]c\{σ̌ }

|ζ |=s

1{σ̌∨ζ∈Š(0)}

(B.7)

≥
( |�β \ BLβ,Lβ (0)| − nβ − (nβ/K)(3Lβ)2

s

)
∀σ̌ .

But nβL2
β = o(nβ/ρβ) = o(|�β |) and L2

β = o(1/ρβ) = o(|�β |) by (1.22), (1.29)
and (1.30), and so the right-hand side of (B.7) equals [1 + o(1)]|�β |s/s! as
β → ∞. Since the binomial in (B.6) equals [1 + o(1)](nβ)s/s! with nβ =
�ρβ |�β |�, we end up with [recall (4.17)]

μβ(Š(0)) ≥ Ž
(nβ−s)

β (0)

Z
(nβ)

β

(ρβ)−s[1 + o(1)](B.8)
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or

Ž
(nβ−s)

β (0)

Z
(nβ)

β

≤ (ρβ)sμβ(Š(0))[1 + o(1)].(B.9)

Since Š(0) ⊂ S , this gives the desired upper bound.
Lower bound. We return to (B.4). Among the s particles that are added to

[BLβ,Lβ (0)]c, let s1 count the number that interact with the nβ − s particles already
present and s2 the number that interact among themselves, where s1 + s2 ≤ s. We
can then estimate

μβ(Š(0)) ≤ 1

Z
(nβ)

β

∑
σ̌∈Č(0)

(
nβ

s

)−1
e−βHβ(σ̌ )

∑
s1,s2

0≤s1+s2≤s

(
s!

s1!s2!
)−1

× ∑
ζ⊂[BLβ,Lβ

(0)]c\supp[σ̌ ]
|ζ |=s

e−βH(ζ )1{|ζ∩∂σ̌ |=s1}

× 1{s2 interacting particles in ζ }1{σ̌∨ζ∈Š(0)}

≤ [1 + o(1)] Ž
(nβ−s)

β (0)

Z
(nβ)

β

(ρβ)−s

(B.10)

+ 1

Z
(nβ)

β

∑
σ̌∈Č(0)

(
nβ

s

)−1
e−βHβ(σ̌ )

× ∑
s1,s2

1≤s1+s2≤s

∑
ζ⊂[BLβ,Lβ

(0)]c\supp[σ̌ ]
|ζ |=s

e−βH(ζ )1{|ζ∩∂σ̌ |=s1}

× 1{s2 interacting particles in ζ }
× 1{σ̌∨ζ∈Š(0)},

where, in the second inequality, we estimate the term with s1 = s2 = 0 by using
the result for the upper bound. We will show that the other terms are exponentially
small.

For fixed σ̌ , we may estimate the last sum in (B.10) as∑
ζ⊂[BLβ,Lβ

(0)]c\supp[σ̌ ]
|ζ |=s

e−βH(ζ )1{|ζ∩∂σ̌ |=s1}

× 1{s2 interacting particles in ζ }1{σ̌∨ζ∈Š(0)}(B.11)

≤ |�β |s−s1−s2(4nβ)s1
∑

σ∈S (s2)

e−βH(σ)1{s2 interacting particles in σ }.
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Indeed, |�β |s−s1−s2 bounds the number of ways to place s − s1 − s2 noninteracting
particles, and (4nβ)s1 the number of ways to place s1 particles that are interacting
with the nβ − s particles already present. Next, we write∑

σ∈S (s2)

e−βH(σ)1{s2 interacting particles in σ }

(B.12)

=
s2∑

m=1

m∑
j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=m

∑
C=⋃j

i=1 Ci

|Ci |=ki∀i

e−β
∑j

i=1 H(Ci),

which is a cluster expansion of the partition function [with noninteracting clusters
Ci , all of which have size ≤ K = �c(�c + 1) + 1]. By a standard isoperimetric
inequality, we have H(Ci ) ≥ Hki

, with the latter denoting the energy of a droplet
of ki = |Ci | particles that is closest to a square or quasi-square. Hence,

|�β |−s2
∑

σ∈S (s2)

e−βH(σ)1{s2 interacting particles in σ }

≤ |�β |−s2

s2∑
m=1

m∑
j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=s2

e−β
∑j

i=1 Hki

( ∑
C=⋃j

i=1 Ci

|Ci |=ki∀i

1
)

≤ C|�β |−s2

s2∑
m=1

m∑
j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=s2

e−β
∑j

i=1 Hki |�β |j(B.13)

≤ C

s2∑
m=1

m∑
j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=s2

e−β
∑j

i=1[Hki
+(ki−1)β−1 log |�β |]

≤
s2∑

m=1

m∑
j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=s2

e−β
∑j

i=1[Hki
+(ki−1)�],

where, in the last inequality, we insert the bound β−1 log |�β | ≥ �, which is im-
mediate from (1.22) and (1.35).

Now, Hki
+ ki� is the grand-canonical energy of a square or quasi-square with

ki particles. It was shown in the proof of Proposition 2.4.2 in Bovier, den Hollander
and Nardi [7] that this energy is greater than or equal to U

√
ki for 1 ≤ ki ≤ 4K ,

that is, for a droplet twice the size of the proto-critical droplet. Since 2U > �, we
therefore have that Hki

+ (ki − 1)� > 0 when ki ≥ 4. Since � > U , H2 = −U
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and H3 = −2U , we also have that the terms with ki = 2,3 are greater than 0.
Consequently, there exist ε > 0 and a constant C that is independent of β such that

|�β |−s2
∑

σ∈S (s2)

e−βH(σ)1{s2 interacting particles in σ }e−βH(σ) ≤ Ce−βε.(B.14)

Combining (B.10), (B.11) and (B.14), we see that the correction term in (B.10) is

μβ(Š(0)) − [1 + o(1)] Ž
(nβ−s)

β (0)

Z
(nβ)

β

(ρβ)−s

(B.15)

≤ C[1 + o(1)] Ž
(nβ−s)

β (0)

Z
(nβ)

β

(ρβ)−s
∑
s1,s2

1≤s1+s2≤s

(eUβρβ)s1e−βε.

Since � > U , we have eUβρβ ≤ 1 and so the sum is o(1). Hence,

Ž
(nβ−s)

β (0)

Z
(nβ)

β

≥ (ρβ)sμβ(Š(0))[1 + o(1)].(B.16)

The claim now follows by using Lemma B.2 below. �

B.2. Typicality of holes.

LEMMA B.2. limβ→∞ μβ(Š(0))/μβ(S) = 1.

PROOF. Since Š(0) ⊂ S , we have μβ(Š(0)) ≤ μβ(S). It therefore remains to
prove the lower bound. Write

μβ(S) = μβ(Š(0))

+
K∑

m=1

∑
η∈X (m)

β

∑
ζ∈X

(nβ−m)

β

η∨ζ∈S

e−βH(η∨ζ )

Z
(nβ)

β

1{supp[η]⊂BLβ,Lβ
(0)}

(B.17)
× 1{supp[ζ ]⊂[BLβ,Lβ

(0)]c}

≤ μβ(Š(0)) + γ1(β) + γ2(β),

where

γ1(β) =
K∑

m=1

∑
η∈X (m)

β

∑
ζ∈X (n−m)

β

η∨ζ∈S

e−β[H(η)+H(ζ)]

Z
(nβ)

β

1{supp[η]⊂BLβ,Lβ
(0)}

(B.18)
× 1{supp[ζ ]⊂[BLβ,Lβ

(0)]c}
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and γ2(β) is a term that arises from particles interacting across the boundary of
BLβ,Lβ (0). We will show that both γ1(β) and γ2(β) are negligible.

Estimate, with the help of (B.9) [and recalling (B.1) and (B.2)],

γ1(β) ≤
K∑

m=1

Ž
(nβ−m)

β

Z
(nβ)

β

∑
η∈S (m)

e−βH(η)1{supp[η]⊂BLβ,Lβ
(0)}

= [1 + o(1)]μβ(Š(0))

K∑
m=1

(ρβ)m
∑

η∈S (m)

e−βH(η)1{supp[η]⊂BLβ,Lβ
(0)}

(B.19)
= [1 + o(1)]μβ(Š(0))

×
K∑

m=1

(ρβ)m
m∑

j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=m

∑
C=⋃j

i=1 Ci

|Ci |=ki∀i

e−β
∑j

i=1 H(Ci),

where the last equality is a cluster expansion, as in (B.12). Again using the isoperi-
metric inequality, we get [recalling (1.29)]

γ1(β) ≤ [1 + o(1)]μβ(Š(0))

×
K∑

m=1

(ρβ)m
m∑

j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=m

e−β
∑j

i=1 H(ki)

( ∑
C=⋃j

i=1 Ci

|Ci |=ki∀i

1
)

≤ Cμβ(Š(0))
∑ ∈K

m=1 (ρβ)m
m∑

j=1

(L2
β)j

∑
2≤k1,...,kj≤K∑j

i=1 ki=m

e−β
∑j

i=1 Hki(B.20)

= Cμβ(Š(0))

K∑
m=1

m∑
j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=m

e−β
∑j

i=1[Hki
+ki�−(�−δβ)]

≤ C′μβ(Š(0))e−βε

for some ε > 0 and constants C,C′ < ∞ that are independent of β .
Estimate, with the help of (B.9),

γ2(β) ≤
K∑

m=1

∑
η∈S (m)

e−βH(η)
m∑

k=1

eβkU1{supp[η]⊂BLβ,Lβ
(0)}

Ž
(nβ−(m+k))

β

Z
(nβ)

β

≤
K∑

m=1

∑
η∈S (m)

e−βH(η)
m∑

k=1

eβkU1{supp[η]⊂BLβ,Lβ
(0)}(B.21)
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× (ρβ)m+kμβ(Š(0))[1 + o(1)]
≤ [1 + o(1)]μβ(Š(0))

×
K∑

m=1

(ρβ)m
∑

η∈S (m)

e−βH(η)
m∑

k=1

e−βk(�−U)

× 1{supp[η]⊂BLβ,Lβ
(0)}

and we can proceed as in (B.19) and (B.20) to show that this term is negligible.
�

B.3. Atypicality of critical droplets. The following lemma was used in Sec-
tion 4.1.1.

LEMMA B.3. limβ→∞ μβ(C̃ \ C+)/μβ(S) = 0.

PROOF. Similarly as in (B.17), we first write

μβ(C̃ \ C+) ≤ μβ(C̃)

= |�β |γ (β) + |�β | ∑
η∈X (K)

β

∑
ζ∈X

(nβ−K)

β

η∨ζ∈C̃

e−β[H(η)+H(ζ)]

Z
(nβ)

β

(B.22)
× 1{supp[η]⊂BLβ,Lβ

(0)}
× 1{supp[ζ ]⊂[BLβ,Lβ

(0)]c},

with γ (β) a negligible error term that arises from particles interacting across the
boundary of BLβ,Lβ (0). We then proceed as in (B.18)–(B.20), obtaining (� = �∗ +
K�)

right-hand side of (B.22)

≤ N |�β |e−β�∗
(ρβ)Kμβ(Š(0))[1 + o(1)](B.23)

= N |�β |e−β�μβ(S)[1 + o(1)], β → ∞,

which is o(μβ(S)), by (1.35). �

APPENDIX C: TYPICALITY OF STARTING CONFIGURATIONS

In Sections C.1 and C.2, we prove the claims made in the remarks below (1.9)
and (1.32), respectively.
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C.1. Glauber.

PROOF. Split

S = SL ∪ (S \ SL) = SL ∪ U>L,(C.1)

where U>L ⊂ S are those configurations σ for which CB(σ) has at least one rec-
tangle that is larger than QL(0). We have

CB(σ) = ⋃
x∈X(σ)

R�1(x),�2(x)(x),(C.2)

where X(σ) is the set of lower-left corners of the rectangles in CB(σ), which, in
turn, can be split as

X(σ) = X>L(σ) ∪ X≤L(σ),(C.3)

where X>L(σ) labels the rectangles that are larger than QL(0) and X≤L(σ) labels
the rest.

Let σ |A denote the restriction of σ to the set A ⊂ Z
2. Then, for any x ∈ X(σ),

we have

H(σ) = H
(
σ |R�1(x),�2(x)(x)

) + H
(
σ |Rc

�2(x),�2(x)(x)

)
(C.4)

because the rectangles in CB(σ) are noninteracting. Since, for σ ∈ U>L, there is at
least one rectangle with lower-left corner in X>L(σ), we have

μβ(U>L) ≤ ∑
x∈�β

∑
σ∈S

1{x∈X>L(σ)}μβ(σ)

= ∑
x∈�β

∑
σ∈S

1{x∈X>L(σ)}
1

Zβ

(C.5)
× exp

{−β
[
H

(
σ |R�1(x),�2(x)(x)

) + H
(
σ |Rc

�1(x),�2(x)(x)

)]}

≤ e−β�L+1
∑

x∈�β

∑
σ∈S

1{x∈X>L(σ)}
1

Zβ

e
−βH(σ |Rc

�1(x),�2(x)
(x))

,

where �L+1 is the energy of QL+1(0). In the last step, we use the fact that the
bootstrap map is downhill and that the energy of QL(0) is increasing with L. Since
the energy of a subcritical rectangle is nonnegative, we get

μβ(U>L) ≤ NL+1e
−β�L+1 |�β |μβ(S)(C.6)

with NL+1 counting the number of configurations with support in QL+1(0).
On the other hand, by considering only those configurations in U>L that have a

QL+1(0) droplet, we get

μβ(U>L) ≥ NL+1e
−β�L+1 |�β |μ[QL+1(0)]c

β (S),(C.7)
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where the last factor is the Gibbs weight of the configurations in S with support

outside [QL+1(0)]c. It easy to show that μ
[QL+1(0)]c
β (S) = μβ(S)[1 + o(1)] as

β → ∞ and so

μβ(U>L) ≥ NL+1e
−β�L+1 |�β |μβ(S)[1 + o(1)], β → ∞.(C.8)

Combining (C.6) and (C.7), we conclude that limβ→∞ μβ(U>L)/μβ(S) = 0 if and
only if

lim
β→∞|�β |e−�L+1 = 0.(C.9) �

C.2. Kawasaki.

PROOF. Split

S = SL ∪ (S \ SL) = SL ∪ U>L,(C.10)

where U>L ⊂ S are those configurations σ for which there exists an x such that
| supp[σ ] ∩ BLβ,Lβ (x)| > L. Then

μβ(U>L) ≤ ∑
x∈�β

∑
σ∈S

K∑
m=L+1

μβ(σ)1{| supp[σ ]∩BLβ,Lβ
(x)|=m}

(C.11)
= |�β |[ϕ(β) + γ (β)],

where

ϕ(β) =
K∑

m=L+1

∑
η∈X (m)

β

∑
ζ∈X

(nβ−m)

β

η∨ζ∈S

e−β[H(η)+H(ζ)]

Z
(nβ)

β

1{supp[η]⊂BLβ,Lβ
(0)}

(C.12)
× 1{supp[ζ ]⊂[BLβ,Lβ

(0)]c}

and γ (β) is an error term arising from particles interacting across the boundary of
BLβ,Lβ (0). By the same argument as in (B.21), this term is negligible. Moreover,

ϕ(β) ≤
K∑

m=L+1

Ž
(nβ−m)

β

Z
(nβ)

β

( ∑
η∈S (m)

e−βH(η)1{supp[η]⊂BLβ,Lβ
(0)}

)

(C.13)

≤ [1 + o(1)]μβ(S)

K∑
m=L+1

(ρβ)m
( ∑

η∈S (m)

e−βH(η)1{supp[η]⊂BLβ,Lβ
(0)}

)
,
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where, in the last inequality, we use Lemmas B.1 and B.2. Now proceed as in
(B.19) and (B.20), via the cluster expansion, to get

ϕ(β) ≤ [1 + o(1)]Cμ(S)

K∑
m=L+1

m∑
j=1

∑
2≤k1,...,kj≤K∑j

i=1 ki=m

e−β[Hki
+ki�−(�−δβ)]

(C.14)
≤ [1 + o(1)]Cμ(S)e−β[�L+1−(�−δβ)],

where Hk is the energy of a droplet with k particles that is closest to a square
or quasi-square, �L+1 = HL+1 + (L + 1)� and the second inequality uses the
isoperimetric inequality, together with the fact that Hk + k� is increasing in k for
subcritical droplets.

On the other hand, by considering only those configurations in U>L that have a
droplet with L + 1 particles, we get

ϕ(β) ≥ [1 + o(1)]Cμ(S)e−β[�L+1−(�−δβ)].(C.15)

Combining (C.11), (C.14) and (C.15), we conclude that limβ→∞ μβ(U>L)/

μβ(S) = 0 if and only if

lim
β→∞|�β |e−β(�L+1−(�−δβ)) = 0.(C.16) �

APPENDIX D: THE CRITICAL DROPLET IS THE THRESHOLD

In this appendix, we show that our estimates on capacities imply that the aver-
age probability under the Gibbs measure μβ of destroying a supercritical droplet
and returning to a configuration in SL is exponentially small in β . We will give the
proof for Kawasaki dynamics, the proof for Glauber dynamics being simpler.

Pick M ≥ �c. Recall from (2.7) that eDM,SL
(σ ) = cβ(σ )Pσ (τSL

< τDM
) for

σ ∈ DM . Hence, summing over σ ∈ ∂DM , the internal boundary of DM , we get,
using (2.8), that∑

σ∈∂DM
μβ(σ )cβ(σ )Pσ (τSL

< τDM
)∑

σ∈∂DM
μβ(σ )cβ(σ )

= CAP(SL, DM)∑
σ∈∂DM

μβ(σ )cβ(σ )
.(D.1)

Clearly, the left-hand side of (D.1) is the escape probability to SL from ∂DM

averaged with respect to the canonical Gibbs measure μβ conditioned on ∂DM ,
weighted by the outgoing rate cβ . To show that this quantity is small, it suffices to
show that the denominator is large compared to the numerator.

By Lemma 4.2,

CAP(SL, DM) ≤ CAP
(

SL, (S c \ C̃) ∪ C+)
(D.2)

= N |�β | 4π

�β
e−β�μβ(S)[1 + o(1)].
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On the other hand, note that ∂DM contains all configurations σ for which there
is an M × M droplet somewhere in �β , all Lβ -boxes not containing this droplet
carry at most K particles and there is a free particle somewhere in �β . The last
condition ensures that cβ(σ ) ≥ 1. Therefore, we can use Lemma B.1 to estimate

∑
σ∈DM

μβ(σ )cβ(σ ) ≥ |�β |e−βH
M2

Ž
(nβ−M2)

β

Z
(nβ)

β
(D.3)

= |�β |e−βH
M2 (ρβ)M

2
μβ(S)[1 + o(1)],

where HM2 is the energy of an M × M droplet. Combining (D.2) and (D.3), we
find that the left-hand side of (D.1) is bounded from above by(

N
4π

�β

)
exp[−β�]

exp[−β(HM2 + �M2)] [1 + o(1)],(D.4)

which is exponentially small in β because � > HM2 + �M2 for all M ≥ �c.
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