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INTRODUCTION

The geometry of numbers, coding theory, the Riemann hypothesis - the list of
key words for this lecture can be read äs a partial history of the Stichting
Mathematisch Centrum. The lecture itself attempts to reflect the spirit of the
SMC by displaying a new connection between these subjects. Using ideas
from the geometry of numbers one can construct a class of codes from algebraic
number fields, and the study of the asymptotic properties of these codes
depends on the generalized Riemann hypothesis.

The construction described in this lecture is a generalization to algebraic
number fields of the following idea to make a code. Let P be a finite set of
prime numbers, and consider, for a suitable positive integer k, the set C of all
elements

c, = (imodp)peP e J J Z/pZ, i = 1,2, . . . ,k.
peP

If, for i>j, the elements c„c} of this set agree on many coordinates then the
difference / —j is divisible by many primes, so also by their product. But this
difference is less than k, which may lead to a contradiction. This gives us con-
trol over the minimum distance of C.

The codes just described have several undesirable properties. First, they are
mixed codes in the sense that the alphabet size p is not constant. Secondly,
they are non-linear, although they are still 'half-linear' in the sense that for any
two distinct x,y&C one of χ —y, y — χ belongs to C. Thirdly, for bounded
alphabet size the above construction gives only finitely many codes. This
means that the usual 'asymptotic' way of judging the quality of a class of
codes, which we discuss in Section l, does not apply to them. Finally, the



96 H W Lenstra Jr

codes that we descnbed are m all respects inferior to the codes that are
obtained in an analogous way if one replaces the ring Z by the polynomial
ring fqiX] m one vanable over a suitably chosen fimte field F ? , and P by a
collection of polynomials of the form Χ—α with « e F ? These codes, the gen-
erahzed Reed-Solomon codes [6, Chapter 10, Section 8], have at least the same
mimmum distance and dimension, they are linear and non-rmxed, but they do
have the third shortcoming just mentioned

If we generahze the construction to algebraic number fields, äs we do in Sec-
tion 2, the Situation changes only slightly For any algebraic number field
different from Q it is true that the nng of integers has different pnme ideals
with isomorphic residue class fields Hence it would seem possible to make
non-rmxed codes by the same recipe However it turns out that it is better to
make non-rmxed codes by startmg from mixed codes that have a slight Varia-
tion in the alphabet size This leaves at least the possibility open to obtain
satisfactory asymptotic results (see the remark on r = q at the end of Section 3)

Our codes remam non-lmear, even the 'half-lmeanty' mentioned above
disappears

For fixed alphabet size, the new construction gives mfimtely many codes, so
that in pnnciple their quahty can be analyzed asymptotically Section 3 con-
tams upper and lower bounds for how good our codes are These bounds can
be substantially improved if one assumes the truth of the generalized Riemann
hypothesis, but even then there is a considerable gap between the upper and
the lower bound

The new codes are the analogues, for number fields, of the codes constructed
by Goppa and Tsfasman [7, 12] from curves over fimte fields For the analogy
between number fields and curves over fimte fields, see [l, 14] If the general-
ized Riemann hypothesis is true our codes are, asymptotically speaking, not äs
good äs those of Goppa and Tsfasman Also, the latter codes are linear and
non-mixed

We finally note that there is a non-constructive element in the descnption of
our codes, so that it is still too early to ask for encoding and decoding algo-
nthms It can be imagmed that lattice basis reduction algonthms [5] play a
role m this context

l CODES
In this section we follow MANIN [7, Section 2], except that we do not require
codes to be linear

Let q be an integer, q>\, and V a set of cardmality q, to be referred to äs
the alphabet For each integer «3=0 we define a metric w on the set V" by let-
tmg w(x,y) be the number of coordmates where χ and/ differ A code over V
is a non-empty set C that for some integer «3=0 is a subset of V" The
number n is called the ward length of the code The dimension dim(C) of the
code is defined to be (log#C)/(log<7), where # denotes cardmality The
mimmum distance or simply distance d(C) of the code C is the mimmum of the
numbers w(x,y) if (x,y) runs over all pairs of disünct elements of C, for
# C - l this is + oo
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We are mterested m findmg codes for which the dimension and the distance
are large äs functions of the word length. Each code C of positive word length
n and positive dimension gives nse to a pomt (d(C)/n, dim(CVn) of the umt
square [0, l]2. If C runs over all such codes we ob tarn a sequence of points in
the umt square, and we denote by Uq the set of limit points of this sequence
(If q is a prime power, this set contams the correspondmg set from [7].)

As in [7] we have the followmg result (but not necessanly with the same
function aq)

THEOREM (1.1). There is α contmuous function «9 .[0, 1]— »[0, 1] such that

Uq = {(x,R): 0<χ<1, 0<Ä <«,(*)}

The function aq assumes the value l m x—0, is strictly decreasmg on the mterval
[Q,(q-l)/ql and vamshes on the mterval [(q~l)/q,\] Moreover, for

— \)/q one has

where

PROOF (sketch). It is easy to make codes that show that the points in the umt
square that he on the coordmate axes belong to Uq. Next let (x,R)&Uq.
Tnvial constructions on codes, such äs omitting code words or changing
letters, show that the rectangle [0,x]X[Q,R] is contamed m Uq. Other con-
structions, such äs projecting a code CC.V" to V"~l or mtersecting it with a
suitably embedded V""1 C.Vn, show that the line segments connecting (x,R)
with (Q,R/(l-x)) and (x/(l-R),0) are contamed m Uq (These line Seg-
ments form part of the lines connecting (x,R) with (1,0) and (0,1).)

These results imply that Uq can be descnbed, äs m the theorem, by means
of a non-increasing function aq, that aq is contmuous except possibly at 0, and
that it is stnctly decreasmg on the mterval where it does not vamsh

The Plotkin bound [13, Theorem 5.25] implies that aq vamshes on
[(q - \)/q, 1], and by the above results this leads to the upper bound stated m
the theorem. The lower bound is the Gilbert-Varshamov bound [13, Theorem
519] It imphes conünuity of aq at χ = 0

This concludes the proof of the theorem

For better upper bounds on aq we refer to [13, Chapter 5] Only recently a
better lower bound was found, and only for relaüvely large q. This was done
with the help of modular curves and Shimura curves over fimte fields [12].

The followmg result is useful m companng the asymptotic properties of the
codes that we shall construct with the Gilbert-Varshamov bound
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PROPOSITION (12) Lei r eR, r 3* l Then the line

log<?

is tangent to the graph of ßq at the point (XO,RQ), where

-
X° ~ q + r - Γ

R -
0

(q+r-\)\oiq log?

The proof is straightforward

2 NUMBER FIELDS

Let K be a number field, i e a field that is of fimte degree m over the field Q of
rational numbers, and let s,ieZ be such that there is an isomorphism
K<^QU^KSXC' of R-algebras Denote by A the ring of mtegers of K, and
by Δ the absolute value of its discnminant over Z The norm 9l(» of a non-
zero pnme ideal £ of A is the cardmahty of its residue class field A /t> For
background on algebraic number theory we refer to [2, 11]

THEOREM (21) Let K be a number field, and s, t, Δ äs above Let r,q be mtegers
sattsjymg Kr<:q, and write

n = s+t + #$ rssgiCW^sS for some

here p ranges over the non-zero pnme ideals of the ring of mtegers of K Then
for any positive integer d there exists a code of word length n over an alphabet of
q letters with distance at least d and dimenswn at least

PROOF Let it first be assumed that K is totally real, ι έ s = m, t=0 Under
the embedding KCK®Qn^Mm the nng A becomes a lattice, and if F denotes
a fundamental domain for A then F has volume vol(F)= Λ/Δ

Let U be the set of those (χ,)Γ=ι elRm for which

1"</>/m for

This is an open subset of Rm, and vol(t/) = r" + 1~'/

In analogy with the construction mentioned in the mtroducüon one would
now be inchned to make a code from the set U Π A A basic prmciple of the
geometry of numbers suggests that #U^A is approximately equal to
vol(i/)/ VA", but it turns out that the error term may dommate To solve this
problem we average over all translations of U, which is a 'non-constructive'
element in the descnption of the code

Let χ denote the charactenstic function of U We have
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= Σ / X(y~z)dz = 2 / X(z)dz

y&A zef ye/4 z&y—F

= /x(z)dz = vol(C7) = /
zeR

where we use that Um is the disjoint union of the setŝ y — F, yeA. It follows
that there exists ze^ 1 with #((z + i/)rU)Ssvol(l/)/VÄ~. Let such a z be
chosen, and put C= (z + U) n A. Then we have

„n + l-rf

" VA '
Let K={0,1, · · · , ? - ! } . For each ye{l,2, · · · , / «} we define a map

z + {/-> V by dividing the projection of z + U on the y'-th coordinate axis into q
intervals of equal length; i.e., the point z + (*,)"= , ez + U is mapped toveVif

Restricting this map to C we obtain a map^ :C-»K
For each t> äs in the defim'tion of n choose a positive integer k (£) with

/•<9lO)*(p)s£9 and an injective map Λ/^ ( Ρ )-»Κ Let / P : C ^ F be the com-
posed map CC^-»X/^(P)-»K.

Combining all maps fjt ff we obtain a map / :C-* V". We claim that

^y, then w(f(x),f(y))^d

where w denotes the Hamming distance (see Section 1). To prove this, let α be
the number of /s for which fj(x)=fj(y) and b the number of jj's for which
/p(x)=/p(y), so that a+b=n -w(f(x\f(y)). Denote by N-.K-^Q the abso-
lute value of the norm function. We estimate N(x— y) in two ways. On the
one hand, all conjugates of x— y are less than r(" + ^-d)/m m a]jS C ) ju t e v a } u e

and α of them are even a factor q smaller, so

N(x-y) < rn + l-d/q" < r» + \-d-<,_

On the other hand, χ —y is a non-zero algebraic integer belonging to b of the
ideals p*^', which each have norm at least r, so that

N(x -y) > rb.

It follows that b<n +\-d—a, so w(f(x),f(y)) = n-a—b>d. This proves
the claim.

It follows in particular that / is injective. Hence the code /[ClC V" has
dimension (log#C)/(log^), which is at least ((« + 1 — d)logr — log \/Δ)/ (logg).
By the claim, the distance of /[C] is at least d.

This proves the theorem in the case that K is totally real. To deal with the
general case in the same way one needs an analogue, in the complex plane, of
a real interval that is divided into q intervals that are q times äs small. More
precisely, one needs the following result.
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For every positive integer q there exists α subset of the euchdecm plane that hos
area q/2 and diameter *iVq, and that can be written äs the umon of q sets of
diameter <Ξ1.

If q is a square this is proved by subdividing a square of area q/2 into q
squares in the obvious way. We leave the elementary proof of the general case
to the reader. The result can actually be improved, which gives rise to a
slightly better lower bound for the dimension of the code, if />0.

This completes the proof of the theorem.

To describe the asymptotic properties of the codes from Theorem (2.1) we
introduce the following quantity. Let r,q be äs in the theorem. Then we
define

. , . .. . , losVÄ
A (q,r) - hminf — ° - ,

κ nlogq

the liminf rangmg over all number fields K, up to isomorphism, with n, Δ äs
in the theorem.

COROLLARY (2.2). The segment of the hne

for which Q^x, R ^ l lies entirely m the code domam Uq.

This is an immediate consequence of Theorem (2.1) and the results of Section 1.

3. ASYMPTOTICS

Let A (q,r) be äs defined in Section 2.

PROPOSITION (3.1). There are positive constants c\, c2 such that A(q,r)'^cl/q
and A(q,q)^?c2/]ogqfor all mtegers r,q with \<.r*iq.

PROOF. For a number field ΛΓ, let m,A,« be äs in Section 2. Known lower
bounds for discriminants (see [9]) imply that there is a positive constant c3

such that logA>c3m for all Kj^Q. Moreover, it is obvious that
n < w ( l + ir(qj), where ir(q) denotes the number of prime numbers ^q, and
that n^2m if r=q. Since Tr(q)^c4q/logq for some positive constant c4 and
all q, the proposition follows. This proves (3.1).

It is amusing to note that the first inequality of (3.1) can also be deduced
from (1.1) and (2.2), äs follows. It is easy to see that n is maximal if r is the
least integer ^Vq; so let this be the case. Putting x = (q — \)/q in (2.2) and
using that «^ vanishes in this point one finds that
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so A (q,r)^l/(2q), äs required.
The second inequality of (3.1) is best possible, apart from the value of the

constant, äs we shall see in (3.4). The first inequality of (3.1) can be sharpened
if we assume the generahzed Riemann hypothesis:

(GRH) for every number field K, the Dedekmd zetafunctwn ζκ has no complex
zeroes with real part larger than 1/2.

PROPOSITION (3.2). Let for every integer q > l and every number field K the
quantity Bq(K) be defined by

Ba(K) = (\(

Here the summatwn ranges over non-zero prime ideals lp of the ring of mtegers of
K, and s,f,A,9lG>) are äs m Section 2. Further, γ denotes Euler's constant. Sup-
pose moreover that (GRH) is true. Thenfor every integer q>\ we have

limsup B9(K) < l,

the limsup ranging over all number fields K, up t o tsomorphism.

PROOF. This is an easy consequence of WeiPs 'explicit formulae' in the theory
of pnme numbers, cf. [9, 10, 4]. This proves (3.2).

PROPOSITION (3.3). Assume (GRH). Thenfor all mtegers r,q with \<r<q one
has

^W'';·- / - ·

Vq — l

PROOF. This follows from (3.2) by a direct calculation. This proves (3.3).

Next I consider upper bounds.

PROPOSITION (3.4). There is a positive constant c$ such that
for all mtegers r, q with Kr<q.

PROOF. By the theory of infinite class field towers [2, Chapter IX] there exists
a number field E such that the maximal totally unramified extension L of E is
of infinite degree over E. We let K ränge over the finite extensions of E that
are contained in L, and for each K we let m,ä,s,t,n be äs in Section 2. Each
K is unramified over E, so the number A1/m is independent of K. Also, one
has n ̂ s +1 ̂ m II. It follows that

r · f log V A
hminf —7

K,ECKCJL «logg
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for some positive constant c5. This proves (3.4).

By (3.1), the inequality of (3.4) is best possible for r = q, apart from the value
of the constant. If r is much smaller than q we can again use the generalized
Riemann hypothesis to obtain a better result. For the sake of definiteness I
choose r to be the least integer

PROPOSITION (3.5). Suppose that (GRH) is Irue. Then there is a positive con-
stant c6 such that for every integer q>\ we have A(q, [(q + l)/2])

The proof depends on two lemmas.

LEMMA (3.6). Suppose that q is an integer, q>\, and that k,l are positive
integers. Write

where p, denotes the i-th prime number. Suppose that thefollowing two conditions
are satisfied.

(i) fc + l<j(/-l)2-(/-l);

(ii) there are at least k prime numbers p with Vq/2 =££/? «i \fq for which the

Legendr e symbol ( ) equals — 1.

Then we have

A(q, [(q-

PROOF. Let E be the imaginary quadratic field with discriminant —d. Each/?
äs in (ii) generates a principal prime ideal £ of the ring of integers of E with
9/2<9ΐ(ΐ))«4. Let S be a set of k such prime ideals. Denote by L the maxi-
mal totally unramified extension of E in which all t>eS split completely.
Using a slight generalization of the theory of infinite class field towers (see [4,
Section 14]) one deduces from inequality (i) that L is of infinite degree over E.
(Since all JieS are principal, the number / from [4, Section 14] equals / — l,
and p=k + l.) To prove the lemma, let now K ränge over the finite extensions
of E that are contained in L, äs in the proof of (3.4). As before, the number
A1/m is independent of K, and putting K=E one sees that it equals vd. Also,
since each feeS splits completely in K one has n^t + [K:E]-#S = ±-m(l+k)
for each K. This proves (3.6).

LEMMA (3.7). Assume (GRH). Then for every positive real number c1 there is a
positive real number c% with the following property.

Let d be a positive integer for which — d is the discriminant of a quadratic
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field. Then for every real number χ with x>c8(logrf)2 the number of odd prime
numbers p for which

w at least c7(log</)2/loglogi/.

PROOF. This is proved by a slight adaptation of the proof of [8, Theorem 13.1;
pp. 120, 123, 124] (the weight function (l— n/N) should be changed so äs to
count primes in the right interval). I thank H.L. MONTGOMERY for pointing
this out to me.

PROOF OF (3.5). For any integer 1^7, let k =k(l) be the largest integer satisfy-
ing (3.6)(i), and let d-d(l) be äs in (3.6). Then we have

\ogd ~ /-log/, k ~ (l/4)(logi/)
2/(loglogi/)

2

for /-»oo, so there is certainly a positive constant c7 such that
fcsSc7(logi02/loglogi/ for all /3*7. Let c8 be the number that Lemma (3.7)
guarantees to exist.

Now let q be an integer, q> l, and choose the integer / äs large äs possible
subject to the condition Vq^cs(\ogd(l))2. We suppose that q is sufficiently
large for / to be well-defined and >7 . By the choice of c7 and Lemma (3.7),
the conditions of (3.6) are satisfied for k=k(l) and /, so (3.6) gives us an upper
bound on A (q, [(q + 1)/2]). We have

c9q
}/\ k ~ (l/4)(logi/)

2/(loglogi/)
2 ~ c

for certain positive constants c9, cIO, äs </-»oo. It follows that the upper
bound from (3.6) leads to the upper bound stated in Proposition (3.5), at least
for q sufficiently large. For the remaining values of q one can apply (3.4).
This proves (3.5).

We discuss the implications of our estimates for coding theory.
The first inequality of (3.1) yields a rather crude upper bound for how good

we can expect our codes to be. I do not know how this bound compares to
the best upper bounds that are known for the function aq of Section 1. It is
conceivable that these, together with (2.2), lead to a better lower bound for
A(q,r).

The second inequality of (3.1) shows that it is not advisable to apply our
construction only with r =q. By (1.2) that would at best lead to codes that are
comparable to the codes realizing the Gilbert-Varshamov bound.

Proposition (3.3) is the analogue of the result that was proved by DRINFELD

and VLADUT [3] for function fields of curves over finite fields. For very small
q, such äs q—2, it shows that one should not expect our codes to lead to a
point (x,R) of the code domain Ug with χ and R positive. For large q, Propo-
sitions (3.3) and (1.2) show that one can still hope to find codes that beat the
Gilbert-Varshamov bound. In the case of function fields this hope was indeed
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realized for certain values of q, see [12].
It is apparently harder to construct good codes from number fields. Propo-

sition (3.4) leads to codes whose performance is comparable to the Gilbert-
Varshamov bound. Proposition (3.5) shows that much better codes can be
made, for large q, if one again accepts (GRH). However, these codes are not
äs good äs those made with function fields, and there remains a substantial
gap between the bounds of (3.3) and (3.5). The analogy with function fields
suggests that (3.3) is nearer to the truth than (3.5).
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