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INTRODUCTION

The geometry of numbers, coding theory, the Riemann hypothesis - the list of
key words for this lecture can be read as a partial history of the Stichting
Mathematisch Centrum. The lecture itself attempts to reflect the spirit of the
SMC by displaying a new connection between these subjects. Using ideas
from the geometry of numbers one can construct a class of codes from algebraic
pumber fields, and the study of the asymptotic properties of these codes
depends on the generalized Riemann hypothesis.

The construction described in this lecture is a generalization to algebraic
number fields of the following idea to make a code. Let P be a finite set of
prime numbers, and consider, for a suitable positive integer k, the set C of all
elements

¢ = (imodp),.p € I] Z/pZ, i=12,... ,k
peP
If, for i>j, the elements c,,c, of this set agree on many coordinates then the
difference i —j is divisible by many primes, so also by their product. But this
difference is less than k, which may lead to a contradiction. This gives us con-
trol over the minimum distance of C.

The codes just described have several undesirable properties. First, they are
mixed codes in the sense that the alphabet size p is not constant. Secondly,
they are non-linear, although they are still ‘half-linear’ in the sense that for any
two distinct x,y €C one of x —y, y —x belongs to C. Thirdly, for bounded
alphabet size the above construction gives only finitely many codes. This
means that the usual ‘asymptotic’ way of judging the quality of a class of
codes, which we discuss in Section 1, does not apply to them. Finally, the
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codes that we described are 1 all respects inferior to the codes that are
obtained 1n an analogous way if one replaces the nng Z by the polynomial
rng F,[X] in one variable over a suitably chosen finite field F,, and P by a
collection of polynommals of the form X —a with aeF, These codes, the gen-
eralized Reed-Solomon codes [6, Chapter 10, Section 8], have at least the same
mummum distance and dimension, they are hnear and non-mixed, but they do
have the third shortcoming just mentioned

If we generalize the construction to algebraic number fields, as we do n Sec-
tion 2, the situation changes only shghtly For any algebraic number field
dufferent from Q 1t 1s true that the nng of integers has different prime 1deals
with 1somorphic residue class fields Hence 1t would seem possible to make
non-mixed codes by the same recipe  However 1t turns out that 1t 1s better to
make non-mixed codes by starting from mixed codes that have a shght vara-
tion mn the alphabet size This leaves at least the possibility open to obtain
satisfactory asymptotic results (see the remark on r =g at the end of Section 3)

Our codes remain non-linear, even the ‘half-hnearity’ mentioned above
disappears

For fixed alphabet size, the new construction gives mnfinitely many codes, so
that in principle their quality can be analyzed asymptotically Section 3 con-
tans upper and lower bounds for how good our codes are These bounds can
be substantially improved if one assumes the truth of the generalized Riemann
hypothesis, but even then there 1s a considerable gap between the upper and
the lower bound

The new codes are the analogues, for number fields, of the codes constructed
by Goppa and Tsfasman [7, 12] from curves over fimte fields For the analogy
between number fields and curves over finite fields, see [1, 14] If the general-
1zed Riemann hypothesis 1s true our codes are, asymptotically speaking, not as
good as those of Goppa and Tsfasman Also, the latter codes are linear and
non-mixed

We finally note that there 1s a non-constructive element in the description of
our codes, so that 1t 1s still too early to ask for encoding and decoding algo-
nthms It can be imagmned that lattice basis reduction algorithms [5] play a
role 1 this context

1 CobEs
In this section we follow MANIN [7, Section 2], except that we do not require
codes to be hnear

Let g be an nteger, ¢g>1, and V a set of cardnality ¢, to be referred to as
the alphabet For each integer n=>0 we define a metric w on the set " by let-
ting w(x,y) be the number of coordinates where x and p differ A code over V
15 a non-empty set C that for some integer n=>0 1s a subset of V" The
number 7 1s called the word length of the code The dimension dim(C) of the
code 1s defined to be (log# C)/(logqg), where # denotes cardnahty The
munimum distance or simply distance d(C) of the code C 1s the mimmum of the
numbers w(x,y) if (x,y) runs over all paus of disunct elements of C, for
#C=1 this1s +o0
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We are mnterested n finding codes for which the dimension and the distance
are large as functions of the word length. Each code C of positive word length
n and positive dimension gives rise to a pomt (d(C)/n,dim(CV/n) of the umt
square {0, 1P. If C runs over all such codes we obtan a sequence of points n
the umt square, and we denote by U, the set of hmit points of this sequence
(If ¢ 1s a prime power, this set contains the corresponding set from [7].)

As 1 [7] we have the following result (but not necessarily with the same
function aq)

THEOREM (1.1). There is a continuous function o, .[0,1]-[0,1] such that
U, = {(x,R): 0=x<1, O0<R<a,(x)}
The function «, assumes the value 1 in x =0, 15 strictly decreasing on the interval

[0,(¢ —1)/q) and vamishes on the nterval [(q—1)/q,1]  Moreover, for
0<<x<(q —1)/q one has

-4
By(x) < ay(x) < 1 pr T
where
xlog(g —1) — xlogx — (1—x)log(1—x)
logg

Byx) =1~

PROOF (sketch). It 1s easy to make codes that show that the points 1n the unit
square that lie on the coordnate axes belong to U,. Next let (x,R)e U,-
Trvial constructions on codes, such as omutting code words or changing
letters, show that the rectangle [0,x]X[0,R] 1s contained in U,. Other con-
structions, such as projecting a code CC V" to V" “!or mtersecting 1t with a
suitably embedded y"~lcy", show that the line segments connecting (x,R)
with (O,R/(1—x)) and (x/ (1—R),0) are contamed 1n U, (These hne seg-
ments form part of the lines connecting (x,R) with (1,0) and (0,1).)

These results imply that U, can be described, as mn the theorem, by means
of a non-increasing function a,, that a, 1s continuous except possibly at 0, and
that 1t 1s strictly decreasing on the interval where 1t does not vanish

The Plotkin bound [13, Theorem 5.25] imphes that a, vanishes on
[(g —1)/4, 1], and by the above results ths leads to the upper bound stated in
the theorem. The lower bound 1s the Gilbert-Varshamov bound [13, Theorem
519] It mplies contmuity of , at x =0

Thus concludes the proof of the theorem

For better upper bounds on a, we refer to [13, Chapter 5] Only recently a
better lower bound was found, and only for relatively large g. This was done
with the help of modular curves and Shimura curves over finite fields [12].

The following result 1s useful m comparing the asymptouc properties of the
codes that we shall construct with the Gilbert-Varshamov bound
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PROPOSITION (12) Let reR, r=1 Then the line

1)/
R=(l — xylogr _ Jog(lg+r—1)/g)
logg logg
15 tangent to the graph of B, at the pont (xo,Ro), where

xg = —2 =1

g +r—1
R. = rlogr _log((g+r—b/q)
0 (¢ +r—Dlogg logg

The proof 1s straightforward

2 NUMBER FIELDS

Let K be a number field, 1¢ a field that 1s of fimite degree m over the field Q of
rational numbers, and let s,t€Z be such that there 1s an 1somorphism
K®oR=R’XC’ of R-algebras Denote by 4 the ning of integers of K, and
by A the absolute value of 1ts discnminant over Z The norm 9Up) of a non-
zero prime 1deal p of A 1s the cardmality of its residue class field 4/p For
background on algebraic number theory we refer to [2, 11]

THEOREM (2 1) Let K be a number field, and s,t,A as above Let r,q be integers
sausfying 1<<r<.q, and write

n=s+t+#{p r<IYp)P<q for some k(p)eZo},

here b ranges over the non-zero prime ideals of the ring of integers of K Then
for any positive integer d there exists a code of word length n over an alphabet of
q letters with distance at least d and dimension at least

(n+1—d) logr log\/K
logg logg

PROOF Let 1t first be assumed that K 1s totally real, 1€ s=m, t=0 Under
the embedding K CK®gR=R™ the ring A becomes a latuce, and if F denotes
a fundamental domain for 4 then F has volume vol(F)= VA

Let U be the set of those (x,)/-; eR™ for which

O<x,<<rrti=dVm gor I1<i<<m

This 1s an open subset of R™, and vol(U)=r""174

In analogy with the construction mentioned 1n the introduction one would
now be inclimed to make a code from the set UMNA A basic principle of the
geometry of numbers suggests that #UMA 1s approximately equal to
vol(U)/ VA, but 1t turns out that the error term may dommate To solve this
problem we average over all translations of U, which 1s a ‘non-constructive’
element 1 the description of the code

Let x denote the characteristic function of U We have
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[#(@+0)NA)de = 5 [xy-2)dz = 3 [ xlz2)dz
zeF yed zeF yed zey—F
1
= x(z)dz = VO](U) = wdz’
ze'{l"' z'e[F \/K

where we use that R™ is the disjoint union of the sets y —F, yeA. It follows
that there exists zeF with # ((z+U)NA)=vol(U)/ VA. Let such a z be
chosen, and put C = (z +U)MNA. Then we have

1 rn+l—d
#c = YU _ ,
VA VA

Let ¥={0,1, --,gq—1}. For each je{l,2, - - m} we define a map
z+ U->V by dividing the projection of z + U on the j-th coordinate axis into q
intervals of equal length; i.e., the point z +(x,)=; €2 + U is mapped to vV if

vr(n+l~d)/m < xj < £v+1)r(n+l——d)/m ‘
q q
Restricting this map to C we obtain a map f;:C—V.

For each p as in the definition of n choose a positive integer k(p) with
r<9yp)*®<gq and an injective map A/p*® V. Let f,:CV be the com-
posed map C CA—A/p*P V.

Combining all maps f,, f, we obtain a map f:C—V". We claim that

if x,y €C, x5%y, then w(f(x),f(y))=d

where w denotes the Hamming distance (see Section 1). To prove this, let a be
the number of j’s for which f(x)=f,(y) and b the number of p’s for which
foxX)=f,(p), so that a+b=n—w(f(x),f(y)). Denote by N:K—Q the abso-
lute value of the norm function. We estimate N(x —y) in two ways. On the
one hand, all conjugates of x —y are less than r""*+1-d/m j, opoiinte value
and a of them are even a factor ¢ smaller, so ’

N(x_y) < rn+1—d/qa < rn+l-d-—a‘

On the other hand, x —y is a non-zero algebraic integer belonging to & of the
ideals p*™  which each have norm at least r, so that

N(x—y) = rb.

It follows that b<<n+1—d —a, so w(f(x),f(y))=n—a—b=d. This proves
the claim.

It follows in particular that f is injective. Hence the code f[C]C V" has
dimension (log# C)/(logg), which is at least ((n +1—d)logr —logVA)/ (logg).
By the claim, the distance of fC] is at least d.

This proves the theorem in the case that K is totally real. To deal with the
general case in the same way one needs an analogue, in the complex plane, of
a real interval that is divided into ¢ intervals that are ¢ times as small. More
precisely, one needs the following result.
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For every positive integer g there exists a subset of the euclidean plane that has
area g/2 and diameter < \/(7, and that can be written as the umon of q sets of
diameter <1.

If g is a square this is proved by subdividing a square of area ¢/2 into ¢
squares in the obvious way. We leave the elementary proof of the general case
to the reader. The result can actually be improved, which gives rise to a
slightly better lower bound for the dimension of the code, if #>0.

This completes the proof of the theorem.

To describe the asymptotic properties of the codes from Theorem (2.1) we
introduce the following quantity. Let r,g4 be as in the theorem. Then we
define

the liminf ranging over all number fields K, up to isomorphism, with n, A as
in the theorem.

COROLLARY (2.2). The segment of the line
lo
(1—x) logg A(g,r)
for which 0<<x, R<(1 lies entirely in the code domamn Uq.
This is an immediate consequence of Theorem (2.1) and the results of Section 1.

3. ASYMPTOTICS
Let A(q,r) be as defined in Section 2.

PROPOSITION (3.1). There are positive constants cy, ¢, such that A(q,r)=c,\/q
and A(q,q)=c,/logq for all integers r,q with 1<r<gq.

PrOOF. For a number field K, let m,A,n be as in Section 2. Known lower
bounds for discriminants (see [9]) imply that there is a positive constant c;
such that logA=cym for all K=£Q. Moreover, it is obvious that
n<m-(1+wu(q)), where m(q) denotes the number of prime numbers <g, and
that n<<2m if r =4. Since m(g)<<c4q/logg for some positive constant ¢4 and
all g, the proposition follows. This proves (3.1).

It is amusing to note that the first inequality of (3.1) can also be deduced
from (1.1) and (2.2), as follows. It is easy to see that n is maximal if r is the
least mteger >\/c;; so let this be the case. Putting x =(g—1)/g in (2.2) and
using that a, vanishes in this point one finds that

1 logf
— ~ A(gq,r) <0
q logg 7



Codes from algebraic number fields 101

so A(q,r)=1/(2q), as required.

The second inequality of (3.1) is best possible, apart from the value of the
constant, as we shall see in (3.4). The first inequality of (3.1) can be sharpened
if we assume the generalized Riemann hypothesis:

(GRH) for every number field K, the Dedekind zeta function {x has no complex
zeroes with real part larger than 1/2,

PROPOSITION (3.2). Let for every integer q>1 and every number field K the
quantity B,(K) be defined by

B,(K) = (-;*(log87r+y+%)s + (log8m+vy)r

log9Up)
+ /log VA.
oieg Vol — 1718

Here the summation ranges over non-zero prime ideals p of the ring of integers of
K, and s,t,A,9Up) are as in Section 2. Further, v denotes Euler’s constant. Sup-
pose moreover that (GRH) 1s true. Then for every integer ¢>1 we have

i B (K) < 1,
hmlgup ,(K)
the limsup ranging over all number fields K, up to isomorphism.

ProoF. Ths is an easy consequence of Weil’s ‘explicit formulae’ in the theory
of prime numbers, cf. [9, 10, 4]. This proves (3.2).

PROPOSITION (3.3). Assume (GRH). Then for all integers r,q with 1<<r <q one
has

1
A(g,r)> \/(; e

Proor. This follows from (3.2) by a direct calculation. This proves (3.3).
Next I consider upper bounds.

PROPOSITION (3.4). There 1s a positve constant c¢s such that A(q,r)<cs/ logg
Jor all integers r, q with 1<<r=<gq.

PrOOF. By the theory of infinite class field towers [2, Chapter IX] there exists
a number field £ such that the maximal totally unramified extension L of E is
of infinite degree over E. We let K range over the finite extensions of E that
are contained in L, and for each K we let m, A,s,7,n be as in Section 2. Each
K is unramified over E, so the number A'™ is independent of K. Also, one
has n=s+t=m/2. It follows that

liming YA 5
KECKCL nlogg logg
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for some positive constant ¢s. This proves (3.4).

By (3.1), the inequality of (3.4) is best possible for r =g, apart from the value
of the constant. If r is much smaller than ¢ we can again use the generalized
Riemann hypothesis to obtain a better result. For the sake of definiteness I
choose r to be the least integer =>4/2.

PROPOSITION (3.5). Suppose that (GRH) is true. Then there is a positive con-
stant cg such that for every integer g>1 we have A(q,[(g+1)/2))
<cg(logg)/q"*.

The proof depends on two lemmas.

LeMMA (3.6). Suppose that q is an integer, q>1, and that k,l are positive
integers. Write

!
d=411p:

i=1

where p, denotes the i-th prime number. Suppose that the following two conditions
are satisfied.

G k+1<711-(1—1)2——(l——1);
(ii) there are at least k prime numbers p with \Vq/2 <p<\/q— for which the
Legendre symbol (—3)—(1-) equals — 1.

Then we have

logd
A(g, [(g+1)/2)h) < 2k + iogg"

PROOF. Let E be the imaginary quadratic field with discriminant —d. Each p
as in (i) generates a principal prime ideal p of the ring of integers of E with
g/2<9Up)=<\q. Let S be a set of k such prime ideals. Denote by L the maxi-
mal totally unramified extension of E in which all peS split completely.
Using a slight generalization of the theory of infinite class field towers (see [4,
Section 14]) one deduces from inequality (i) that L is of infinite degree over E.
(Since all peS are principal, the number ¢ from [4, Section 14] equals /—1,
and p=k +1.) To prove the lemma, let now K range over the finite extensions
of E that are contained in L, as in the proof of (3.4). As before, the number
AVm s independent of K, and putting K= E one sees that it equals \/c—z" Also,
since each peS splits completely in K one has n=t+[K:E} #S=Lm(1+k)
for each K. This proves (3.6).

LEMMA (3.7). Assume (GRH). Then for every positive real number cq there is a
positive real number cg with the following property.
Let d be a positive integer for which —d is the discriminant of a quadratic
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field. Then for every real number x with x=cg(logd)? the number of odd prime
numbers p for which

x/V2 <p <x, (—_Pi)z——l

is at least cq (logd)z/ loglogd.

Proor. This is proved by a slight adaptation of the proof of [8, Theorem 13.1;
pp- 120, 123, 124] (the weight function (1—n/N) should be changed so as to
count primes in the right interval). I thank H.L. MONTGOMERY for pointing
this out to me.

PrOOF OF (3.5). For any integer /=7, let k =k (/) be the largest integer satisfy-
ing (3.6)(i), and let d=d(l) be as in (3.6). Then we have

logd ~ Ilogl, k ~ (1/4)(logd)*/(loglogd)*

for I/—o0, so there is certainly a positive constant ¢; such that
k<c;(logd)? /loglogd for all [=7. Let ¢g be the number that Lemma (3.7)
guarantees to exist.

Now let g be an intege{,/_q>l, and choose the integer / as large as possible
subject to the condition q?cs(logd(l))z. We suppose that g is sufficiently
large for / to be well-defined and =7. By the choice of ¢; and Lemma (3.7),
the conditions of (3.6) are satisfied for k =k (/) and /, so (3.6) gives us an upper
bound on 4 (g, [(g +1)/2]). We have

logd ~ cog'4, k ~ (1/4)(logd)*/ (loglogd)? ~ ¢1o Vg /(logg)?

for certain positive constants cg, Cj9, a5 g—>00. It follows that the upper
bound from (3.6) leads to the upper bound stated in Proposition (3.5), at least
for ¢ sufficiently large. For the remaining values of g one can apply (3.4).
This proves (3.5).

We discuss the implications of our estimates for coding theory.

The first inequality of (3.1) yields a rather crude upper bound for how good
we can expect our codes to be. I do not know how this bound compares to
the best upper bounds that are known for the function a, of Section 1. It is
conceivable that these, together with (2.2), lead to a better lower bound for
A(g,r).

’;I‘he second inequality of (3.1) shows that it is not advisable to apply our
construction only with r =q. By (1.2) that would at best lead to codes that are
comparable to the codes realizing the Gilbert-Varshamov bound.

Proposition (3.3) is the analogue of the result that was proved by DRINFELD
and VLapuT [3] for function fields of curves over finite fields. For very small
g, such as g=2, it shows that one should not expect our codes to lead to a
point (x,R) of the code domain U, with x and R positive. For large ¢, Propo-
sitions (3.3) and (1.2) show that one can still hope to find codes that beat the
Gilbert-Varshamov bound. In the case of function fields this hope was indeed
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realized for certain values of g, see [12].

It is apparently harder to construct good codes from number fields. Propo-
sition (3.4) leads to codes whose performance is comparable to the Gilbert-
Varshamov bound. Proposition (3.5) shows that much better codes can be
made, for large g, if one again accepts (GRH). However, these codes are not
as good as those made with function fields, and there remains a substantial
gap between the bounds of (3.3) and (3.5). The analogy with function fields
suggests that (3.3) is nearer to the truth than (3.5).
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