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We describe the quantum-mechanical spreading of a Gaussian wave packet by means of the semiclassical
WKB approximation of Berry and Balazs [J Phys A 2, 625 (1979)] We find that the time scale 7 on which this
approximation breaks down 1n a chaotic system 1s larger than the Ehrenfest times considered previously In one
dimension 7= %)\"lln(A/ﬁ), with A the Lyapunov exponent and A a typical classical action
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According to Ehrenfest’s theorem [1], the propagation of
a quantum-mechanical wave packet 15 described for short
tumes by classical equations of motion The time scale at
which this corntespondence between quantum and classical
dynamics breaks down 1s called the Ehrenfest ime If the
classical dynamics 1s chaotic with Lyapunov exponent A,
then the Ehienfest time 7 1s of order A~ In(A/%) (with A a
typical classical action of the dynamical system) [2] There 1s
actually more than a single Ehrenfest time, corresponding to
different types of semiclassical approximations Although
they differ only by a numerical coefficient, 7,
=c¢,\ "' In(A/%), the structure of the wave function changes
qualitatrvely from one time scale to the next

Up to a time 7, with ¢;=1/6, the intial coherent state
will retain 1ts Gaussian form with vamishing error 1n the limt
—0 [3,4] Fo longer times up to 7, with ¢,=1/2, the
uncertainty m the position and momentum of the paiticle
remams small but the phase-space stiucture of the wave
packet deviates strongly from a Gaussian For times greater
than 7, the wave function no longer has the form of a wave
packet (this 1s the “mixing regume” of Refs [5,6]), but up to
a fime 73 1t can still be described semiclassically by the
time-dependent WKB approximation of Berty and Balazs
[7] As we will show n this paper, the WKB 1epresentation
unplies ¢3="7/6 for a single degree of freedom (with simple
generalizations for higher dimensions) Ths 1s larger than the
value ¢3=2/3 obtained by Bouzouma and Robeit [6] from a
diffetent semiclassical approximation

Let us start with the Gaussian one-dimensional wave
packet

1/4 _ 2
«If(x)=(%) exp(z‘l%-l-(zﬁ—a)(x—zzgz— )

Intially B(¢t=0)=0 and «(t=0)=pr/L, wheie pr and L
ate the typical classical momentum and length The typical
classical action 1s A=prL The paiameters x4(),po(t) fol-
low the classical ttajectory for A<€A We will measuie the
momentum and coordmate 1n units of p and L, 1espectively,
so that a(0)=1 and A=1 For chaotic dynamics with
Lyapunov exponent A one has a(t)xexp(—2\7), hence «
<] for > I/\

To desciibe the time evolution 1n phase space we consider
the Wigner function
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The wave packet 1s centered at xy(¢),po(2) and for «(t)
<1 becomes highly elongated and tilted with slope Ap/Ax

~B It has length [j=vA(1+B")/ @ and width [
=yha/(l+ B7), so that the area i phase space 1s conserved
exactly, [/, =# The Gaussian quantum wave packet satis-
fies the classical Liouville theorem

The Gaussian form (1) takes mnto account the elongation
of the wave packet, but not the curvature that develops
time and 1esuits 1n a bending of the packet To describe the
curvature we add an 1maginary cubic term in the exponent m

Eq (1),

a \ V4 pox (B—a)x®  yx3
\P(x)z(;;f-i—) eXp<l%+T+l§i— 3)

(For simplicity we have put xq=0 ) The cubic term leads to
an appreciable phase shift over a length [j=(#%/a)"? when
(y/A)(hla)¥*= 1, hence when a(t)<h 'y

For a<# 93 the Wigne: function takes agam a simple
form, m terms of the Awry function A1

a'” exp(—ax?/h)

W(x,p)=

( ’)’ﬁ 2/4) 173

po+ Bx+ yxz—p)

Tt 1/2( '}’ﬁ 2/4) 1/3
)

One can check that W(x,p)— 6(x) 8(p —py) when A—0 (at
fixed a), by means of the wdentity lim, o A1(z/e)/e
=\/m(z) Atfintte % the wave packet 1s extended along the
curved lme p=py+ Bx+yx*> Smce p,py,x ae of order
unty, the two patameters 8 and vy ate of oider unity as well
(in contiast to «, which 1s <€1) The tiansverse width 1s of
otder

lL o ,}/I/Sﬁ 2/’5(1 + ,32) - 172 (5)

The length of the packet 1emains at [~ VA (1+ B%)/a Since
now [/, >#, the Liouville theorem no longer holds
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To obtain the Ehrenfest time, we patametrize time as
t=—In (6)

The classical limut for a chaotic system means #—0, t—o
at fixed ¢ Different coefficients ¢ follow from different semi-
classical approximations If we use the Gaussian wave
packet (1), without the cubic term to account for the cuiva-
twe, then we need a(1)>#%"3y*? Smce axe™Maf 2 we
need ¢<<1/6 The upper limit of ¢ gives the first Ehienfest
time 7;=4\"!In(1/%)

The classical limit can be reached for longer times if we
use the wave packet (3), mcluding the cubic tetm The di-
mensions of the packet for ¢> 7| scale with % as

l_LOCﬁZB, l”ocﬁuz—c (7)
For ¢<<1/2 the length of the packet approaches zero in the
classical limut This upper limit of ¢ gives the second Ehien-
fest time 7, =i\ "1 In(1/A)

For t> 7, the length of the wave packet exceeds the size
of the system and 1s no longer small compared to the 1adius
of curvature For these large times we may adopt the semi-
classical WKB appiroximation of Berry and Balazs (7] Con-
sider a curve 1n phase space p(x) and a phase-space distri-
bution p(p(x),x) Both p and p evolve m accordance with
classical equations of motion For > 7, the function p(x) 1s
multivalued with an exponentially large number of branches
~exp[A(t—m)] The quantum wave function in this “‘mix-
mg” regime has the form

T(x) =; fu(x)expliop(x)/H] (8)

The summation over k accounts for the different bianches of
the multivalued function p(x) The two functions f and o are
related for i—0 to p and p by the correspondence principle

d
“==p(), f=p(pr) ©)

An explicit description of the evolution of the wave function
(8) for quantum maps can be found m Ref 8]

Near the pomnt x, at which p(x) bifuicates mto two
branches, one has p=p,*fa\x—x,, p=b/\x—x, The
wave function thete 1s

V= (#/a)Pp? Al[(alh)P(x—x,)]ePr*,  (10)

up to an overall phase The phase differtence between the
brfuication ponts can be detetmined from Eqgs (8) and (9)
Because the cutve p(x) 1s not closed, there 1s no analog of
the Bohi-Sommetfeld quantization 1ule

The Wigner function coriesponding to the wave function
(8), bemng quadiatic m W, contamns both diagonal (Wy,
«|[f,|*) and oscillating nondiagonal (W, « f,ifm) contribu-
tions Fai from bifurcations, the diagonal contuibutions to the
Wigner function 1ead
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(o' —p) '\ |f(x)|*dy
Wkk(x,p):fexp( % + 244 ) 2k

2(0'—p>)

(ﬁZU_III) 173

2 1 13
=\/“;T=(ﬁ20,,,) lf(x)lel(

(11)

We have made a Taylor expansion of o(x*y/2) and ne-
glected the difference between f(x*y/2) and f(x)

If we paramettize time as 1 Eq (6) we have for both [
and [, the same scaling with # as in Eq (7) The range of
validity of Eq (8) 1s limuted by the condition that the diffei-
ent branches should be distinguishable This 1equires that the
different parts of the cutve p(x) n phase space should not
get closer than [, Their spacing 1s of oider 17/ (assuming a
uniform filling of phase space), hence

Ll <1=#"0"<] (12)
The upper limut of 7/6 for ¢ leads to the thind Ehienfest time

7 | 1
7'3—5 Il% (13)

The third derivative ¢ m Eq (11) vamshes at the pomts
of inflection of the curve p(x) In oider to find the Wigner
function there, one should expand o(x*y/2) up to terms of
order y°> This leads to a different scaling [, A% of the
width of the Wigner function near the iflection pomts Be-
cause these are 1solated points, they will not contiibute to the
matrix elements of nonsingular opetators (contaming only
smooth functions of x and p) This different scaling should
therefore not affect the Elienfest time (13)

The nondiagonal contitbutions W, to the Wigner func-
tion lead to the “ghost curves” discussed in Ref [9] (Ghost
curves are 1egions of large values of the Wigner function
which do not conespond to classical trajectories ) The
Wigner function near these curves 1s given by the same Any
function as i Eq (11), but m addition acquires a strongly
oscillating factor Due to these oscillations the nondiagonal
teims do not contribute to the matiix elements of nonsimgulai
opetators (They may play a 1ole in the decoherence by the
enviionment [10] ) At 1= 75 the ghost cuives meige with the
(multivalued) curve p(x) and become ndistinguishable

The time scale (13) for the bieakdown of the WKB ap-
proximation 1s gieater than the Ehrenfest ttme X\~ !In(1/%)
m the mixed regime obtamed m Ref [6] That shorter time
scale may signal the bieakdown of the seiies expansion
o (x)—= 2, o0, (x)f/ Then Eq (9) would no longer hold,
but for £<C 3 the 1epiesentation (8) with a renormalized func-
tion oy (x) would still be valid

So far we have discussed a one-dimensional (1D} chaotic
system, which in geneial can be 1epiesented by an area pre-
setving map [8] A famihiai example 1s the kicked 1otator
[11] For mesoscopic quantum dots, howevel, a moie 1el-
evant model 15 the d-dimensional (d=2,3) Schiodinger

equation with a smooth potential V(;) The Gaussian wave
packet then takes the form

035208-2

RAPID COMMUNICATIONS



EHRENFEST TIMES FOR CLASSICALLY CHAOTIC SYSTEMS

(14)

w)ocexp[ (S(ro< N+ Po £+%x1xn)

Hete S 1s the action for the classical tiajectory ;O(t) and we

have defined po mry, x=r— ro, =B tiay, As be-
fore, we rescale the momentum and coordinate such that the
typical classical action A=1 Imtially, {;,=16;, Simila to
the one dimensional case, «;, defines the form of the packet
in coordinate space and 8;,=Ap,/Ax, give the angles m
phase space Substituting the wave function (14) mto the
Schrodmger equation one finds Newton’s equation of motion

for ;0 The spreading of the wave packet n phase space 1s
desciibed by

Y%
&r ar, |-_-
=1o

I‘l,

- gln glkgkn (15)

This 1s the equation descuibing the spieading n phase space
of a small Gaussian bunch of classical paiticles

The Wigner function coriesponding to the wave function
(14) has the Gaussian form Weexp(—QM,,0, /%), where

Q (r— ro,p po) 1S a vector mm 2d- dlmenswnal phase
space The d Lyapunov exponents A, (1= ,d) govern
the large-time behavior of the elgenvalues m,=1myg- 41
xexp(ZAg) of the 1eal symmetric matiix M Because of en-
eigy conservation one Lyapunov exponent vanishes We or-
det the N\’s from large to small, so that \; 1s the laigest and
A da= 0

The wave packet 1emams Gaussian (preseiving the vol-
ume «#? 1 phase space) until the curvature starts to play a
1ole (via a cubic tetm m the action) The corresponding
Ehienfest ime 7= %)\flln(llh) 1s the same as 1n 1D, only
now 1t 1s defined through the laigest Lyapunov exponent A4
The second Ehrenfest time, when the length of the packet
exceeds the size of the system, also has the same form 7,

T In(1/A)

The thud time 73 15 diffeient fo1 d=2,3 from the 1D case

Instead of Eq (7), one now has
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1Pk, 1PPapeM, 1=12, d-1 (16)
The longitudinal dimensions lﬁ’) correspond to eigenvalues
m, with 1 <i=<d—1, and the tiansveise dimensions l(f) to m,
with d+2=<1=<2d The two umt eigenvalues m ;=m 4,
=1 contribute another factor \/% each to the total volume V
1 phase space coveted by the wave packet

d-1 d-1
Not™ 21 A,

=

V=ﬁH liz>l|<‘z)“h7d/6— 6o Mot (17)
=1

The available aiea V,,, 1s 1estiicted to a shell of constant
energy with thickness \/ﬁ, hence meoc\/ﬁ We requue V
<V for the semiclassical appioximation, which leads to
the Ehrenfest time

7d—4 A

=—-——1 —,d=2 18
6he E (18)

73
In conclusion, we exammed different tume scales 7,
=c A\ lIn(l/A) for the bieakdown of different types of
semuclassical approximations These Ehrenfest tumes differ
only by a numerical coefficient ¢,, which may seem 1nsig-
nificant However, this difference 1s actually a signal of a
different power law scaling with # of the volume V 1n phase
space coveled by the wave packet For short times Liou-
ville’s theorem dictates Vi For long times [parameterized
as t=(c/M)In(1/%)] the WKB approxmmation gives V
« 707 for a one-dimensional quantum map (such as the
kicked 1otator) and Ve 70 16=¢ for a d-dimensional con-
servative system These different power laws reflect the fun-
damental change m the stiuctute of the wave function with
mcieasing time and should, therefore, have obseivable con-
sequences Two possible applications are the Loschmidt echo
[12] and the quantum shot noise [13], where the Ehrenfest
time plays a key role
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