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We descnbe the quantum-mechamcal spreadmg of a Gaussian wave packet by means of the semiclassical
WKB approximation of Berry and Balazs [J Phys A 2, 625 (1979)] We find that the time scale τ οη which this
approximation breaks down m a chaotic System is larger than the Ehrenfest times considered previously In one
dimension τ— |λ~Ίη(/4/Α), with λ the Lyapunov exponent and A a typical classical action
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Accordmg to Ehrenfest's theorem [1], the propagation of
a quantum-mechamcal wave packet is described for short
times by classical equations of motion The time scale at
which this conespondence between quantum and classical
dynamics breaks down is called the Ehrenfest time If the
classical dynamics is chaotic with Lyapunov exponent λ,
then the Ehienfest time τ is of order λ"1 ln(A/ft) (with A a
typical classical action of the dynamical System) [2] There is
actually more than a smgle Ehrenfest time, correspondmg to
different types of semiclassical approximations Although
they differ only by a numencal coefficient, τ,
= c,\~1 ln(A/h), the structure of the wave function changes
quahtatively from one time scale to the next

Up to a time τ{, with c l = i/6, the initial coherent state
will retam its Gaussian form with vamshing erroi in the hmit
h—>0 [3,4] Foi longer times up to τ2, with 02= i/2, the
uncertainty m the position and momentum of the paiticle
remams small but the phase-space stiucture of the wave
packet deviates strongly from a Gaussian For times greatei
than τ2 the wave function no longer has the form of a wave
packet (this is the "mixing regime" of Refs [5,6]), but up to
a time τ3 it can still be described semiclassically by the
time-dependent WKB approximation of Beny and Balazs
[7] As we will show in this papei, the WKB icpresentation
imphes 03 = 7/6 for a smgle degree of freedom (with simple
geneiahzations for higher dimensions) This is larger than the
value c3 = 2/3 obtamed by Bouzouma and Robeit [6] from a
diffeient semiclassical approximation

Let us start with the Gaussian one-dimensional wave
packet
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Imtially ß(t = 0)=0 and a(t = Q)=pF/L, wheie pF and L
aie the typical classical momentum and length The typical
classical action is A-pFL The paiameters x0(t),pQ(t) fol-
low the classical tiajectoiy for h<A We will measuie the
momentum and cooidmate in units of pF and L, lespectively,
so that a(0)=l and A = l Foi chaotic dynamics with
Lyapunov exponent λ one has a(t)<*e.\p(—2\t), hence α
«i foi t>l/\

To descnbe the time evolution in phase space we consider
the Wignei function
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The wave packet is centered at x0(t),p0(t) and for a(t)
<ä l becomes highly elongated and tilted with slope Αρ/Δχ
^ß It has length /||= ^h(l + β2)!α and width Zj_
= ^jhal(l + ß2), so that the area in phase space is conserved
exactly, l^lL = h The Gaussian quantum wave packet satis-
fies the classical Liouville theorem

The Gaussian form (1) takes into account the elongation
of the wave packet, but not the curvature that develops m
time and lesults in a bendmg of the packet To descnbe the
curvatuie we add an imagmary cubic teim m the exponent in
Eq (i),
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(Foi simphcity we have put XQ = 0 ) The cubic term leads to
an appieciable phase stuft over a length l\\ — (h/a)112 when
(y/£)(ft/a)3 / 2>l, hence when a(t)<hlßy2ß

For a<^hlßy2ß the Wignei function takes agam a simple
form, m terms of the Airy function AI

W(x,p) =
a1/2exp( — ax2lh) ρ0 + βχ+γχ2—ρ

-AI l

\ i l /3

(4)

One can check that W(x,p)^S(x)S(p-p0) when h—>0 (at
fixed a), by means of the identity lime^0 Αι(ζ/ε)/ε
= Λ/ττδ(ζ) At finite h the wave packet is extended along the
curved line p = p0 + ßx+ γχ2 Since p,p0,x aie of oider
umty, the two paiameteis β and γ aie of oider unity äs well
(in contiast to a, which is <§1) The tiansverse width is of
oidei

(5)

The length of the packet lemams at l^ %/ft(l + ß2)/a Since
now /||/± S>Ä, the Liouville theoiem no longer holds
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To obtain the Ehrenfest time, we paiametnze time äs

c l
Wkk(x,p)= exp ·+-

iy^'"\\f(x)\2dy

24h 2-n-h

(6)

The classical hmit for a chaotic System means Ä—>0, f—>co
at fixed c Diffeient coefficients c follow from different semi-
classical approximations If we use the Gaussian wave
packet (1), without the cubic term to account foi the cuiva-
tuie, then we need a(t)9>hlßy2ß Smce a^e~2^'^h2c we
need c<l/6 The uppei hmit of c gives the first Ehienfest
time TI = ^λ~ι ln(l/ft)

The classical hmit can be reached for longer times if we
use the wave packet (3), mcluding the cubic teim The di-
mensions of the packet for t>r{ scale with h äs

(7)

For c < 1/2 the length of the packet approaches zero m the
classical hmit This upper hmit of c gives the second Ehien-
fest time τ2= j X " 1 ln(l/Ä)

For t>r2 the length of the wave packet exceeds the size
of the System and is no longer small compared to the ladius
of curvature For these large times we may adopt the semi-
classical WKB appioximation of Berry and Balazs [7] Con-
sidei a curve m phase space p(x) and a phase-space distn-
bution p(p(x),x) Both p and p evolve in accordance with
classical equations of motion Foi t> τ2 the function p ( x ) is
multivalued with an exponentially large numbei of branches
~ exp[X(f— r2)] The quantum wave function in this "mix-
mg" regime has the foi m

(8)

The summation over k accounts for the different bianches of
the multivalued function p (x) The two functions/and σ are
related for Ä^O to p and p by the correspondence pnnciple

(9)

An explicit descnption of the evolution of the wave function
(8) for quantum maps can be found in Ref [8]

Near the pomt xb at which p ( x ) bifuicates into two
branches, one has p — pb±a\jx—xb, p = b/\lx — xb The
wave function theie is

(10)

up to an overall phase The phase diffeience between the
bifuication pomts can be deteimmed from Eqs (8) and (9)
Because the cuive p ( x ) is not closed, there is no analog of
the Bohi-Sommeifeld quantization mle

The Wignei function conesponding to the wave function
(8), bemg quadiatic m Ψ, contams both diagonal (WLk

<x\fk

 2) and oscillatmg nondiagonal (V/km^f[fm) contnbu-
tions Fai fiom bifuications, the diagonal contubutions to the
Wigner function lead

! Ai
2(cr'-p)

(£V")1/3

(H)

We have made a Taylor expansion of a(x±y/2) and ne-
glected the difference between/(jc±y/2) and/(*)

If we parametnze time äs in Eq (6) we have foi both l^
and /± the same scalmg with fi, äs in Eq (7) The ränge of
vahdity of Eq (8) is limited by the condition that the diffei-
ent branches should be distinguishable This lequires that the
diffeient parts of the cuive p ( x ) m phase space should not
get closer than /_,_ Their spacmg is of oidei 1//| (assummg a
umfoim fillmg of phase space), hence

The uppei hmit of 7/6 foi c leads to the thnd Ehienfest time

7 l
r3 =—In- (13)

The third derivative σ'" m Eq (11) vamshes at the pomts
of inflecüon of the curve p ( x ) In oidei to find the Wigner
function there, one should expand σ(χ±γ/2) up to terms of
01 der y5 This leads to a different scalmg I ± x f l 4 / 5 of the
width of the Wigner function near the inflection pomts Be-
cause these are isolated pomts, they will not contiibute to the
matnx elements of nonsmgular opeiators (contammg only
smooth functions of χ and p) This different scalmg should
therefore not affect the Ehienfest time (13)

The nondiagonal contnbutions Wkm to the Wignei func-
tion lead to the "ghost curves" discussed in Ref [9] (Ghost
curves are legions of large values of the Wigner function
which do not conespond to classical trajectones) The
Wigner function near these curves is given by the same Any
function äs m Eq (11), but m addition acquires a strongly
oscillatmg factor Due to these oscillations the nondiagonal
teims do not contribute to the maüix elements of nonsingulai
opeiators (They may play a lole in the decoheience by the
envnonment [10]) At r a τ3 the ghost cuives meige with the
(multivalued) curve p (x) and become indistmguishable

The time scale (13) for the bieakdown of the WKB ap-
proximation is gieatei than the Ehrenfest time j\~lln(l/h)
m the mixed regime obtamed m Ref [6] That shortei time
scale may Signal the bieakdown of the senes expansion
ak(x)^i,J = 0akj(x)1iJ Then Eq (9) would no longei hold,
but for t< τ3 the lepiesentation (8) with a lenoimahzed func-
tion ak(x) would still be valid

So fai we have discussed a one-dimensional (1D) chaotic
System, which m geneial can be lepiesented by an aiea pie-
seivmg map [8] A famihai example is the kicked lotatoi
[11] Foi mesoscopic quantum dots, howevei, a moie lel-
evant model is the rf-dimensional (cf = 2,3) Schiodmgei

equation with a smooth potential V (r) The Gaussian wave
packet then takes the foi m
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x +—x,xn (14)
1=1,2, (16)

Heie S is the action for the classical üajectoiy r0(t) and we

have defined p0 = mr0, x = r—r0, ζίη = β1η + ια1η As be-
fore, we rescale the momentum and coordmate such that the
typical classical action A = l Imtially, ζιη — ιδ1η Similai to
the one dimensional case, aln defines the foim of the packet
in coordmate space and β1η = Δρι/Δχη give the angles m
phase space Substitutmg the wave function (14) into the
Sclirodinger equation one finds Newton's equation of motion

foi r0 The spreading of the wave packet m phase space is
descnbed by

(15)

This is the equation descnbmg the spieadmg m phase space
of a small Gaussian bunch of classical paiticles

The Wigner function conespondmg to the wave function
(14) has the Gaussian foim W°cexp(-Q;M;„2„/Ä), where

Q = (r—ro,p—po) is a vectoi m 2ui-dimensional phase
space The d Lyapunov exponents λ, (ι = 1,2, ,d) govern

the large-time behavior of the eigenvalues /«,= l/m2ii-( + i
<*εχρ(2λ,ί) of the leal Symmetrie matnx M Because of en-
eigy conservation one Lyapunov exponent vamshes We or-
dei the λ 's from large to small, so that λι is the laigest and
X r f =0

The wave packet lemains Gaussian (preseiving the vol-
ume °cftrf in phase space) until the cuivature Starts to play a
i öle (via a cubic teim in the action) The corresponding
Ehienfest time T1 = ^Xf 1 ln( l /Ä) is the same äs m 1D, only
now it is defined through the laigest Lyapunov exponent X j
The second Ehrenfest time, when the length of the packet
exceeds the size of the System, also has the same form τ2

The thiid time τ3 is diffeient foi d = 2,3 from the 1D case
Instead of Eq (7), one now has

The longitudmal dimensions l^ correspond to eigenvalues

ml with l ^i=Si/— l, and the tiansveise dimensions /^ to m,
with d+2^i^2d The two umt eigenvalues m r f=m r f + 1

= l contnbute anothei factor \fh each to the total volume V
m phase space coveied by the wave packet

rf-l rf-l

(17)

The available aiea Vmax is lestncted to a shell of constant

energy with thickness \fK, hence Vm^\lfi We requue V
sVmax foi the semiclassical appioximation, which leads to
the Ehrenfest time

Td-4 A
(18)

In conclusion, we exammed different time scales r,
= c I X~ 1 ln(l/Ä) foi the bieakdown of diffeient types of
semiclassical appioximations These Ehrenfest ümes differ
only by a numencal coefficient cl, which may seem msig-
mficant However, this difference is actually a Signal of a
different power law scahng with h of the volume V in phase
space coveied by the wave packet For short times Liou-
ville's theoiem dictates V^h Foi long times [parametenzed
äs f = (c/X)ln(l/%)] the WKB approximation gives V

α^ν/6-Γ f01 a one_dimensional quantum map (such äs the
kicked lotatoi) and V<xfildl6~1/6~c for a c?-dimensional con-
seivative System These diffeient powei laws reflect the fun-
damental change in the stiuctuie of the wave function with
mcieasmg time and should, therefore, have obseivable con-
sequences Two possible applications are the Loschmidt echo
[12] and the quantum shot noise [13], where the Ehrenfest
time plays a key role
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