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A 1andom-matrix theory 1s developed for the adiabatic response to an external perturbation
of the energy spectrum of a mcsoscopic system The basic assumption is that spectral
correlations are governed by level repulsion Following Dyson, the dependence of the energy
levels on the perturbation parameter 1s modcled by a Brownian-motion process 1n a fictitious
viscous flud A Fokker-Planck equation for the evolution of the distribution function 1s
solved to yield the correlation of level densities at different energies and different parameter
values An approximate solution 1s obtamed by asymptotic expansion and an exact solution by
mapping onto a free-fermion model A generalization to multiple parameters 1s also
considered, corresponding to Brownian motion 1n a ficitious world with multiple temporal
dimensions Complete agreecment 1s obtained with microscopic theory

1. Introduction

This 1s a theoretical investigation of the adiabatic response to an external
perturbation of the energy spectrum of a complex quantum mechanical system.
We consider a Hamltonian #(X) which depends on a parameter X. The
X-dependence of the energy levels E, (X), shown 1n fig. 1 by way of example,
1s taken from a calculation of the hydrogen atom in a magnetic field [1]. Only
levels with the same cylindrical symmetry are shown. A weak X-dependence of
the mean density of states is removed by a rescaling of the energy. What
remains is an irregular oscillation of E, as a function of X. Two levels which
approach each other are repelled as X is increased further, leading to a
sequence of avoided crossings at which the derivative E, =dE,/dX changes
sign. The average E, 1s zero, averaged either over a range of X or over a range
of n. The correlator of E,(X) and E, (X') 1s non-zero for nearby levels n, m
and for nearby parameters X, X', and serves as a quantitative characterization
of how the system responds to an external perturbation.
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Fig 1 Typical parameter dependence of the energy levels, illustrating the phenomenon of level
repulsion (parameter X and energy E wn arbitrary units). This plot 1s based on a calculation of the
spectrum of the hydrogen atom m a strong magnetic field by Goldberg et al [1}

Our investigation was motivated by a remarkable universality of the
parametric correlations discovered by Szafer and Altshuler [2]. They consid-
ered a disordered metallic particle with the topology of a ring, enclosing a
magnetic flux ¢ (measured in units of #/e). The energy levels E (¢) depend
parametrically on ¢. The dispersion is characterized by the “current density”

&, 6)= 2 8(5 = E@) 35 E@). (1)

Szafer and Altshuler applied diagrammatic perturbation theory [3] to compute
the correlation function

C(3E, d¢) =j(E, ¢) jJ(E +BE, ¢ + d¢p), (1.2)

where the overline indicates an average over an ensemble of particles with
different impurity configurations. The result was that the correlator C(3E, 8¢)
becomes universal for 8E =0,

C(0, X)=— (1.3)

o 8 x?°
with 8 =2 and X = &¢. Eq. (1.3) is universal in the sense that it contains no
microscopic parameters which characterize the particle, such as the diameter
L, the mean level spacing A, the Fermi velocity v, or the mean free path /. It
holds for (4/E,)!"* <3¢ <1, where E, = #vl/L” is the Thouless energy.

Eq. (1.3) was proven for the case that the randomness in the energy
spectrum is due to scattering by randomly located impurities. Numerical
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simulations indicated that it applies generically to chaotic systems, even if there
is no disorder and all randomness comes from scattering at irregularly shaped
boundaries [2]. (The average in that case is taken over F and ¢.) Further work
on disordered systems by Simons and Altshuler [4] based on a non-perturbative
“supersymmetry” formalism [5] has shown that eq. (1.3) with =1 and
X =8U applies if the external perturbation is a spatially fluctuating electro-
static potential Us(r). (The function s(r) should vary smoothly on the scale of
the electron wavelength, with vanishing spatial average.) These analytical
investigations assumed non-interacting electrons. Recent numerical simulations
of a Hubbard model [6] have shown that eq. (1.3) remains valid in the
presence of electron—electron interactions. The correlator (1.3) thus provides a
universal quantum mechanical characterization of the response of a chaotic
system to an external magnetic or electric field. Such universality calls for a
random-matrix theory of parametric correlations. It is the purpose of this paper
to present such a theory.

The basic principle of random-matrix theory (RMT) is that the spectral
correlations are dominated by level repulsion [7]. Level repulsion is a direct
consequence of the Jacobian II,_, |E, — E,|” associated with the transformation
from the space of N X N Hermitian matrices 3 to the smaller space of N
eigenvalues E,. Level repulsion is universal in the sense that it is fully
determined by the symmetry class of the Hamiltonian ensemble. There exist
just three symmetry classes [8], characterized by the number 8 =1,2,4 of
independent components of the matrix elements of #: g =1 in zero magnetic
field (real ), B =2 in non-zero field (complex ), and B =4 for strong
spin-orbit scattering in zero magnetic field (quaternion ). The three ensem-
bles are called orthogonal (8 = 1), unitary (8 =2), and symplectic (8 =4).

The Wigner—Dyson theory of random matrices yields a level-density correla-
tion function K(3E) which is universal for level separations 3E greater than the
mean level spacing A [9]. The function K(8E) measures correlations between
the level density

n(E, X) = i 8(E — E(X)) (1.4)

at different energies £ and E + 8E, but at the same value of the external
parameter X:

K(3E) = A(E, X) A(E + 8E, X) —n(E, X) n(E + 3E, X) . (1.5)

The universal limiting form of K in the Wigner—Dyson theory is
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K(E) =— (16)

BSE’

The universal correlator (1 6) was first obtained from RMT 1n the context of
nuclear physics, and then applied to small metallic particles by Gorkov and
Eliashberg [10] Much later, 1t was derived from a microscopic Hamiltonian by
Efetov [5] and by Altshuler and Shklovskii [3] The microscopic theory shows
that eq (1 6) holds for a disordered metal 1n the energy range A <3E < E_
Numerical simulations have established that the Wigner—Dyson theory applies
generically to systems with chaotic classical orbits [11], and also that it remains
valid 1n the presence of electron—electron mteractions [12]

The level-density correlation function (1 6) 1s thus umiversal 1n the same
sense as the parametric correlation function (1 3) This suggests that it should
be possible to derive eq (1 3) by some extension of the Wigner—Dyson theory
to parameter-dependent Hamiltonians %(X) We will show that the Brownian-
motion model used by Dyson [13] to construct a parameter-dependent
ensemble of random matrices, yields parametric correlations 1n agreement with
the microscopic theory of Altshuler, Simons and Szafer [2,4]

The outline of this paper 1s as follows In section 2 we formulate the problem
of a random-matrix theory of parametric correlations and define the mapping
onto Dyson’s Brownian-motion model The correlation functions which we will
calculate are summarized 1n section 3 In section 4 we present an asymptotic
analysis which yields the correlation functions m the limit that the dimension N
of the Hamiltonian matrix goes to mfinity An exact result for the correlation
functions 1n the Browman-motion model for a special ensemble 1s given m
section 5, and compared with the large-N result of the previous section In
section 6 we extend the theory to parametric correlations involving multiple
parameters We conclude m section 7, by comparing the results of random-
matrix theory with the microscopic theory

The results of the asymptotic analysis were briefly announced 1n a recent
letter [14]

2. Brownian-motion model

Starting point of our analysis 1s Dyson’s Browman-motion model [13] for the
evolution of an ensemble of N X N Hermitian matrices as a function of an
external parameter 7 Dyson’s 1dea was to regard 7 as a fictitious “time”, and
to model the 7-dependence of the distribution of eigenvalues P({E,}, ) by the
one-dimensional Browman motion of N classical particles at positions
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E (), Ey(7), ..., Ey(r), in a fictitious viscous fluid with friction coefficient vy
and temperature B '. Level repulsion is accounted for by the interaction
potential —In|E — E’| between particles at E and E'. The particles move in a
confining potential V(E), which is determined by the density of states.

With these definitions, P({E,}, 7} evolves according to the Fokker—Planck
equation [13]

v 5 =255 (Pag 35 e
W({E,))= -2, In|E, - E|+ZV(E) (2.2)

Eq. (2.1) has the 7— o (“equilibrium”) solution
=1 _—BW
Peq({En}) =Z € > (23)

where Z is such that P,  is normalized to unity. Eq. (2.3), for 8 =1, 2 and 4, is
the ecigenvalue dlstrlbutlon in the orthogonal, unitary, and symplectic ensemble
{9]. It has the form of a Gibbs distribution, with the symmetry index 8 playing
the role of inverse temperature. The fictitious energy W contains a logarithmic
repulsive interaction plus a confining potential V. The function V(E) is chosen
such that P, yields the required average eigenvalue density (which depends on
microscopic parameters, but is assumed to be independent of 7). The logarith-
mic interaction has a fundamental geometric origin: The factor
exp(BX,., In|E,—E|)=1Il,_, |E,— E|° is the Jacobian associated with the
transformation from the space of Hermitian matrices # to the smaller space of
eigenvalues E, .

The N-dimensional Fokker—Planck equation (2.1) is equivalent to N coupled
Langevin equations,

dE 144
e 9" o
Y dr ok, +7(),

i=1,2,...,N. (2.4)

The random force & is a Gaussian white noise of zero mean, %(7) =0, and
variance

F,(7) 97}(7’)=2—g6”8(7—7’). (2.5)

The Fokker—Planck equation (2.1) and the Langevin equations (2.4) are
equivalent levels of description of the Brownian motion [15].
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The fictitious time 7 needs still to be related to the perturbation parameter X
in the Hamiltonian #(X) of the physical system one is modeling. Furthermore,
we need a microscopic interpretation of the coefficient y. These issues were not
addressed in ref. [13], but are crucial for our purpose. Let 7 = 0 coincide with
X =0, so that

P({E,},0) = 11 S(E,—E)), (2.6)

with E? the eigenvalues of 9(0). For 7>0 we then identify
r=X". (2.7)

This is the simplest relation between 7 and X which is consistent with the
average initial rate of change of the energy levels: On the one hand,

T vy 072 2 dE, 2 3
[E(X)—E] =X<F)?> +0(X?) (2.8)

is of order X for small X, while on the other hand the ensemble average

[E,6)— BT =5+ 06) (2.9)

is of order r for small 7, according to egs. (2.4) and (2.5). The identification
(2.7) also implies the relation

%Z(%)Z (2.10)

between the friction coefficient and the mean-square rate of change of the
energy levels.

Eq. (2.1) or (2.4) is the simplest description of the Brownian motion of the
energy levels which is consistent with the equilibrium distribution (2.3). It is
not the most general description: (i) One could include the “velocities” dE, /dr
as independent stochastic variables, and work with a 2N-dimensional evolution
equation. In the case of Brownian motion in a physical fluid, the appropriate
evolution equation is Kramer’s equation [15]. It describes the dynamics of a
Brownian particle on the time scale of the collisions with the fluid molecules.
Since the viscous fluid in Dyson’s Brownian-motion model is fictitious, it is not
clear what the appropriate 2N-dimensional evolution equation should be in this
case. (ii) One could let y be a matrix function vy, ({£,}) of the configuration of
energy levels. Such a configuration dependence (known in fluids as hydro-
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dynamic interaction) would be an additional source of correlations, which is
ignored. That is the basic assumption of Dyson’s Brownian-motion model, that
the spectral correlations are dominated by the fundamental geometric effect of
level repulsion. The Brownian-motion model is known to provide a rigorous
description of the transition between random-matrix ensembles of different
symmetry [16]. However, there exists no derivation of eq. (2.1) or (2.4) from a
microscopic Hamiltonian. Here we apply the Brownian-motion model to
fluctuations around equilibrium in the random-matrix ensembles (2.3), and
show that there is a complete agreement with the microscopic theory for
disordered metals [2,4].

3. Correlation functions

We consider observables A(X) of the form

N

AX) =2 a(E(X)) . (3.1)

=1

A quantity of the form (3.1) is called a linear statistic on the eigenvalues of
H(X). The word “linear” indicates that A does not contain products of
different eigenvalues, but the function a(E) may well depend non-linearly on
E. We assume that a varies smoothly on the scale of the mean level spacing A.
(In particular, this excludes the case of a step function a(F).) The correlator of
A at two parameter values X and X' is SA(X) 3A(X'), where A=A — A. The
overline denotes an average over a range of X at constant 83X =X'— X (or,
alternatively, over an ensemble of statistically equivalent systems). Of particu-
lar interest is the integrated correlator

Y4 = fdaxaA(X) SAX + 0X) . (3.2)

To compute the correlator of an arbitrary linear statistic we need the density
correlation function

S(E,X,E'", X")=2,8E — E(X))5(E' - E,(X"))

- (2 S(E - E,(X»)(; SE - EX)). (3.3)

The correlator of A at X and X' then follows from a double integration,
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SAX)SAX') = fm dE f: dE’ a(E) a(E') S(E, X, E', X") . (3.4)

We will also consider the correlator A(X) A(X') of the derivative A =dA/
dX of the linear statistic (3.1). This correlator follows from the density
correlation function S by

2

AX)AX) = de fdE’a(E)a(E’)ﬁ%i,—S(E,X,E’,X’). (3.5)

Alternatively, we can compute the correlator of A from the current correlation
function

CE,X,E',X") =2, E(X) E(X")8(E — E(X)) 8(E' — E,(X")). (3.6)
Since
AX) = 21 E(X) a%a(E,(X)) , (3.7)

one has, upon partial integration,

@

AX)A(X') = de JdE’a(E)a(E’)a—;a—E—,C(E,X,E’,X’). (3.8)

—

Comparison of egs. (3.5) and (3.8) shows that the density and current
correlation functions S and C are related by

2 2

9 S o0
oF QE’ CE X, E' X") = 0X 0X'

S(E,X,E",X'"). (3.9)

We assume that S(E, X, E', X +38X)=S(E, E’,3X) depends only on the
parameter increment 5X. When considering a particular physical system, such
as the hydrogen atom in a magnetic field, this may require a rescaling of energy
levels, to eliminate a systematic drift in E, versus X (cf. fig. 1). Since, by
definition, S(E, E’, 8X) = S(E', E, —3X), the correlators 8A(X)3A(X +8X)
and A(X) A(X + 8X) are even functions of 8X. Furthermore, we have the sum
rule
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fdaXA(X)A(XMX):o, (3.10)

for any linear statistic.

In the following sections we will compute the density correlation function
S(E, E’, X) from the Brownian-motion model described in section 2. In view of
eq. (3.3) and the identification (2.7), we have the relation

=) ] ©

S(E,E', X)= de?--- JE‘; fclEl--- deN

—x —a

X (E S(E— E°)S(E' — E])>
X P ({E}) [PUE,}, X*) = P, ({E,})] (3.11)

between the density correlation function and the solution P({E,}, ) of the
Fokker-Planck equation (2.1) with initial condition (2.6). Once we have S, the
current correlation function C and the correlators of A and A follow from egs.
(3.4), (3.5) and (3.9).

4. Asymptotic solution

In this section we compute the large-N asymptotic limits of the density and
current correlation functions S(E, E’, X) and C(E, E’, X). By “asymptotic” we
mean that the expressions obtained hold in the limit N— o in the energy range
|E—E'|> A for all X and in the parameter range X > 4+/y for all E, E". A
justification of our asymptotic analysis will be given in section 5, when we
compare with an exact result for g =2. We assume that the N— o0 limit is
accompanied by a rescaling of the confining potential V(E) in eq. (2.2), such
that the mean density of states remains the same. An explicit example of such a
rescaling is given in section 5.

The first step in the analysis is to reduce the Fokker—Planck equation (2.1)
to an evolution equation for the average density of eigenvalues

p(E,7)= del--- deNP({E,,},»r)gla(E—E,). (4.1)

This problem was solved by Dyson [13] in the limit N—> o, with the result
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yga;p(E, T) :% [p(E, T)%(V(E) - T dE" p(E', 7) ln|E—E’|>] .
- (4.2)

Corrections to eq. (4.2) are smaller by an order N~ ' In N. To the same order,
the equilibrium density p.,(E) (defined as in eq. (4.1) with P replaced by P,,)
satisfies [13]

= (V(E) - f dE" peo(E") In|E ~ E’\) =0. (4.3)

To make this paper selfcontained, we present Dyson’s derivation of eq. (4.2) in
the appendix.

The next step is to reduce eq. (4.2) to a diffusion equation by linearizing p
around p,,. This is consistent with the large-N limit, since p is of order N while
fluctuations in the density are of order one [13]. We write p(E, 7) = p,,(E) +
dp(E, 7) and find, to first order in &p,

9 9 3
S, (B, 1) =—p de' D(E, E") 257 dp(E",7) (4.4)
D(E,E") =~y 'p(E)In|E - E'|. (4.5)

Eq. (4.4) has the form of a non-local diffusion equation, with diffusion kernel
(4.5).

To proceed we assume a constant density of states p,,(E) = p, = 1/4 over the
energy range of interest (which is the energy range where the function a(E) in
the linear statistic (3.1) differs appreciably from zero). The diffusion kernel can
then be taken to be translationally invariant, D(E, E')=D(E’' — E), with
Fourier transform

o

D(k)= f dE e*“D(E) =227 (4.6)
s v k|

Eq. (4.4) becomes an ordinary differential equation in k-space, with solution

dp(k, 7) = dp(k, 0) exp[—k’D(k)r] . (4.7)

In view of eq. (2.6), the initial condition on the eigenvalue density is
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p(E,0) = EI S(E-E"). (4.8)

We define the equilibrium average (f),, of an arbitrary function f({E,}) of

the initial configuration by

eq

=

(Pea= [ aBY | B PLED) RED) (4.9

—o0

Using also definition (4.1), eq. (3.11) for the density correlation function
S(E, E', X) can be written as

S(E,E', X) = (p(E, 0) p(E', X)) o — Peg(E) peg(E")

= (8p(E, 0) 8p(E", X*)) (4.10)

[0
In the second cquality we have used that (p(E, 7)) ., = p,(E). The correlation
function K(E, E') is defined by (cf. eq. (1.5))

K(E,E") = —(3p(E, 0) 8p(E", 0)) , = —S(E, E', 0) . (4.11)
Over the energy range of a constant density of states, the correlation functions
S(E,E',X)=S8(F'—E,X) and K(E,E'Y=K(E' — E) are translationally in-
variant, with Fourier transforms S(k, X) and K(k). According to egs. (4.7),
(4.10) and (4.11), we have

S(k, X) = —K(k) exp[—k*D(k) X7] . (4.12)
The function K(k) is known [9]. In the limit N— o, one has asymptotically

Id
K(k) = B (4.13)
independent of V(E) [17]. Eq. (4.13) is the Fourier transform of eq. (1.6), and
holds for energy scales k™' A large compared to the mean level spacing.
(This is the relevant regime, since the function a(E) in the linear statistic (3.1)
is assumed to be smooth on the scale of the level spacing.)
Combining egs. (4.6), (4.12) and (4.13), we conclude that the density
correlation function is given by

||

Sk, X) =}Fexp(—§2|k|) , (4.14)
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_ 172
§=X(mpy/y) . (4.15)

The E-space correlation function becomes, upon inverse Fourier transforma-
tion,

2

S(E,X):L d In(¢*+ E?). (4.16)

27°B OE*

The current correlation function C(E, E', X, X')=C(E'—E, X' — X) is ob-
tained from § by means of relation (3.9), which in k-space takes the form

2

Clh, X) =~

2 ax? Sk, X) . (4.17)

We find from eqs. (4.14) and (4.17):

2p, 2 2
Clk, X) = 0 (1= 2% k1) exp(~£*1k]) (4.18)

2

C(E,X)=L d In(¢* + E?) . (4.19)

2B 9X>

The asymptotic results for the correlation functions given above can be used
to compute the N— o limit of the integrated correlator y,, defined by egs.
(3.2) and (3.4). The k-space expression for y, is

. -
X4 :Zde f dk |a(k)|* S(k, X) , (4.20)
§ R4

a(k) = f dE e""a(E) . (4.21)

Substituting the asymptotic formula (4.14), and carrying out the integral over
X, we obtain the result

1 feel
X = g5 0o [ ok et K17 (422)
0
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5. Exact solution

The Fokker—Planck equation (2.1) can be solved exactly for the Gaussian
ensemble, which is the case of a parabolic potential V(E)=cE® (c is an
arbitrary positive constant). The eigenfrequencies and eigenfunctions of the
Fokker—Planck equation were constructed by Sutherland [18], by mapping it
onto a Schrddinger equation. Here we use the same method to compute the
correlation functions for 8 =2, and compare with the asymptotic N — o results
of section 4.

5.1. Sutherland’s method
To map the Fokker—Planck equation (2.1) onto a Schrddinger equation we
substitute

PUE,), 7)=e PYUEDY(E Y 1), (5.1)

where W is given by eq. (2.2) with V(E)=cE®’. Sutherland [18] used a
different mapping (with g instead of J 3 in the exponent), but this one is more
suitable for our purpose. Substitution of eq. (5.1) into eq. (2.1) yields for ¥
the equation

ow 1 9 qf 1 [ (aW) aZW]
—_—= —V — . 5.2
o By 2} IE? Ty 21 IE; (52)

The expression between square brackets is evaluated as follows:

g: 2 => X ———5+2N, (5.3)

E7 U0 (B - E)

—

Y T LR P

=1 [ tog(#1) k(#l) E 1 /(7‘1) J

Zg’) - E) +dc ZE?—ch(N—l). (5.4)

In the final equality we have used that for any three distinct indices i, j, k

] 1 1 1 1 1
E-EE—E, E-EE—E  FE—FE, E,

=0, (5.5)

so that the triple sum over k3 isJ collapses to a double sum over i#j.



74 C.W.J. Beenakker, B. Rejaei | Random-matrix theory of parametric correlations

Collecting results, we find that ¥ satisfies a Schrdodinger equation in imaginary
time (r =it),

_Ez(%s*Uo)lp > (5.6)
%___1_ 82 +B—_22 __1____+B_C22E2 (57)
S ByTeE! Ay T ,GL(E-EY v T '

c Bc
UO—N;+N(N—1)2—),. (5.8)

The Sutherland Hamiltonian  has an inverse-square interaction and a
parabolic confining potential. The interaction is attractive for 8 =1 and
repulsive for 8 =4. For B =2 the interaction vanishes. Since exp(—BW) is a
time-independent solution of the Fokker—Planck equation (2.1), exp (—3B8W)
is a time-independent solution of the Schrédinger equation (5.6) (in view of
eq. (5.1)). Hence once has the eigenvalue equation

e PV = U, e P (5.9)

For a particular ordering of the “coordinates” E, E,, ..., Ey, the function
¥, xexp(— 1 BW) is an eigenfunction of the N-fermion Hamiltonian 5. Since
it is nodeless, it is the ground state at energy U,. Anti-symmetrization yields
the fermion ground-state wavefunction [18,19]

E,-E,

s e R (5.10
<y |E1_E;| )

W({E,}) = Ce 2P¥UED

with C a normalization constant. (Alternatively, we could work with the
symmetric wavefunction exp (—4B8W), which is the ground state for hard-core

bosons.)
We obtain the N-particle Green’s function G({E,}, ) of the Schrédinger
equation (5.6) from P({E,}, 7) by the similarity transformation

G({E,},7) = exp[$ BW{E, )] P(E,}, ) exp[—$ BW{E,})] - (5.11)

For 7 >0, the function G satisfies

“?z (%s -U,)G, (5.12)
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in view of eqs. (5.1) and (5.6). The initial condition is

G({E,,},0)=ﬁ3(E,—E?), (5.13)

in view of eq. (2.6). Hence G is indeed a Green’s function. In operator
notation,

G(r)=e s~ (5.14)

We note that since the Fokker—Planck equation conserves the ordering of the
levels E|, E,, ..., E, for 7=0, we can write eq. (5.11) equivalently in terms
of the anti-symmetrized wavefunction (5.10),

GUE,}, ) =%,"({E,}) PUE,}, ") %L({E}}) - (5.15)

We are now ready to relate the equilibrium density-correlation function in
Dyson’s classical Brownian-motion model to the ground-state density-correla-
tion function in Sutherland’s quantum many-body problem in imaginary time.
In fact, we will see that the two correlation functions are identical. We define
the ground-state expectation value (A), of an operator A,

(A),= del--- dequgAfoo. (5.16)

The density operator is

n(E) = i S8(E—E), (5.17a)
n(E,7)=e"n(E)e ", (5.17b)

in the Schrédinger and Heisenberg picture, respectively. Combining eqgs. (4.1),
(4.8), (4.9) and (5.14)—(5.17), one then finds

(p(E', ) p(E, 0)) = (n(E") e™ ™ "n(E)),,
=(n(E", 1) n(E,0)), - (5.18)

Hence the density correlation function S(E, E’, X), defined in eq. (4.10), is
identical to

S(E, E', X) = (n(E", X*) n(E, 0)) , = (n(E)) o {n(E")) - (5.19)
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52 Gaussian unitary ensemble

The significance of the formal relationship (5 19) 1s that the quantum
mechanical correlator on the right-hand side can be computed exactly using the
known excitation spectrum of the Sutherland Hamiltoman [18] The problem
of computing the time-dependent correlation functions of g was previously
considered by Simons, Lee and Altshuler, 1n connection with a microscopic
theory of parametric correlations [20] We will return to their work 1n section 7
The case B =2 1s particularly simple, since % 1s then the Hamiltoman of
non-interacting fermions This 1s the case of the Gaussian unitary ensemble

The single-particle eigenfunctions ¢,(E) and eigenvalues ¢, of ¥ are (cf eq
(57) with g =2)

_ 1/4 -1/2 _—cL?
$,(E) = (2c/m)'*(2°p1) ™2 " F H (EV20), (5 20)
e,=(pt3)o, p=0,1,2, (5 21)
w =2y (522)

The functions H,(x) are the Hermite polynomials The density operator (5 17)
becomes, 1 second quantization,

n(E) = i é,(E) ¢,(E) c,c,, , (5 23a)
pq-0
nE,7)= 2 ¢,(E) ¢, (E)er " clc, (5 23b)

where c; and ¢, are fermion creation and annihilation operators 1 state p The
average density in the N-fermion ground state 1s

(M(E))o =y (B)= 2 G3(E) (5 24)

To compute the density fluctuations, we need the ground-state expectation
value

(n(E', 1) (E, 0))

= 2 ¢, (EN$, (E)$,(E)$,(E)er 7 (clc,che,)q (5 25)

P q pg-0

The average of the product of four ¢’s evaluates to
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<cp q' pc >0*51>f18pqQ(N_l_p')O(N_l—p)
HN=1-9)0(p—N), (5.26)

P‘I l’

where §,, is the Kronecker delta and the function 6(x) equals 1 if x =0 and 0 if

x <0. Collecting results, we find for the density correlation function (5.19) the
formula

SE,E,X) = 32 2 6,(E) ,(E") ¢,(E) ¢,(E") e (5.27)

The infinite series over p in eq. (5.27) can be reduced to a finite sum by
using an addition theorem for Hermite polynomials:

Go(E, E',1)= 2, 6,(E) ¢,(E") ™"

C 1/2 c
N (m) eXp(sinh —[2EE' — (E” + E"*) cosh m]) ,
(5.28)

This is the familiar result for the (imaginary time) Green’s function of a
one-dimensional harmonic oscillator (with coordinate E, mass v, and oscillator
frequency w). Substitution into eq. (5.27) yields

S(E’ E,’ X) = GO(E’ E,’ Xz) Z_ (bq(E) d)q(E,) equ
- 20 2; ¢,(E) ¢,(E") &,(E) ¢,(E") e X (5.29)

For X =0 the function G, becomes a delta function, so that eq. (5.29) reduces
to

S(E. B, 0)=5(E-E) S ¢ 2©)- (3 6,6 8,6 (5.30)

p=0

Eq. (5.30) was obtained by Mehta [9] using an approach known as the
“method of orthogonal polynomials”. Our eq. (5.29) extends this exact result
to parametric correlations.
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5.3. Large-N limit

It is instructive to see how the result (4.14) of the asymptotic analysis in
section 4 follows (for B =2) from the large-N limit of the exact result (5.27)
for the Gaussian unitary ensemble.

We wish to evaluate the density correlation function (5.27) in the limit
N—o, ¢—0, while the product ¢N remains constant (to ensure a constant
density of states, see below). Using the asymptotic form of the Hermite
polynomials H, for p>1, one has for the eigenfunctions (5.20) the large-p
expressions

&,,(E) = (-1)?Qclpa)''* e’ cos(EV8cp) , (5.31a)
b3 o1 (E) = (=1)"(2c/pw®)"* e~ sin(EV/8cp) . (5.31b)

We need to compute the series

FN-1)

b, (E) 65, (E") exp[(2p + 3 )X ]

N—

1
6, (E) ¢,(B) e =

p= p=
1
7(N-2)

2 by (E) by, (E7) expl(2p + 20X, (5.32)

r=

in the limit N— o, ¢— 0 at constant cN. Note that c— 0 implies w — 0, in view
of eq. (5.22). Combining egs. (5.31) and (5.32), and replacing the sum over p
by an integral, we find in this limit

3 0,(5) 6,5 exple,X2) = py | ds exp(aX’s”) cosfmoy(E — E7)s],

(5.33)
with the definitions
_2 172

Po = (CN) > (5.34)
Tr2p2

a=No=—7—". (5.35)

2y

Similarly,
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> 6,(E) ¢,(E") expl(~6,X*) = p, | ds exp(~aX’s?) coslmp,(E - E")s].

p=N
(5.36)
Substitution of eq. (5.33) into eq. (5.24) gives
pcq(E)zp() ’ (537)

justifying the identification (5.34). The limit N— o yields a uniform density of
states in any fixed energy range. At finite N, the density p.,(E) vanishes for
po|E| 2 2N/w, as follows from a more accurate evaluation of eq. (5.24) [9].
Substitution of eqs. (5.33) and (5.36) into eqgs. (5.27) gives an integral
expression for the density correlation function S(E, E', X)=S(E' — E, X),

1 o

S(E, X)=p, f ds f ds” explaX’(s® — 5'%)] cos(mp, Es) cos(mpyEs’) .
0 I

(5.38)

The Fourier transform S(k, X)= [ dE S(E, X) exp(ikE) with respect to the
energy increment becomes

Po
&%kl

S(k, X) = exp(— £kl q ) SINB(E°[K]G,0,) 5 (5.39)

q Emin(l, i ), q EmaX(l,ﬂ>. (5.40)
min 21TP0 max 2'7Tp0

The variable ¢ was defined in eq. (4.15).

The result (5.39) holds in the large-N limit (at constant density of states) in
any fixed k-range. We now further restrict ourselves to energy scales bigger
than the mean level spacing A=p, ', i.e. to the range k <p,. Eq. (5.39) then
simplifies to

K|

Sk, X) =5 —exp(—£7kl) (5.41)

in agreement with eq. (4.14) for 8 = 2. The correlation function S(k, X) is only
appreciably different from zero if £°|k| < 1. Hence the restriction k < p, on eq.
(5.41) becomes irrelevant if £°p,> 1. This implies that the asymptotic expres-
sions for the correlation functions S(E, X) (and C(E, X)) of section 4 hold for
N—o in the energy range E>A for all X and in the parameter range
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X » Ay for all E. If both E < A and X < A+/y one cannot use eq. (5.41), but
should use instead the full expressions (5.38) or (5.39).

Once we have the density correlation function S(k, X), the current correla-
tion function C(k, X) follows directly in view of the relation (4.17). From eq.
(5.39) one thus finds

2

2mp
3 Ikl

— Sinh(€°1k| Grn) [3 + 3E°)k| @y + 26 °k°(qmax T Tomn) ]} -
(5.42)

C(k’ X) oA L3 exp( § Ik|(’Im'1x

Eq. (5.42) holds for N— o and any k. For k < p, it reduces to the asymptotic
expression (4.18) of section 4 (with g =2).

6. Extension of multiple parameters

In this section we show how the Brownian-motion model of section 2 can be
extended to a parameter vector X = X,, X,, ..., X,, relevant for a statistical
description of the dispersion relation of a d-dimensional crystalline lattice [4].
The Brownian motion of the energy levels E,(X) then takes place in a fictitious
world with multiple temporal dimensions 7=7,7,,...,T,.

We assume that any systematic drift in the energy levels is eliminated by a
rescaling, so that

3.E,(X)=0. (6.1)

(We abbreviate 9, =3/9X,.) We also assume that the different parameters X,
are independent, that is to say

9,E,(X)o,E,(X)=0, if wv. (6.2)

Let 7 = 0 coincide with X = 0. The initial condition on the distribution function
P({En}7 T) is

P({En},7=0)=1jN[6(El—Ef’), (6.3)

with E? the eigenvalues of #(X =0). For 7, >0 the distribution function
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evolves according to the multiple-time-dimensional generalization of the
Fokker—Planck equation (2.1),

2 5£=E (6.4)

=1

ez 67 5E)
3E TP GE

By comparing the initial average rate of change of the energy levels as a
function of X and =,

@@%E)—EX@ E)*+0(X%), (6.5)
_'—'—oz_zdi 2
(Em—EJ_BE;%+aTL (6.6)

we arrive as in section 2 at the identifications

T, =X., (6.7)
2wn-@ ). (6.8)

The Fokker—Planck equation (6.4) can now be reduced to a non-local
diffusion equation as in section 4,

1 d d 9
Ep,gl Y. 6—1'#8p(E’ T = K f dE' p. (E) In|E—E Iﬁﬁp(E ,T)
(6.9)
valid asymptotically for N— c. For a constant density of states p, the diffusion

kernel becomes translationally invariant. Eq. (6.9) then has the k-space
solution

d

Bo(k, 7) = dp(k, 0) exp( ~moylkl X 7,7, ) (6.10)
uw=1
which implies for the density correlation function (cf. eq. (4.14))

Ikl d 5
S(k,X)=;rEexp<—Trp0|k| 21 Xﬂ/yﬂ> : (6.11)
g
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Here we have also used the identification (6.7). The E-space correlation
function becomes, upon inverse Fourier transformation,

S(E, X) = ln[E + <wp0}k{ 2 X /'y#>2] (6.12)

2B OF?

The current correlation function

(E,X,E,X')= 2 [0, E,X)[0,EXS(E - E(X))8(E' - E,(X"))

p.u

(6.13)
is related to the density correlation function S(E, X, E', X') by
2 2
SEJE C, (E,X EX")= S(E,X,E",X"). (6.14)

0X, 9X,

Because of translational invariance, C, (E, X, E',X') = C,(E—-E X' -X),
S(E,X,E',X"y=S(E' ~ E, X' —X). In k-space eq. (6.14) then takes the form

2

(k, X) = = 40X, 0X,

X ax Sk, X). (6.15)

u Z

From eqgs. (6.11) and (6.15) we find for the current correlation function the .-
and E-space expressions

2 8 ) X X,/ d
Conll, X) =50 (222 = 2 k| 2255 exp( okl 2 K, ), (6.16)
i miy A=1
2

1 9
2,,723 X, 4X,

d 2
C,(E X)= lr1|iE2 + (wp0|k| 21 Xi/y“> ] . (6.17)
g

For d =1 the correlation functions (6.12) and (6.17) reduce to the results
(4.16) and (4.19) of section 4.

7. Comparison with microscopic theory

7.1. Diagrammatic perturbation theory

The asymptotic analysis of section 4 yields the density and current correla-
tion functions in the limit N—« if E> A=1/p, for all X and if X > X = A/y
for all E. We will now show that the random-matrix theory (RMT) in this
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regime agrees with the diagrammatic perturbation theory of Szafer, Altshuler,
and Simons [2,4].

When E— 0, our result (4.19) for the current correlation function C(E, X)
reduces to

2

C(0, X) = In|X| = — if X#0, (7.1)

B 0X’ wpX?’
independent of the microscopic parameters p, and y. Eq. (7.1), obtained here
tfrom RMT, is precisely the universal correlator (1.3) which Szafer and
Altshuler [2] derived from diagrammatic perturbation theory.

At X =0, the function C(0, X) according to eq. (7.1) has an integrable
singularity consisting of a positive peak such that the integral over all X
vanishes. This is a special case of the general sumrule

f dX C(E, X) =0, (7.2)

which follows from eq. (4.19) (cf. also eq. (3.10)). The peak of positive
correlation has infinitesimal width in the limit £— 0. At non-zero E the peak
has a finite width of order X (E/A)"?, as illustrated in fig. 2, where we have
plotted C(E, X) from eq. (4.19) for E =0.14 (dashed curve).

As discussed in section 5, the asymptotic formula (7.1) becomes exact only
for X » X_. (Compare with the solid curve in fig. 2, computed from the exact
result (5.42).) Using the definition of the generalized Thouless energy [4]

€. =A4""F, (7.3)

and the relationship (2.10) between y and E—f', one can write

24 )1/2 7.4)

x=avi= (2

In ref. [2] the parameter X is the magnetic flux increment in units of #/e. Then
& _is the conventional Thouless energy [21] E, =#v.l/L", related to the
conductance g (in units of e*/h) by g = E_/A. The Aharonov-Bohm periodicity
implies in this case the additional restriction X <1 to eq. (7.1) (which is
compatible with the condition X > X, because X. =g '"><1 in the metallic
regime).

We have shown that the £— 0 limit of C(E, X) obtained from RMT agrees
with the microscopic theory. What about non-zero energy differences? This is



84 C WJ Beenakker, B. Rejaer | Random-matrix theory of parametric correlations

5 T T T
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Fig 2 Current correlation function C(E, X) at E = 0.14 as a function of the parameter X, scaled
by X, = Av/y The solid curve 1s the N— o Limut of the exact solution for the Gaussian unitary en-

semble, obtamed by numerical inversion of the Fourier transform (5 42) The dashed curve 1s the
result (4 19) of the asymptotic analysis for 8 =2, valid for N— o and X > X, As E~— 0, the peak
of positive correlation becomes an integrable singularity at X =0, such that [ dX C(E, X)=0

most easily discussed in terms of the density correlation function S(E, X), to

which C(E, X) is related via eq. (4.17). Using ¢ = X(1wB%,)'"?, we find that
the result (4.16) can be rewritten identically as

1 _
S(E, X) = 75 Re(iE + Lmpg.X*) 2,

(7.5)
which agrees with the diagrammatic perturbation theory [2,4] provided E < E_.
The deviation between RMT and the microscopic theory on energy scales
greater than the Thouless energy E, is well known from the work by Altshuler
and Shklovskii on parameter-independent correlations [3].

One can similarly show that the correlation functions for multiple parameters

X, (w=1,2,...,d), obtained from RMT in section 6, agree with the results

which Simons and Altshuler [4] obtained by microscopic theory. In particular,
we find from eq. (6.17) that

d 2d —4 (& -1
Zl %,C,, (0, X) =" (}j1 Xi/yu> : (7.6)
n= w=

in agreement with ref. [4]. The correlator (7.6) is the multiple-parameter
generalization of the universal correlator (1.3). Simons and Altshuler have



CWJ Beenakker, B Rejaet | Random-matrix theory of parametric coirelations 85

discussed the physical origin of the different sign of the correlator for d <2 and
d>2,

7.2. Non-linear sigma model

The restriction on the asymptotic analysis that either X>X_or E> A is
removed by the exact solution of section 5 for the Gaussian unitary ensemble
(B =2). The density correlation function in the limit N— o is given for this
random-matrix ensemble by eq. (5.38) in E-space and by eq. (5.39) in k-space.
In terms of the generalized Thouless energy (7.3), the E-space cxpression can
be written as

2

1 o0
(4
S(E,X)=A_2st fds’exp(1T e X(s*—s" )cos(wsE/A) cos(ms'E/A) .
0

2A

13

(7.7)

This is precisely the result of the microscopic theory of Simons and Altshuler
[4]. If either X > X_or E> A, eq. (7.7) reduces to eq. (4.16) with B8 =2.
Simons and Altshuler were able to extend the microscopic theory to the regime
X=<X_, E=<A, which is not obtainable by perturbation theory, by using a
supersymmetry formulation followed by a mapping onto a non-linear sigma
model [5]. As emphasized by thesc authors, it is quite remarkable that the
microscopic parameters enter only via the quantities A and €_, so that a
rescaling of the E and X variables maps all density correlation functions onto a
single universal function.

Simons and Altshuler have also computed the small £ and X behavior of
S(E, X) from the microscopic theory in the presence of time-reversal symme-
try, i.e. for B = 1. Again, they used a mapping onto a non-linear sigma model
to go beyond perturbation theory. We have no RMT result for the small E and
X behavior in this case, which would correspond to the orthogonal ensemble.
The case 8 =4 of strong spin-orbit scattering (symplectic ensemble in RMT)
has not yet been treated by microscopic theory, and only in the asymptotic
limit by RMT.

In ref. [20], Simons, Lee, and Altshuler have argued convincingly (although
not completely proven) that the density correlation functions of the non-linear
sigma model and the Sutherland Hamiltonian are equivalent for 8 =1, 2 and 4.
In the present paper, in section 5, we have proven the equivalence of the
density correlation functions of Dyson’s Brownian-motion model and the
Sutherland Hamiltonian. Taken together this is cvidence for the complete
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equivalence of the non-linear sigma model and RMT, although the cases g =1
and B =4 still lack a complete proof.

7.3. Conclusion

We have studied the response to an external perturbation of the energy
levels of a quantum mechanical system by means of the Brownian-motion
model introduced by Dyson in the theory of random matrices. Our results for
the energy and parameter-dependent level-density and current-density correla-
tion functions S(E, X) and C(E, X) agree with the microscopic theory for a
disordered metallic particle, for energy scales below the Thouless energy E..
This establishes the validity of Dyson’s basic assumption, that parametric
correlations are dominated by level repulsion and therefore solely dependent
on the symmetry of the Hamiltonian.

It is likely that the approach developed in this paper can also be used to
describe parametric correlations in random transmission matrices. The ana-
logue of level repulsion for the transmission eigenvalues is known [22], and
leads to a pair correlation function K(7, T') which differs from eq. (1.6) for
K(E, E') but has the same universal B8-dependence [17]. This suggests that the
analogue of the universal correlator (1.3) exists as well for the transmission
eigenvalues, with obvious implications for the conductance of a mesoscopic
system.
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Appendix. Derivation of eq. (4.2)

For completeness, we present here Dyson’s derivation [13] of the non-linear
diffusion equation (4.2) from the Fokker—Planck equation (2.1), in the limit
N— o,

We multiply eq. (2.1) by 8(E — E,), integrate over E, E,, . .., Ey, and sum
over i. The result is
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9 _ 9 (a1 9
'YEP(E, 7) - AE <B EYo p(E7 7)

+ T dE, - - T dE, p({E”},rr)éa(E— E,)g—‘g) , (A1)

where p(E, 7) is defined in eq. (4.1). Substitution of the definition (2.2) of
W({E,}) into eq. (A.1) leads to
d ad - 0 d
vgp(E,TFa—E(B 'SE PET) + p(E, ) g V(E)

pa(E, E', 7))

o (A.2)

- P de’

where 2 [ indicates the principal value of the integral. The pair density
p,(E, E', ) is defined by
pB.Evr)= | dE - [ 4B PUE) DS 8(E - E)S(E - E,).
e e 17
(A.3)
The pair density is symmetric in the energy arguments, p,(E,E’,7)=

p,(E', E, 1), and satisfies the normalization

J’ dE' p,(E,E",7)=(N—1)p(E, 7). (A4)

Following ref. [13] we decompose the pair density into a correlated and an
uncorrelated part,

p(E, E',m) = p(E, ) p(E', 7) [1 = y(E, E', 7)] . (A.5)
The function y(E, E', 7) = y(E', E, 7) is symmetric in E and E’, and satisfies

f dE’ y(E, E',7) p(E', 1) =1, (A.6)

in view of the normalization (A.4). Substitution of the definition (A.5) into eq.
(A.2) leads to
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Y p(E. 1) =g (B o p(EL ) + plE. ) 5 VIE) + UGE, )]
+p(E, 1) I(E, 7)) , (A.7)

with the definitions

KE,7)=% de’p(E’ T)——(g"—EE,—,T—)—, (A.8)
U(E, 7) = — de' p(E", ") In|E - E'| . (A.9)

Eq. (A.7) is still exact. To introduce the approximation we need one further
piece of notation. We re-express the function y(E, E’, 7) in terms of the sum
and difference variables t=2(E+ E’) and s=E' — E:

WE,E\7)=Y(LE+E),E'—E, 1)=Y(,s5,7). (A.10)

The function Y(t,s,7)=Y(t, —s,7) is even in s. The normalization (A.6)
becomes

J ds Y(E +4s,5,7) p(E+s,7)=1. (A.11)
Similarly, the integral (A.8) takes the form
IE,7)=—-9% j ds Y(E +1s,s,7) p(E+s,7)s . (A.12)
By substituting the Taylor expansions
Y(E+4s,s,7)=Y(E,s,7)+ 1s Y(E §,T)+ - (A.13)

p(E+s,7)=p(E, 7)+s p(E )+ (A.14)

into eq. (A.12), we obtain an expansion of I(F, ) in higher and higher
moments Y, (E, 1) of Y(E, s, 7) with respect to s,
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Y, (E, ) = fds Y(E,s,7)s" . (A.15)

Because of the symmetry Y(¢, s, 7) = Y(¢, —s, 7) only even moments contribute
(Y,(E,7)=0 for p odd). Following Dyson [13], we neglect the second and
higher moments. An order of magnitude estimate suggests that the error
involved in neglecting Y, for p =2 is of order N?. Dyson argues that the error
is actually of order N °InN, by comparison with exact results for the
distribution of the spacing of eigenvalues.

Since Y_, and Y, are identically zero, only Y, contributes to I(E, ) to
second order. Substitution of the Taylor expansions (A.13) and (A.14) into eq.
(A.12) yields

I(E,7)=—1p(E, 7)8% Y (E, )~ Y, (E, 7)-(% p(E, 7). (A.16)
Similarly, substitution of the Taylor expansions into eq. (A.11) yields

p(E, 1) Y, (E,T)=1. (A.17)
Combining egs. (A.16) and (A.17), we find

I(E,7)= —%%ln p(E, 7). (A.18)

Hence eq. (A.7) takes the form

y 2 p(E. ) = | o(E o (Vi) ~ [ 0" o', »ymlEE - B
; Z"ﬁB In p(E, 7)) | (A.19)

This is eq. (4.2), except for the final term, proportional to (2—8)/28. As
noted in ref. [13], this tcrm is of order In NV and can be neglected relative to the
other terms, which are of order N. Dropping that term, we obtain eq. (4.2).
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