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Primitive Normal Bases for Finite Fields

By H. W. Lenstra, Jr. and R. J. Schoof

Dedicated to Dämel Shanks

Abstract It is proved that any fimte extension of a firute field has a normal basis consistmg of
primitive roots

Introduction. Let q be a prime power, q > 1. We denote by Fq a finite field of q
elements. It is well known that for every positive integer m there exists a normal
basis of F^, over F , i.e., a basis of the form

(α,αΐ,α"2,...,αΐ'"~ι)

with α e F^,. It is also well known that the multiplicative group ¥*„, of F?», is cyclic,
i.e., that for some α e ¥*,„ we have

Such an element α is called a primitive root of F?™. Following Davenport [4] we call
a normal basis (a, aq, aq , . . . , aq"' ) of F ' ,„ over ¥ a primitive normal basis if α is a
primitive root of ¥q*.

Carlitz [2], [3] proved in 1952 that for all sufficiently large qm there exists a
primitive normal basis of F9„, over F . Davenport [4] proved in 1968 that a primitive
normal basis exists for all m if q is prime. In the present paper this result is
extended to the general case.

THEOREM. For every prime power q > l and every positive integer m there exists a
primitive normal basis of F̂™ over F?.

Section l contains an exposition of certain results due to Ore [7] concerning the
Galois module itructure of finite fields. These lead to an alternative formulation of
the theorem. In Section 2 we describe an improved version of the method of Carlitz
and Davenport, which handles all but finitely many pairs (q,m). In Section 3 we
determine which are the remaining pairs, and they are dealt with in Section 4.

We denote the cardinality of a set S by #S, and the group of units of a ring R
with l by R*. If /, g are polynomials in one variable, we mean by g / that g
divides / and is monic, i.e., has leading coefficient one. The same notation for
divisibility is used for positive integers.
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1. The Cyclic Structure of Finite Fields. Let q be a prime power, q > l, and

denote by ¥q an algebraic closure of F^ Let σ F., -» F^ be defmed by σ(α) = aq for

all α e F? F o r / = Σ,^οο,Λ" e F J * ] and α e F? we defme

n

/»α = Σ α,σ'(α)
ι = 0

This makes the additive group of F? mto a module over FJAT] We shall see that
many well-known properües of the mulüplicative group of F., have analogues for the
additive group when considered äs an F [A^-module

For a positive integer m, let Fqn be the unique subfield of F̂  of order qm For
α e F* we have

(a = α «=> α* : = l

It follows that the multiphcative order ord(a) of a is fimte and relatively prime to q,
for each α e F* Also, we have

α e F^ <=» ord(a) \qm - l

Let the degree deg(a) of an element α e F? be the degree of the irreducible
polynomial of a over Fq Clearly, deg(a) is the smallest m with α e F? , which, for
a Φ 0, is the smallest m with gm = l modord(a) This proves

(l 1) Let a e F*, ord(a) = n TTze« deg(a) equals the multiphcative order of
(q mod n) i« ine growp (Z/nZ)*

To obtam the additive analogue, we start from

a e F ^ « C T m ( a ) = a<=> (Xm — 1) ° α = 0,
(J

for α <Ξ F? It follows that for any α e F? the annihilator of α m FJX] is nonzero

Let the unique momc polynomial m Fq[X] generatmg this annihilator äs an ideal be
called the Order of a, notation Ord(a) We have

(12) « e F ? , ~ 0 r d ( a ) | * m - l,

so that Ord(a) is relatively prime to X As above, we obtam

(13) Let a e F?, Ord(a )= / Tne« deg(a) ê Mü/s /ne multiphcative order of

(Xmodf)m the group (F„[AV/F?[*])*
We give a picturesque application

(l 4) LEMMA 7/Λ7 + X + l ;Λ irreducible m f2[X], and 2P - \ 11 prime, then

X2" 1 + X + l is irreducible m F2[X]

Proof Take q = 2, and let α e F2 satisfy a2' l + a + l = 0 It suffices to show
that deg(a) = 2 ' - l We have (A^ + X + 1)° α = a(a2' J + α + 1) = 0, so
Ord(a) divides X" + X + l But X" + X + l is irreducible, and l ° α ^ 0, so m
fact Ord(a) equals Xp + X + l By (l 3) the degree of α equals the order of the
residue class of X m the group (¥2[X]/(XP + X+ 1)F2[*])* Denote by β a zero of
Xp + X + l m F2, then this order is just oid(ß) The group F2(ß)* = F2*„ has prime
order 2P - l, and β * l, so we conclude that deg(a) = ord(ß) = 2P - l, äs re-
quired D
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Starting from the observation that X2 + X + l is irreducible over F2, we find by
successive applications of (1.4):

since 22 - l = 3 is prime, X^ + X + l is irreducible over F2;

since 23 - l = 7 is prime, X1 + X + l is irreducible over F2;

since 27 - l = 127 is prime, X121 + X + l is irreducible over F2;

and finally, since

2127 - l = 170141183460469231731687303715884105727
was proved to be prime by Lucas in 1876 (see [5, Section 2.5]), the polynomial

χ2'2'' ' ' '-1 + x+ ι
is irreducible over F2; cf. [10]. We conjecture that the next polynomial in this
sequence is also irreducible over F2, but that its degree is not prime.

It is well known that for any positive integer n that is relatively prime to q the
number of α e ¥* with ord(a) = n equals φ (n), where φ denotes the Euler
function. In particular, with n = qm - l one finds that elements α with order
qm - l do exist; these are precisely the primitive roots of F ? m. The additive analogue
is äs follows.

For a monic / e fq[X], let

the analogue of the Euler function. With

we have the following analogues of well-known properties of the Euler function:

(1-5) Σ

g\f
(1.6)

the product ranging over the irreducible monic factors g of / in FJ-X"]. The proofs of
(l 5) and (1.6) are left to the reader.

For a polynomial / = Σ"=0 α,Χ' e F?[ X] we define

(1.7) / * = Σ α,Χ"'.
1 = 0

Clearly, / * ( « ) = / ° α for any α e F?, so the number of α e F? having an Order
dividing / is equal to the number of distinct zeros of / * in F?. Assuming that
gcdC/.A') = l we have df*/dX= a0 Φ 0, so that / * has only simple zeros; their
number is then deg(/*) = qde^f) = N(f), and we obtain

Σ # { a e F ( i : O r d ( a ) = g}=^V(/).
g\f

Comparing this with (1.5) and applying induction on deg(/) we find the expected
result, due to Ore [7]:

(1.8) Let f e "Pq[X] be monic and relatively prime to X. Then the number of α e F
with Ord(a) == f equals Φ(/).
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For α e F?», the family (a, a*, . . . , a9"' ) is a basis of F̂™ over F? if and only if
there is no nonzero / e fq[X] of degree less than m with / ο α = 0. With (1.2) this
leads to

(1.9) Lei α e F?. TTien (a, a9, ...,«*'" ) is a basis of ¥q„, over F ? ;/α«ί/ o«/y if
Ord(a) = Xm - l, ««J ;/ a«J o«/y // /Ae ΐ^ΧΙ-submodule of ¥g generated by a.
equals ¥ m.

Combining (1.8) and (1.9) we see that normal bases of ¥q„, over F^ do exist. This
may also be expressed äs

*> = V„[X]/(Xm - 1 ) F , W asFj*]-moduIes,

which is analogous to

F*m = Z/(qm - 1)Z äs Z-modules.

The theorem stated in the introduction may now be reformulated äs follows.

(1.10) THEOREM. For every pnme power q > l and every positive integer m there
exists an element a. e ¥*„ with Ord(a) = Xm - l and ord(a) = qm - 1.

In the proof of this theorem, which occupies the rest of this paper, we use the
followmg notation. For given q, m, let

A = ( a e F?m: Ord(a) = Xm - l } , B = (a e F^„: ord(a) = gm - l } .

We have #yi = Φ ^ " 1 - 1), # ß = (p(qm - 1), and the theorem is equivalent to the
Statement that A n B Φ 0 .

We define the subgroup C c F^, by

C = { y e F ? * m : Y ^ 1 e F i ? } = {γ e F,t: γ ^ 1 ' 2 = l }.

One easily proves that # C = («y — 1) · gcd(m, q — 1). We denote the index of C m
F m by />,

(i.ii) - 1) · gcd(w,g - 1) '

Alternatively, we can define C by C = {γ e F „,: deg(Ord(y)) = 1}.
Let M be an FJ.Y]-submodule of F ? m, and let γ e C. Then the F?-vector space

γΜ = {γμ: ju, e M} is in fact an F9[^T]-module. To see this, note that X° γμ =
(Ύμ)ΐ = γ . γ ί - ι . (ΑΌμ) e γΜ for any μ e M, smce γ ^ 1 e F*. it follows that
the submodules of F? m are permuted by C. Since ̂ 4 consists exactly of those elements
of F?„, that do not belong to any proper submodule, we conclude that

(1.12) CA=A,

where CA = {γα: γ e C, α e Λ }.
If α e Λ, yß e B, γ e C are such that α = ßj e A n (£C), then β = γ' 1« e

(C4) n B = Λ Π B. Hence Λ n Ä is nonempty if and only if A n (#C) is non-
empty, and

(1.13) Theorem (1.10) is equivalent to the assertion that A Π (BC) Φ 0 .

Concerning the set BC we note that

(l .14) BC = { β e ¥*, : ßc generates the group ¥f*/C } .
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This is a direct consequence of the fact that any surjective group homomorphism of
finite cyclic groups, such äs ¥*„, -> F*m/C, mduces a surjectwe map on the sets of
generators. Since the cyclic group Ffi/C of order P has exactly φ (P) generators, we
find that

#BC = φ(Ρ) · #C = φ(Ρ) · ssd(m,q- 1) -(q - 1)

Without proof we remark that C is the largest subset of ¥*m satisfymg (1.12) More
generally, one can prove the followmg result.

(1.15) Lei K c L be a ftmte Galois extension of fields, with Calais group G Let
A = { a e L· (τ(α)) τ e c is a basis of L over K}, and denote by w the number of #Gth
roots of umty m K* Then for γ e L* the followmg four assertwns are equwalent' (i)
yAc.A; (u) yA = A; (m) τ(γ)/γ e K* for all r e G; (ιν) γ " e K* The sei C of
all γ e L* satisfymg these conditwns is a subgroup of L* contammg K*, and C/K*
is isomorphic to the group of all group homomorphisms G —> KH

' *

2. The Method of Carlitz and Davenport. Let G be a finite Abelian group. By a
character of G we mean a group homomorphism G -» C *, where C denotes the field
of complex numbers. The characters form an Abelian group G A, the dual of G We
denote the neutral element of G Λ by 1. For the basic properties of characters see [8]

Suppose that G is cyclic of order n. Then the same is true for G A. For α e G we
defme

«(«)=Σ 4 4 Σ χ(«),
d\n V\a) x e C

A otd(x) = cl

where ord(x) denotes the order of χ and μ the Moebius function We have

(2.1) ω ( ° 0 = 0 if a does not generate G
To see this, we write

_ π h -3-. γ
1 1 l1 ~ /_ ι Lil»,/pnme \ ' l

 v e f ; A O l d ( x ) =

Π ι i ν ι \

7ΓΤ ~ 7^7 ' ^ χ ( · α ' '
/|« /pnme \ Α χ ε Ο Λ χ' = 1If α does not generate G, then a = ß1 for some β e G and some pnme / dividing n

Then χ(α) = χ'(β) = l whenever χ ' = l, so E X ( = C A χ / = 1 χ ( α ) = / and the /th
factor in the above product vamshes, äs required

We apply this result to G = V*m/C, n = P, usmg the notation of the previous
section In view of (l 14) we then find

(2.2) Defme ω· F*„, -» C by

wi?/! χ ranging over F<7*,A

ω(α) = 0 fora£BC

The additive analogue to (2 2) presents no difficulties Let F?™ be the dual of the
additive group of F? m. We write F?

A, multiphcatively, and we rnake it mto an
F?[ AT]-module by defmmg

) = λ ( / ° α ) for λ e F,0i, / e F,[JT], α e F,„
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The Order Ord(X) of a character λ is defmed to be the monic polynomial generaüng
the anmhilator of λ m FJA'], U clearly divides Xm — l Conversely, let / be a
monic divisor of Xm - l m ¥q[X] We claim that precisely Φ(/) characters λ e F?

A

have Order / As m the proof of (l 8) it suffices, by (l 5), to show that

Σ # { λ Ord(X) = g} = ;V(/)
g\f

Here the left-hand side equals the order of the subgroup {λ \f = l} of F9

A This
subgroup may be identified with the dual of ¥^//°¥^, which mdeed has order
N(f), äs required

Denote by M the analogue of the Moebius function for F?[X], so for / e ¥q[ X], f
monic, we have M(f) = (-l) r if / is the product of / distmct monic irreducible
factors, and M(f) = 0 if / is divisible by the square of an irreducible polynomial

We now have the followmg analogue to (22) We omit the proof, which is
completely analogous

(2 3) Defme Ω F?„ -» C by

«(«)= Σ f ^ · Σ λ(α)

with λ ranging over F ?

A Tfte«

Ω(α) = 0 for a £ A

From (2 2) and (2 3) we see that

(24) ω(α)Ω(α) = 0 iora£Ar\(BC)

We extend the characters of F ^ to all of ¥q» by putting χ(0) = 0 for χ Φ l, and
1(0) = l Then ω(0)Ω(0) = 0

(2 5) PROPOSITION Let s be the number of distmct pnme factors of P (see (l 11))
and t the number of distmct monic itreducible factors of Xm — \ m ¥q[X] Suppose
that

(2S - 1)(2' - 1) < qm/2

Then there exists an element a e ¥*m with Ord(a) = Xm - l and ord(a) = qm - l

Proof Suppose not Then A Π (BC) = 0, by (113), so (24) imphes that
ω(α)Ω(α) = 0 for all a & F?m, and

Σ ω(α)Ω(α)= Ο
«eF,™

We have

Σ «(«)0(«)-Σ Σ μ(ά]Μ(8} ^ ^ ^ν.χν

where τ (χ, λ) is the Gauss sum

τ(χ .λ)= Σ

d λ Ord(X)
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It is easily checked that

r(l,l) = qm,

τ(1,λ) = 0 ίοιλΦΙ,

τ(χ,ΐ) = 0 for χ * 1,

and it is well known [2, pp 375-376] that

|T(x,X)|=^m/2 i f x * l , λ * 1 -

We find that

„m _ v V M(^)Af(g) v v ,
-1 - L L (Λ\&(σ\ L t- τ(Χ'λ)

d\P,d*l g\Xm-l,g*l Φ\α )ψ\8) x,oid(x) = d \,Oid(X) = g

There are exactly φ (d) characters χ of order d, and exactly Φ (g) characters λ of
Order g. Hence, takmg absolute values, we obtam

<T< Σ Σ |M(d)M(g) |- 9 "/ 2 = ( 2 i - l ) ( 2 ' - l ) 9 ™ / 2 ,
d\P,d*l g\X'"-l g*l

contradictmg our assumption. This proves Proposition (2.5). D
To apply (2.5) we need upper bounds for s and t. The upper bounds that we give

below are refmements of those given by Davenport [4]. We begm with s.

(2.6) LEMMA. Lei P be a positive integer and s the number of distmct pnme factors of
P. Lei further l > l be an integer, Λ a sei of pnme numbers < / such that every pnme
factor r < l of P belongs to Λ, and put L = Ylr£ A r. Then

log f - l o g L
log/

Proof. Let M be the set of pnme divisors of P. Then #M = s and each
r e M — Λ satisfies r ^ /. Therefore,

Ρ >,Π'·=(ΓΙ'·)·(Γ 6ΠΑ '·)/(Γ 6ΓΙ

π
r

Μ

and the lemma follows This proves (2.6). Π
The followng lemma gives a formula for /.

(2.7) LEMMA. Lei q be a pnme power > l and m a positive integer Then the
number t oj momc irreducible factors of Xm — Im F^X] is given by

where k(d) denotes the order of (q mod d) m (Z/i/ Z)*.

Proof. If p" denotes the largest power of the charactenstic p of ¥a dividing m,

then Xm — l = (Xm/p" - l)p". Theiefore we may assume that p does not divide m.

ThenXm- l =Yld\m$d, where

* r f= Π (*-«)·
a e F ? ord(a) = c/

The degree of Φ^ equals φ(ά), and by (1.1) each irreducible factor of Φ(/ has degree
k(d). Since Xm — l has no repeated factors, this imphes (2.7). D
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We note the following additive analogue of (2.7), which is proved in a completely
analogous way. It generalizes a theorem of Zierler [6], [9].

(2.8) Lei f G ¥^[Χ] be momc, andf* äs defmedin (1.7). Then the number of momc
irreduable factors off* in Fq[X] equals

—
where K(g) denotes the order of (Xmod g) m (F [JT|/gF [A"])*. Morepreasely, we
can write

^ L. JL-i *')*"·
where n is the degree of the lowest-degree term off, the polynomials i ^ are pairwise
relativefy pnme, and each tyg factors äs a product of $>(g)/K(g) distinct momc
irreducible factors of degree K(g).

We next derive upper bounds for /.
(2.9) LEMMA. Let q, m, t be äs m (2.7), and e a positive integer. Let further D be a

sei of positive dwisors of m such that every d e D is relativefy pnme to q, and such that
D contains all positive dwisors of gcd(w, qe' — 1) for all positive integers e' < e. Then
we have

m v /- j \ i l l
+ > . φ(ά)\ r-r-r:

ewith k(d) asm (2.7).

Proof. We may clearly assume that gcd(m,q) = 1. Then the hypothesis on D
implies that k(d) > e for all d \ m with d <£ D. Hence, by (2.7),

<p(d)

k(d) ** „

ι V

+ L

This proves (2.9). D
With e = l, D — 0 , one obtains from (2.9) the trivial bound

ί *ζ m.

With e = 2, and D equal to the set of divisors of gcd(m, q - 1), one finds

(2.10) t^i(m + gcd(m,q-l)).

The following lemma gives better estimates for t for small values of q.

(2.11) LEMMA. Let q, m, t be äs m (2.7).
(a) Let q = 5. Then

ϊΥί 4

y + - lfm Φ Omod4, m Φ 6.
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(b) Let 9 = 4. Then

/ < y + 2 ifm Φ 15;

t < — + — ifm Φ 0 mod 3, m Φ 5;

m , 3 tt < -r + -r i] m is even.

(c) Let 9 = 3 . Then

t< m + 4 ,fm = 4 8 In-

< =ξ y + τ y w Φ 4, s, io,
? < ^ - + l ifm = 0 mod 3.

6

(d) L<?r 9 = 2. TTzen

m 5_
1 ** 4 4 '

w 4
i < — + — ifm is odd, m Φ 3,5,7,9,15,21;

ί 3 ξ Υ + 4 '/™ = 0mod2;

/ ^ — + — ifm = Omod4.
ο λ

Proof. Since the proof s are all similar, we only do (a) äs an example. Let 9 = 5.
We apply (2.9) with e = 3 and Ό equal to the set of divisors of gcd(m,24). This
yields

m l . , „,,. l ,, ,-. m ,
t < y + -gcd(w,24) + -gcd(m,4) < y + 6,

äs required. If m Φ 0 mod 3 we have gcd(w,24) < 8, and the same estimate now
gives f < f + -ψ. Suppose finally that m Φ 0 mod 4. If w is odd, then t < f + | ·
3 + f - l = y + l. Ifw = 2 mod 4, w ^ 0 mod 3, then / < y + j - 2 + ^ - 2 = y
+ f. We are left witb the case m = 6 mod 12. If also 311 m we apply (2.9) with e = 4
and D = (d: d |2 3 · 31} to obtam t < f - f. If 31 does not divide m we take
e = 4 and D = {l, 2,3,6} in (2.9) and find t < f + f which is < f + | for m = 6
mod 12, m Φ 6. This concludes the proof of (a). D

Combming our inequahties we obtam the followmg result.

(2.12) LEMMA. Let q > l be a pnme power, m a positive integer, P äs m (1.11), i
and t äs m (2.5), and l, Λ, Las m (2.6). Suppose that

(2S - 1)(2' - 1) > 9 m / 2 .

Letfurther 8 be an integer with \. < 8 < gcd(g - l, m). Then we have

m/2

* Λ ·
Ifmoreover a, β e R are swc/z ίΑαί t ^ am + β, then

- 1))

_
log4 log/ / ^ log/
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Proof. The first mequahty is obtamed by wnting (T - 1)(2' - 1) > qm/2 äs a
lower estimate for Λ and applymg (2.6) For the second one, note that 4 S + ' >
((2f — 1)(2' - l)) 2 > qm, so w(log g/log4) < s + t, and next apply the upper bound
from (2.6) for s, the upper bound P < qm/(8(q - 1)) for P, and / < am + ß. This
proves (2.12). D

3. Determination of the Exceptional Cases. In this section we determme all pairs q,
m to which (2.5) does not apply.

(3.1) PROPOSITION. Lei q > l be apnme power, m a positive integer, and P, s, t äs
m (1.11) and (2.5). Then we have

if and only if (q, m) is one of the mne pairs

(2,3), (2,6), (2,15), (3,2), (3,4), (3,8), (5,4), (5,8), (7,6).

Proof, Table (3.2) contams, for 31 pairs (q,m), the value of t, the prime
factonzation of P, and the values of (25 - 1)(2' - 1). For these pairs the proposition
is readily checked; the mne cases m which (2S - 1)(2' - 1) 5* qm/2 are mdicated by
stars in the last column.

TABLE (3.2)

2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
5
5
5
5

7
7
7
9
9

11
11
13

3
4
6
9
10
12
14
15
21
2
4
6
8
10
16
5
6
9
15
4
6
8
12

4
6
12
4
8
4
10
4

2
1
2
3
2
2
3
5
6
2
3
2
5
4
7
3
3
5
9
4
4
6
8

3
6
9
4
8
3
10
4

(2S -

7
3 5
32 7
7 73
3 11 31
32 5 7 13
3 43 127
7 31 151
72 127 337
2
22 5
2 7 13
23 5 41
2 II2 61
24 5 17 41 193
11 31
5 7 13
3 7 19 73
7 11 31 151 331
3 13
32 7 31
2 3 13 313
32 7 13 31 601

23 52

22 19 43
23 52 13 19 43 181
5 41
5 17 41 193
22 3 61
2 3 3221 13421
5 7 17

3
3
9

21
21
45
49
217
441
3

21
21
217
105

3937
21
49
465

15841
45
105
945
7905

21
441

32193
45

3825
49

15345
105

283
4
8

226
32
64
128
1810

14482
3
9

27
81

243
6561
32
64
512

32768
25
125
625

15625

49
343

117649
81

6561
121

161051
169
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In the rest of this proof we assume that (q, m) is a pair not occurring in the table
for which (2* - 1)(2' - 1) > qm/2. We shall derive a contradiction from this.

Clearly, our inequality implies s > 0, so P Φ l and m Φ 1. If m = 2 and q is even
then t — l, and since P = q + l is odd, we have q — P — l > 3S - l > (2Λ — 1) =
(2S - 1)(2' - 1). If m = 2 and <? is odd, we have 2' - l = 3, and applying (2.13)
with / = 3, Λ = {2}, δ = 2 we find that

l o g Q g + 1 ) log(g + l) log 4
log 2 log 3 "̂  log 3 '

so q ^ 3; but the pair (3, 2) is in the table. We have proved

(3.3) m > 3.

Next we prove that

(3.4) m is not a power of the characteristic p of F ? .

Suppose not. Then i = 1. If p is odd then each prime r dividing P is l mod 2p, so
> 7, hence P > 7*, and (2J - 1)(2' - 1) < 7 i / 2 < P 1 / 2 < ? m / 2 . If p = 2 then (2.13)

with δ = l yields

With / = 5, Λ = {3} this implies 4"' < 24, so by (3.3) we have (q,m) = (2,4),

which is in the table. This proves (3.4).

(3.5) P is not a prime power.

If not, then s = l and 4' > (2l - l ) 2 > qm, so / > m(log#/log4), which by / < m
implies that q = 2 or 3. If q = 3 then by (3.3) and (3.4) we have m > 4, so (2.10)
leads to the contradiction t ^ \m + l < m (log g/log 4). If q = 2 then m > 5 by
(3.4) (since (2, 3) is in the table), so (2.11)(d) gives t < f + | < m(\ogq/log4), a l s o

a contradiction. This proves (3.5).

Suppose now that m is prime. Then m is odd, by (3.3), and this easily implies that
each prime divisor of P is l modulo 2m. Hence, we can take / = 4m + l and
Λ = { r: r prime, r = l mod 2m, r < 4m + 1} in (2.6); clearly either #Λ = 0,
L = l or #Λ = l, L = 2m + 1. Inequality (2.14) yields

( ι ι
l log 4 log(4w + 1)

log q

log(4w + 1)

If q = l mod m, then with α = l, /S = Ο, δ = m, q - l > m, this yields <? < 7 for
m ^ 7; and g < 8 for w = 5; and q *ζ 11 for m = 3. For q = l mod m this leaves
only the pairs (4,3) and (7,3), which both contradict (3.5). If q = -l mod m we can
take a = β = \, by (2.10), and with 5 = 1, q - l > m - 2 the above inequality
yields q < 4 for m ^ 5 and # < 9 for w = 3; this leaves only the cases (4,5), (2,3),
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(5,3), (8,3), of which the first is in the table and the other three contradict (3.5). If
q Φ ± l mod m, then m > 5 by (3.4), and using e = 3, D = {1} in (2.9), we see that
we can take α = }, β = f in the above inequality; for q Φ 2 this yields q < 2 for
w > 7 and <? < 3 for m = 5, leaving only the pair (3,5), which contradicts (3.5)
because P = I I 2 . Finally, let q = 2. Then m > 11 by (3.5), and we can take α = j ,
/S = f in the inequality (choose <? = 5, D = {1} in (2.9)), which leads to the
contradiction m < 9. We have proved

(3.6) m is not prime.

If m = 4, # = - l mod 4 we have r = 3, and applying (2.13) with 8 = 2, / = 7,
Λ = {2,3,5} one finds that q < 15, so q = 3, 7 or 11, which are all in the table. If
m = 4, q = l mod 4 we have t = 4, and applying (2.13) with δ = 4, / = 7, Λ = (3,5}
(P is odd) one finds that q ^ 16, so g = 5, 9 or 13, which are also in the table. In
view of (3.4) we conclude that m Φ 4, and with (3.3) and (3.6) this implies

(3.7) m > 6.

Next suppose that q = l mod m. We apply (2.14) with α = l, β = Ο, δ = m. In
order to make the coefficient log g/log 4 - logg/log/ - l in (2.14) positive we have
to take / fairly large. For q > 23 we choose Λ = {2,3,5,7,11,13,17}, / = 19; this
leads to a contradiction with (3.7). For smaller q we observe that P is relatively
prime to \q(q - 1), because m divides q - l, and change Λ, / accordingly. With

A = {2,5,7,11}, / = 13 for ,7 = 19,

Λ = {3,5,7,11,13}, 1=19 for q = 17,

Λ = {7,11}, / = 13 for«?- 16,

Λ = {5,7,11,17,19}, / = 23 forq = 13

we find in all cases the contradiction m < 3. For q < 11, the condition q = l mod m
forces by (3.6) and (3.7) that (q, m) is one of (7,6), (9, 8), and (11,10), which are all
in the table. The conclusion is that

(3.8) q& l mod m.

The proof of (3.1) is now concluded by another series of applications of (2.14), äs
indicated by Table (3.9). Every line of the table corresponds to one application of
(2.14). The first two columns, headed "q" and "m", indicate for which values of q
and m the inequality (2.14) is applied. The next two columns give values for a and β
for which t < am + ß. These are either derived frorn (2.10) (note that gcd(q - l, m)
< \m, by (3.8)), or from (2.11) (the exceptions to (2.11) are dealt with in the last
column). The fifth column gives a lower bound 8 for gcd(i? - l, m). Next one finds
Λ and /. To check that these satisfy the conditions of (2.6), it may be necessary to
use the information on m in the second column; e.g., if q — 7, 3 \ m, then T" Φ l
mod 9, so 3 does not divide P. In the final column one first finds the upper bound
for m that is obtained by applying (2.14); next a complete lisl of all m > 6 (see
(3.7)) that satisfy this upper bound (or are exceptions in (2.11)) and also meet the
condition in the second column; and finally how to deal with these remaining values.

This concludes the proof of (3.1). D
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TABLE (3 9)

1
16

13

11

11

11

11

9

9

9

9

8

8

7

7

7

5

5

5

4

4

4

3

3

3

3

2

2

2

m
all m

all m

2 t m, 5 t m

2 | m , 5 t m

2 t m , 5 | m

2 | m , 5 | m

2 t m

2 | m, 4 t m

4 | m , 8 t m

8|m

7 t m

7|w

3 t m

2 t m, 3 | m

2 | m , 3 | m

4 t m

3 t m, 4 | m

3 | w , 4 | m

3 t w

2 t m , 3 | m

2 | m , 3 | w

3|m

2 t m, 3 t m

2 | m, 4 t m, 3 t m

4 | m, 3 t m

2 t m

2 m, 4 t m

4|m

α
3
4
3
4
1
2
1
2
1
2
1
2
1

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
3
1
3
1
3
1
3
l
3
1
4
1
6
1
3
1
3
1
3
1

5

1
8
1
8

β

0

0
1
2

1
5
2

5
1
2

1

2

4
1
2
7
2

1
3
2

3
4
3

10
3

6
2
3

2
3
2

1
4
3
4
3
4
3
4

5

5
4
1
2

S
1

1

1

2

5

10

1

2

4

8

1

7

1

3

6

1

4

4

1

3

3

1

1

2

2

1

1

1

Λ

2,3,

2,3,

2,3,

2,3,

2,3,

2,3,

2,5,

2,5,

5,

5,

5,

5,

5,

5,

7,

7,

7,11,13

7,11,13

7

7

7

7

11,13

11,13

2,5,7,11,13

2,5,

3,5,

3,5,

2,5,

3

2,3,

3,7,

2,3,

2,3,

5

3,7

3,5,

7,

7,

7,

11

5,

11

11

7,

7

11,13

11,13,17

11,13,17

11,13

,13

11,13,17,19

2,5,7

11

2,11

2,5,

7

3,7,

3,5,

,23

11

11

7

,17,23,29

/
17

17

13

13

13

13

17

17

17

17

19

19

17

19

17

19

17

23

11

11

11

11

23

47

41

23

19

11

< 5,

« 7,

< 5,

< 5,

< 9,

m
-

6,7, (38)

-

-

-

,(36)

« 17, 10, (3 8)

< 4,

< 5,

< 8,

^ 13

< 5,

< 13

« 7 ,

< 4,

< 17

< 7,

s; 15
< 23

< 6 ,

< 20

< 9,

< 11

=S 12

< 13

< 19

< 14

-

-

-

, 8, (3 8)

-

, 7, (3 6)

7, (3 6)

-

,6,12, (3

6, 7, (3 2)

, 8, (3 2)

, 12, (3 2)

-

, 9,15, (3

6, (3 2)

2)
(36)

2)

,6, 9, (3 2), (3 4)

, 7,11, (3

, 10, (3 2)
6)

, 8,16, (32)

. 7.9.11.13.15.21.
(3 6), (3 2)

< 17

< 18

,6,10,14,

8,12,16,

(3 4), (3

(32)

2)

4. Completion of the Proof. In this section we prove Theorem (1.10) for the nine
pairs (q,m) listed m Proposition (3.1). Davenport [4] handles these cases by
exphcitly giving an element of F ^ of Order Xm — l and order qm — 1. Alterna-
tively, one can consult the tables of Beard and West [1]. We employ two methods.
The ürst depends on a refmement of Proposition (2.5), the second is a countmg
argument.

We denote by q a prime power, q > l, and by m an integer, m > 1. As before, we
wnte P — (qm - V)/((q — l)gcd(<? - l, w)) and we let s be the number of distmct
prime divisors of P. By t we denote the number of distmct irreducible factors of
Xm - l i n

(4.1) PROPOSITION. Suppose that m is a power of /, where l is a prime dwiding
q - 1. Let Q = (qm - l)/(l(qm/l - 1)) Suppose that Q is a prime number and that

m/2

Then V m has a primitive normal basis over
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Proof One readily checks that Q divides P and is larger than P/Q, so that the
prime Q divides P exactly once Let C' be the subgroup of F̂ * of order Kg"1/1 - 1)
and mdex Q Then C' contams C, and the cyclic group F*»/C of order P is the
direct product of the cyclic group C'/C of order P/Q and a group öl prime order
Q Hence, for any a e F?*„ , the coset aC can in a unique way be wntten äs ala2 with
öj e C ' /C and af = l Moreover, we have α e 5C if and only if aC generates
Ffi/C, and if and only if both a t generates C'/C and α2Φ\, here we use (l 14)
and the fact that Q is prime

V

Σ

For α G F „ we defme

χ

with χ ranging over F ^ A Applymg (2 1) to the cyclic group G = C'/C of order
n = P / ö we find that ω'(α) = 0 if α e F?*„ is such that a} does not generate C'/C
We now claim that

(42) ω'(α)Ω(α) = 0 ior α <£ Λ n ( 5 C )

with Ω äs m (2 3) To prove this, suppose that ω'(α)Ω(α) =fe 0 Then a & A and «j
generates C'/C Hence to prove that α e /[ n (ÄC) it suffices by the above, to
show that a2 =£ l Suppose that <*2 = l Then α e C', so the l(qm/l - l)th power of

α equals l, and therefore

„ « " ' = £

for some /th root of umty £ e F?* This imphes that (Xm/l - ξ)° a = 0, contradict-
mg that α e A This proves (4 2)

To complete the proof of (4 1) one now copies the proof of Proposition (2 5), with
ω replaced by ω' and (2 4) by (4 2) The role of P is then played by P/Q, which has
one prime divisor less, so that s is replaced by s — l This proves (4 1) D

It follows that F „ has a primitive normal basis over Fi; if (q, m) is one of the paus
(3,2), (3,4), (5,4), (5,8) In these cases, Proposition (41) applies with / = 2 and
Q = 2, 5, 13, 313, respectively

(4 3) PRO POSITION Thefield F has a primitive normal basis over F? if

d\m

Prooj The nght-hand side is the cardmahty of the set of elements of F?„ that are
not contamed m any proper subfield Smce A and B are contamed m this set, and
have cardmahties <&(Xm - 1) and y(qm - 1), respectively, the mequality clearly
imphes that A and B have a nonempty intersection This proves (4 3) D

Proposition (4 3) imphes that ¥q„ has a primitive normal basis over Fqii(q,m) is
one of the pairs (2, 3), (2, 6), (2, 15) We leave the calculations to the reader

The remammg two cases (4, m) = ( 3 , 8) and (q, m) = (7, 6) we treat with a
refmement of this method

First let <? = 3 and m = 8 Let f e F9 c Ρ3» be a primitive 8th root of umty The
group C has order 4, so D = C U ξ C is a group of order 8, and DA = A u ζΑ We
claim that A and f/4 have empty intersection To prove this, we note that for any
α e A the trace T(a) of α to F9 has Order X2 - l ι e , Γ(α) is a zero of A'9 - *
but not of X3 ± X, so Γ(α)4 = - l If now also ξα e Λ, then Γ(£α)4 = - l äs well
Smce T is F9-hnear, this leads to the contradiction ξ4 = l This proves our claim
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It follows that DA has cardmality 2 · #A = 4096. Smce B has cardmality
<p(38 - 1) = 2560, and 4096 + 2560 > 6561 = 38, the sets DA and B have an
element m common Also BD - B, because 16 divides 38 - l, so A and B have an
element m common äs well, äs required.

Next, let q = 7 and m = 6 As before, we denote by ξ e F4 9 c F76 a primitive 8th
root of unity, and by D the group generated by ξ Smce f 2 e C we agam have
DA = A U U We calculate #(Λ η fX)

For any cube root of unity η e F7 let Κη be the set of elements of Order dividmg
X2 - η, and defme the "trace" Γη F7e -» F„ by Γη(α) = (X4 + η2Χ2 + η)°α, this
is an F49-Imear map. From X6 - l = Π η ( ^ 2 - η) it follows that the combmed map
F76 -> Πηνη is an isomorphism of F7[^T]-modules. Also, α belongs to A if and only
if each ΤΏ(α) has Order X2 - η; ι e., Γη(α) is a zero of A"49 - ηΧ but not of
^ 7 ± η 2 ^ . Furthermore, we have ξα ^ A if and only if each Τη(ξα) = $Tn(a)
satisfies the same condition From

we now see that both a and f« belong to A if and only if each Τη(α) is a zero of
X24 + η2. Consequently, A n ξ Α has cardmality 243

We conclude that #DA = 2 · #Λ - 243 = 2 · 66 - 243 = 79488. Also, # £ C =
<p(/>) # c = 54432 and 79488 + 54432 > 117649 = 76, so DA and 5C have an
element m common From CA = A and 5D = B it follows that A and 5 have an
element in common äs well, äs required

This completes the proof of the theorem
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