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Primitive Normal Bases for Finite Fields
By H. W. Lenstra, Jr. and R. J. Schoof

Dedicared to Danel Shanks

Abstract It1s proved that any finite extension of a fimte field has a normal basis consisting of
primitive roots

Introduction. Let g be a prime power, ¢ > 1. We denote by F, a finite field of ¢
elements. It is well known that for every positive integer m there exists a normal
basis of qu over F, i.e., a basis of the form

(@, af, af, ... ,aqm_l)

with a € F_.. It is also well known that the multiplicative group F. of F, . is cyclic,
i.e., that for some a € F} we have

Fh={a" nelZ}.

Such an element a is called a prinutwe root of F, .. Following Davenport [4] we call
a normal basis (&, a7, a7,...,a?" ") of F,. over K, a primutwe normal basis 1f « is a
primitive root of F,n.

Carlitz [2], (3] proved in 1952 that for all sufficiently large g™ there exists a
primitive normal basis of F,. over F,. Davenport [4] proved in 1968 that a primitive
normal basis exists for all m if ¢ is prime. In the present paper this result is

extended to the general case.

THEOREM. For every prime power q > 1 and every positive mteger m there exists a
primitwe normal basts of Fyn over F,.

Section 1 contains an exposition of certain results due to Ore [7] concerning the
Galois module structure of finite fields. These lead to an alternative formulation of
the theorem. In Section 2 we describe an improved version of the method of Carlitz
and Davenport, which handles all but finitely many pairs (g, m). In Section 3 we
determine which are the remaining pairs, and they are dealt with in Section 4.

We denote the cardinality of a set S by #S, and the group of units of a ring R
with 1 by R* If f, g are polynomials in one variable, we mean by g|f that g
divides f and is monic, ie., has leading coefficient one. The same notation for
divisibility is used for positive integers.
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1. The Cyclic Structure of Finite Fields. chg g be a prime power, ¢ > 1, and
denote by F, an algebraic closure of F, Let o F, — F_ be defmed by ¢(a) = a7 for
all « € F, For f=1%/_ya,X' € F[X]and a € F, we defime

n

fea= Y ao'(a)
1=0
This makes the additive group of l_Tq mto a module over _Ifq[X ] We shall see that
many well-known properties of the multiplicative group of F, have analogues for the
additive group when considered as an F,[ X]-module
Fo~r a positive integer m, let F» be the unique subfield of F, of order ¢™ For
o € F* we have

DLEFq cbam(a):a@a‘/ =1

[t follows that the multiplicative order ord(a) of a 1s finite and relatively prime to ¢,
foreacha Fq* Also, we have

a€F, = ord(a)|g” -1

Let the degree deg(a) of an element a € fq be the degree of the irreducible
polynomal of & over F, Clearly, deg(«) 1s the smallest m with « € F, , which, for
a % 0, 1s the smallest m with ¢” = 1 mod ord(a) This proves

(11) Let a € Fq*, ord{a) = n Then deg(a) equals the multiplicatie order of
(g mod n) n the group (L/nZ)*

To obtain the additive analogue, we start from

a€Fnea™a)=ae (X" 1)ca=0,

for a € F, It follows that for any a € F, the annthilator of & i F,[X]1s nonzero
Let the unique monic polynomial i F,[ X] generating this annihulator as an 1deal be
called the Order of «, notation Ord(a) We have

(12) a €F, o Ord(a)| X" -1,

so that Ord(a) 1s relatively prime to X As above, we obtain

(13) Let « & Fq, Ord(a) = f Then deg(a) equals the multiplicatve order of
(Xmod f) wn the group (F[X]/fF [X]*

We give a picturesque application

(14) LemMa If X? + X + 1 15 wrreducible in B,[ X, and 27 -1 15 prime, then
X2 V4 X + 115 wrreducible n F,[ X]

Proof Take g =2, and let a € F, satisfy o*' '+ a + 1 = 0 It suffices to show
that deg(a)=27 -1 We have (X?+ X + Doa=a(e«* '+a+1)=0, so
Ord(a) divides X? + X +1 But X? + X + 1 1s wreducible, and 1o a # 0, som
fact Ord(a) equals X? + X +1 By (1 3) the degree of a equals the order of the
residue class of X 1n the group (F,[ X]/(X? + X + 1)F,[ X])* Denote by B a zero of
X” + X + 11 F,, then this order 1s just ord(8) The group Fp(8)* = F,, has prime
order 27 — 1, and B # 1, so we conclude that deg(a) = ord(B8) =27 - 1, as 1e-
quired O
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Starting from the observation that X* + X + 1 is irreducible over F,, we find by
successive applications of (1.4):
since 2% — 1 = 3is prime, X> + X + 1 is irreducible over F,;
since 2° — 1 = 7is prime, X7 + X + 1 is irreducible over F,;
since 2’ — 1 = 127 is prime, X'* 4+ X + 1is irreducible over F,;

and finally, since

2127 — 1 = 170141183460469231731687303715884105727
was proved to be prime by Lucas in 1876 (see [5, Section 2.5]), the polynomial

2211y
X? T X+
is irreducible over F,; cf. [10]. We conjecture that the next polynomial in this
sequence is also irreducible over F,, but that its degree is not prime.

It is well known that for any positive integer » that is relatively prime to g the
number of a € l—Tq* with ord(a) = n equals ¢(n), where ¢ denotes the Euler
function. In particular, with n = ¢™ — 1 one finds that elements a with order
g™ — 1 do exist; these are precisely the primitive roots of F .. The additive analogue

is as follows.
For a monic f € F [ X], let

o(f) = #(F,[x]//F,[X])",
the analogue of the Euler function. With
N(f) = #(F[X]//E,[X]) = g%

we have the following analogues of well-known properties of the Euler function:

(L5) X @(g) = ¥(/)
gl

(16) ()= T (155

glf.gur N(g)

the product ranging over the irreducible monic factors g of f in F [ X]. The proofs of
(1 5) and (1.6) are left to the reader.
For a polynomial f = Y]_,a, X' € F [ X] we define

n

(1.7) f*=Y a,x7.

1=0

Clearly, f*(a)=f°a for any a € F,, so the number of « € F, having an Order
dividing f is equal to the number of distinct zeros of f* in Fq. Assuming that
ged(f, X) = 1 we have df */dX = a, # 0, so that f* has only simple zeros; their
number is then deg( f*) = ¢%%/) = N(f), and we obtain

3 #{a € F,: Ord(«) = g} = N(f).

glf
Comparing this with (1.5) and applying induction on deg(f) we find the expected
result, due to Ore [7]:

(1.8) Let f € F | X] be monic and relatively prime to X. Then the number of o € F‘q

with Ord(a) = f equals ©(f).
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For a € F,.. the family (a,a9,...,a¢" ') is a basis of F,» over F, if and only if
there is no nonzero f € F [ X] of degree less than m with f o« = 0. With (1.2) this
leads to _

(1.9) Let « € F,. Then (a,af,...,a¢" 'Y w5 a basis of F,n over ¥, if and only if
Ord(a) = X™ — 1, and o and only if the F | X]-submodule of ¥, generated by
equals Fn.

Combining (1.8) and (1.9) we see that normal bases of F_. over F, do exist. This
may also be expressed as

F.=F[X]/(X"~1)F[X] asF,[X]-modules,
which is analogous to
Fh=2Z/(q" — 1)L asZ-modules.
The theorem stated in the introduction may now be reformulated as follows.

(1.10) THEOREM. For every prime power g > 1 and every positie integer m there
exists an element o € Fq"fn with Ord(a) = X — 1 and ord(a) = g™ — 1.

In the proof of this theorem, which occupies the rest of this paper, we use the
following notation. For given ¢, m, let

A={a€F,: Od(a)=X" -1}, B={acFs ord(a)=g"-1}.

We have #4 = ®(X™ — 1), #B = ¢(¢” — 1), and the theorem is equivalent to the
statement that A N B # &,
We define the subgroup C C Ff. by

C= {V € Fh: yi~le Fq} = {y S pla= 1’ = l}.
One easily proves that #C = (¢ — 1) - ged(m, ¢ — 1). We denote the index of C m
F/. by P,
qm . 1
(¢ —1)-ged(m,q—1)
Alternatively, we can define C by C = {y € F_.: deg(Ord(y)) = 1}.

Let M be an F,[ X}-submodule of F,_», and let y € C. Then the F -vector space
YM = {yu: u € M} is in fact an F [X]-module. To see this, note that Xoyp =
(yp)9 =7y -y9 1 (Xop)e yM for any p € M, since y?~ ' € Fr. It follows that
the submodules of F, are permuted by C. Since 4 consists exactly of those elements
of F_.. that do not belong to any proper submodule, we conclude that
(1.12) CA = A4,

where CA = {ya: vy € C, a € 4}.

If a€ A4, BB, ye C are such that a = By € 4 N (BC), then B =y la €
(CA)NB = A N B. Hence 4 N B 1s nonempty if and only if 4 N (BC) is non-
empty, and

(1.13) Theorem (1.10) is equivalent to the assertion that 4 N(BC) # @.

Concerning the set BC we note that

(1.14) BC = {,8 € F%: BC generates the group FJ5/C }

(1.11) P= #F}/C =
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Ths 1s a direct consequence of the fact that any surjective group homomorphism of
finite cychic groups, such as ¥ — Ff./C, induces a surjective map on the sets of
generators. Since the cyclic group F*. / C of order P has exactly ¢( P) generators, we
find that

#BC = ¢(P) - #C = ¢(P) - ged(m,q - 1) (¢ = 1)
Without proof we remark that C 1s the largest subset of F satisfyng (1.12) More
generally, one can prove the following result.

(1.15) Let K C L be a finite Galois extension of fields, with Galois group G Let
A= {a € L (1(a)), ¢ 15 abasis of L over K}, and denote by w the number of #Gth
roots of unity in K* Then for y € L* the following four assertions are equwalent' (1)
yA CA; (1) yA =A4; (w) 7(y)/y €EK* forall 7 € G; (W) Y¥ € K* The set C of
all y € L* sansfying these conditions is a subgroup of L* contaiming K*, and C/K *
15 1somorphuc to the group of all group homomorphisms G — K *.

2. The Method of Carlitz and Davenport. Let G be a finite Abehan group. By a
character of G we mean a group homomorphism G — C*, where C denotes the field
of complex numbers. The characters form an Abelian group G *, the dual of G We
denote the neutral element of G * by 1. For the basic properties of characters see [8]

Suppose that G 1s cychc of order n. Then the same 1s true for G *. For « € G we
define

Z :U' (d ) Z X (a) >
din P x€G" ord(x)=d
where ord(x) denotes the order of x and p the Moebius function We have

(2.1) w(a) =0 1f a does not generate G
To see this, we write
1
w(a) = (1 i > X(a))
/| n, | prime x€G" ord(x)=/
l 1
N (1—1_1—1' L X("‘))
/{n [ prime x€G" x'=1

If a does not generate G, then a = B’ for some 8 € G and some prime / dividing
Then x(a)= x'(8)=1 whenever x'=1, so Yien y—1x(e)=1 and the /th
factor 1n the above product vanishes, as required
We apply this result to G = F/C, n = P, using the notation of the previous
section In view of (1 14) we then find
(2.2) Define w* Ftu — C by
@-L 24 ¥ .
d|p x ord(x)=d
with x raaging over F A" Then
w(a) =0 fora¢& BC
The additive analogue to (2 2) presents no difficulties Let F.% be the dual of the
additive group of F.. We wnte F/» multuplicatively, and we make 1t mnto an
F,[ X]-module by deflnmg
(M)W @)=X(feoa) forA€EF), fEF[X], a €F,
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The Order Ord(M) of a character A 1s defined to be the monic polynomual generating
the annihilator of A m F [X], 1t clearly divides X™ — 1 Conversely, let f be a
monic¢ divisor of X” — 1n F [ X] We claim that precisely ®( f) characters A € F,

have Order f As mn the proof of (1 8) 1t suffices, by (1 5), to show that .
2 #{\ Ord(A) =g} = N(f)
glf

Here the left-hand side equals the order of the subgroup {A A =1} of F This
subgroup may be idenufied with the dual of ¥, /f oK, which indeed has order
N(f), as required

Denote by M the analogue of the Moebius function for F,[X], so for fe F [X], f
monic, we have M(f)= (-1)" 1f f 1s the product of s distinct monic 1rreducible
factors, and M(f) = 01f f 1s divisible by the square of an irreducible polynomual

We now have the followmg analogue to (22) We omit the proof, which 1s
completely analogous

(2 3) Define & F,, - C by

G- L WD T
gl x” 1 A Ord(\) =g
with X ranging over ¥ Then
Q(a)=0 fora¢
From (2 2) and (2 3) we see that
(2 4) w(a)Q(a)=0 fora& 4 n(BC)

We extend the characters of F/f. to all of F, by putting x(0) = 0 for x # 1, and
1(0) = 1 Then w(0)Q(0) =0

(2 5) PROPOSITION Let s be the number of distinct prime factors of P (see (111))
and t the number of distinct monic ureducible factors of X™ —1.1n E [ X] Suppose
that

(2° = 1)(2" = 1) < gm/?
Then there exists an element o € Fq"; with Ord(a) = X™ — 1 and ord(a) = g™ — 1
Proof Suppose not Then 4 N (BC)= &, by (113), so (24) mmphes that
w(a)(a) = 0forall @ € F », and

2 o(a)R(a)=0

aEqu
We have
Y w(a)@a)=Yy ¥ w(d)M(g) 5 Y r(x.A),
«cF,p air g1 9(d)0(8) y saio=a » OrdN) =g

where 7(x, A) 1s the Gauss sum

(A= L x(a)M«)

ack
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It 1s easily checked that
7(1’1) =q",
7(1,A) =0 for A #1,
m(x,1)=0 forx#1,

and 1t 1s well known [2, pp 375-376] that
|T(x,A)|=¢™? fx+#1, A+1.
We find that
m d)M
e g p MU w oy o
diP,d+1 g|X"~1,g+1 p(d)®(g x.ord(x)=d A,Ord(A)=g
There are exactly ¢(d) characters x of order d, and exactly ®(g) characters A of
Order g. Hence, taking absolute values, we obtain

VDY Y Ie(@)M(g)]- q"7% = (2 = 12" - 1)¢g""2,
d|P,d=1 g|xm—1 g#1

contradicting our assumption. This proves Proposition (2.5). O

To apply (2.5) we need upper bounds for s and ¢. The upper bounds that we give
below are refinements of those given by Davenport {4]. We begin with s.

(2.6) LEMMA. Let P be a positwe integer and s the number of distinct prime faciors of
P. Let further I > 1 be an nieger, A a set of prime numbers < [ such that every prime
factor r < [ of P belongs to A, andput L =11, . ,r. Then

log P — log L
log/

Proof. Let M be the set of prime divisors of P. Then #M = s and each
r € M — A satisfies » > [. Therefore,

po T (1) 10, 00,0

reM rel reM-—-A reA—M

+ #A.

> ( I'I I’) . l#(M~A)/[#(A—M) =TI . Z#M—#A =1- ls—#A,
rel
and the lemma follows This proves (2.6). O
The followrng lemma gives a formula for .

(2.7) LEMMA. Let q be a prime power > 1 and m a positwe integer Then the
number t of monic irreducible factors of X™ — 1.n F [ X] 1s gwen by

A C)!

d|m,gud(d,g)=1 k(d) ’

where k(d) denotes the order of (qmodd) in (Z/dZ)*.
Proof. If p™ denotes the largest power of the charactenistic p of F, dividing m,

then X™ — 1 = (X™/?" — 1)?". Thetefore we may assume that p does not divide m.
Then X™ — 1 =1I1,,,,®,, where

¢, = 11 (X —«a).

acF, ord(a)=d

The degree of ®, equals ¢(d), and by (1.1) each wrreducible factor of @, has degree
k(d). Smce X™ — 1 has no repeated factors, this implies (2.7). O
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We note the following additive analogue of (2.7), which is proved in a completely
analogous way. It generalizes a theorem of Zierler [6], [9].

(2.8) Let f € F [ X] be monic, and f* as defined in (1.7). Then the number of monic
wrreducible factors of f * mn F [ X] equals

2(g)

e1/. gedce, =1 K(8)
where K(g) denotes the order of (Xmod g) in (Fq[X]/qu[XD*. More precisely, we

can write
.
( w)
g1/, ged(g, X)=1

where n s the degree of the lowest-degree term of f, the polynomials ¥, are pairwise
relatively prime, and each ¥, factors as a product of ®(g)/K(g) distinct monic
wrreducible factors of degree K(g).

We next derive upper bounds for ¢.

L —

(2.9) LEMMA. Let q, m, t be as m (2.7), and e a positive integer. Let further D be a
set of posttive divisors of m such that every d € D s relatwely prime to q, and such that
D contains all positie divisors of ged(m, q¢ — 1) for all positive integers ' < e. Then
we have

with k(d) as in 2.7).

Proof. We may clearly assume that gcd(m,q) = 1. Then the hypothesis on D
implies that k(d) > e for all d {m with d & D. Hence, by (2.7),

-y 2, voeld - w(d)+>:~(__,_

dim.deD (d) deD k(d) = dm,dep € dep k(d)
_ v 9d) p(d) o9d)\_m 11
-d% e +d§D(k(d) e ) +d§D(P(d)( k(d) e)'

This proves (2.9). O
Withe = 1, D = @, one obtains from (2.9) the trivial bound

(< m.
With e = 2, and D equal to the set of divisors of ged(m, g — 1), one finds
(2.10) t <3(m+ ged(m,q — 1)).

The following lemma gives better estimates for ¢ for small values of 4.

(2.11) LeMMA. Let g, m, t be as in (2.7).
(a) Let g = 5. Then

P\
+
“O\

A
+

if m # 0 mod 3;

"
wlI w3 w3

+
[V W‘E

if m# 0mod4, m # 6.
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(b) Let g = 4. Then

t<%+2 ifm#15;
2
t<?+§ ifm# O0mod3, m + 5;
t<—nl+§- if
<7ty miseven.
(c) Let g = 3. Then
m 4
t<”§‘+§ ifm# 4,8,16;
t\% +1 1fm=0mod3.
(d) Let g = 2. Then
t<.’11_+_5._‘
4 4
m 4
t < 5—+§ ifmisodd, m + 3,5,7,9,15,21;
m 5 _ )
t<§+z ifm=0mod?2;
m 1 _
t<—8—+§ if m = Omod 4.

Proof. Simce the proofs are all similar, we only do (a) as an example. Let ¢ = 5.
We apply (2.9) with e = 3 and D equal to the set of divisors of ged(m, 24). This
yields

m
t\?+ 6.gc:d(m 24)+2gcd(m 4) < <7 +6,

as requured. If m # 0 mod 3 we have gcd(m,24) < 8, and the same estimate now
gives t < 4 + 4. Suppose finally that m # 0 mod 4. If m 1s odd, then t < % + §
3+%~1=%+1.Ifm52mod4,m$0mod3,thent<%-f—é-2+%-2=~’§~’

$. We are left with the case m = 6 mod 12. If also 31| m we apply (2.9) withe = 4
and D= {d: d|2 3-31} to obtamn r < § — 3. If 31 does not divide m we take
e=4and D = {1,2,3,6) m(29)andf1ndt 2 4+ 3whichis < 2+ $form=6
mod 12, m # 6. This concludes the proof of (a). 0O

Combining our mequalities we obtain the following result.

(2.12) LEMMA. Let g > 1 be a prime power, m a positie wteger, P as n (1.11), s
and tas i (2.5), and l, A, L as n (2.6). Suppose that
(25 =1)(2" = 1) » g™/
Let further 8 be an inieger with | < 8 < ged(q — 1, m). Then we have
1 qm’? 1 -1
- L .
i g210g( Py + 1) logl(IOg( | ) log($8 )) + #A

If moreover «, B € R are such that t < am + 8, then

(2.13)

logg logg _ log(8L(q — 1))
(2.14) (log4 e o) < g+ wp - HELZ D)
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Proof. The first mequality 15 obtamned by writing (2° — 1)2' — 1) = ¢"/? as a
lower estimate for s and applying (2.6) For the second one, note that 4°*' >
(2° — D' = 1)? = g™, so m(log q/log4) < s + t, and next apply the upper bound
from (2.6) for s, the upper bound P < ¢”/(8(q — 1)) for P, and t < am + B. This
proves (2.12). O

3. Determination of the Exceptional Cases. In this section we determune all pairs ¢,
m to which (2.5) does not apply.

(3.1) PROPOSITION. Let g > 1 be a prime power, m a positive integer, and P, s, t as
in (1.11) and (2.5). Then we have

(=D - 1) > g2
if and only 1f (q, m) 1s one of the mine pairs
(2,3),(2,6),(2,15),(3,2), (3,4), (3,8), (5,4), (5.8), (7,6).
Proof. Table (3.2) contains, for 31 paws (g, m), the value of f, the prime
factorization of P, and the values of (2° — 1)(2° — 1). For these paurs the proposition

1s readily checked; the nine cases in which (2° — 1)(2° — 1) » ¢™/? are mndicated by
stars n the last column.

TaBLE (3.2)

g m ! P 2 =-HR -1 qm?

2 3 2 7 3 283 *
2 4 1 35 3 4

2 6 2 32 7 9 8 *
2 9 3 773 21 226

2 10 2 3 11 31 21 32

2 12 2 3% 5 7 13 45 64

2 14 3 3 43 127 49 128

2 15 5 7 31 151 217 1810 *
2 21 6 72 127 337 441 14482

3 2 2 2 3 3 *
3 4 3 22 5 21 9 *
3 6 2 27 13 21 27

3 8 5 2 5 41 217 81 *
3 10 4 2 117 61 105 243

3 16 7 2* 5 17 41 193 3937 6561

4 5 3 11 31 21 32

4 6 3 5 7 13 49 64

4 9 5 3.7 19 73 465 512

4 15 9 7 11 31 151 331 15841 32768

5 4 4 313 45 25 *
5 6 4 3% 7 31 105 125

5 8 6 2 3 13 313 945 625 *
5 12 8 32 7 13 31 601 7905 15625

7 4 3 23 5% 21 49

7 6 6 22 19 43 441 343 *
7 12 9 2> 5% 13 19 43 181 32193 117649

9 4 4 5 41 45 81

9 8 8 5 17 41 193 3825 6561

11 4 3 22 3 61 49 121

11 10 10 2 3 3221 13421 15345 161051

13 4 4 5 7 17 105 169
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In the rest of this proof we assume that (g, m) is a pair not occurring in the table
for which (2* — 1)(2* — 1) > ¢™/% We shall derive a contradiction from this.

Clearly, our inequality implies s > 0,50 P # 1 and m # 1. If m = 2 and ¢ is even
then t =1, and since P = ¢+ lisodd, wehave g =P - 1> 3" —-1>(2° - 1) =
(2° = DR = 1). If m=2 and ¢ is odd, we have 2 — 1 = 3, and applying (2.13)
with /= 3, A = {2}, § = 2 we find that

log(39 +1) log(g + 1) <1- log 4
log?2 log3 log3"’

$0 g < 3; but the pair (3,2) is in the table. We have proved

(3.3) m > 3.

Next we prove that

(3.4) m is not a power of the characteristic p of F,.

Suppose not. Then ¢ = 1. If p is odd then each prime r dividing P is 1 mod 2p, so
> 7, hence P > 7°, and (2° — 1)(2' — 1) < 7*/? < PY/?2 < ¢g"/2 If p = 2 then (2.13)
with § = 1 yields

m 11 _logL
log(q )(log4 10g1) < logl~
With /=35, A = {3} this implies ¢” < 24, so by (3.3) we have (g, m) = (2,4),
which is in the table. This proves (3.4).

(3.5) P is not a prime power.

If not, then s = 1 and 4’ > (2 — 1)2 > ¢™, so t > m(log q/log4), which by ¢ < m
implies that ¢ = 2 or 3. If ¢ = 3 then by (3.3) and (3.4) we have m > 4, so (2.10)
leads to the contradiction ¢ < im + 1 < m(logq/log4). If g =2 then m > 5 by
(3.4) (since (2, 3) is in the table), so (2.11)(d) gives t < 2 + 3 < m(log g/log4), also
a contradiction. This proves (3.5).

Suppose now that m is prime. Then m is odd, by (3.3), and this easily implies that
each prime divisor of P is 1 modulo 2m. Hence, we can take /= 4m + 1 and
A= {+ r prime, r=1 mod2m, r < 4m + 1} in (2.6); clearly either #A =0,
L=1o0or #A =1, L = 2m + 1. Inequality (2.14) yields

1
log4  log(4m + 1)

)log q

1 - log(8(2m + 1)(g — 1))

< a-+
log(4m + 1)

B+

If g =1 modm, then witha=1, B=0,8 =m, g— 1> m, this yields ¢ < 7 for
m>17T;and g < 8 for m = 5; and ¢ < 11 for m = 3. For ¢ = 1 mod m this leaves
only the pairs (4, 3) and (7, 3), which both contradict (3.5). If ¢ = -1 mod m we can
take & = 8 =1, by (2.10), and with § =1, ¢ — 1 > m — 2 the above inequality
yields g < 4 for m > 5 and g < 9 for m = 3; this leaves only the cases (4,5), (2, 3),



228 H W LENSTRA,JR ANDR ] SCHOOF

(5,3), (8,3), of which the first is in the table and the other three contradict (3.5). If
g # +1 mod m, then m > 5 by (3.4), and using e = 3, D = {1} in (2.9), we see that
we can take a = §, 8 = % in the above inequality; for ¢ # 2 this yields g < 2 for
m>7 and ¢q < 3 for m =5, leaving only the pair (3,5), which contradicts (3.5)
because P = 112, Finally, let ¢ = 2. Then m > 11 by (3.5), and we can take a = %,
B = % in the inequality (choose e =35, D = {1} in (2.9)), which leads to the
contradiction m < 9. We have proved

(3.6) m is not prime.

If m=4, g= -1 mod4 we have ¢ = 3, and applying (2.13) with § = 2, [ =7,
A = {2,3,5} one finds that g < 15, so ¢ = 3, 7 or 11, which are all in the table. If
m =4, qg=1mod4wehave? = 4, and applying (2.13) withd = 4,/ =7, A = {3,5)}
(P is odd) one finds that g < 16, so ¢ = 5, 9 or 13, which are also in the table. In
view of (3.4) we conclude that m # 4, and with (3.3) and (3.6) this implies

(3.7) m > 6.

Next suppose that ¢ = 1 mod m. We apply (2.14) witha =1, 8 =0, § = m. In
order to make the coefficient log ¢/log4 — log q/log! — 1 in (2.14) positive we have
to take / fairly large. For ¢ > 23 we choose A = {2,3,5,7,11,13,17}, [ = 19; this
leads to a contradiction with (3.7). For smaller ¢ we observe that P is relatively
prime to $g(g — 1), because m divides g ~ 1, and change A, / accordingly. With

A={2,5,7,11}, =13 forgq =19,
A= {3,5,7,11,13}, =19 forg=17,
A= {7,11}, [ =13 forq =16,

A={57,11,17,19), [=23 forg=13

we find in all cases the contradiction m < 3. For ¢ < 11, the condition ¢ = 1 mod m
forces by (3.6) and (3.7) that (g, m) is one of (7,6), (9, 8), and (11,10), which are all
in the table. The conclusion is that

(3.8) q# 1 modm.

The proof of (3.1) is now concluded by another series of applications of (2.14), as
indicated by Table (3.9). Every line of the table corresponds to one application of
(2.14). The first two columns, headed “4” and “m”, indicate for which values of ¢
and m the inequality (2.14) is applied. The next two columns give values for & and 8
for which ¢ < am + B. These are either derived from (2.10) (note that ged(q — 1, m)
< $m, by (3.8)), or from (2.11) (the exceptions to (2.11) are dealt with in the last
column). The fifth column gives a lower bound 8 for ged(g — 1, m). Next one finds
A and /. To check that these satisfy the conditions of (2.6), it may be necessary to
use the information on m in the second column; e.g., if g =7, 3 t m, then 7" # 1
mod 9, so 3 does not divide P. In the final column one first finds the upper bound
for m that is obtained by applying (2.14); next a complete list of all m > 6 (see
(3.7)) that satisfy this upper bound (or are exceptions in (2.11)) and also meet the
condition in the second column; and finally how to deal with these remaining values.

This concludes the proof of (3.1). O
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TABLE (3 9)
q m a 8 8§ A / m
> 16 all m 20 1 2,3,5711,13 17 <5,-

13 all m P00 1 2,3,57,11,13 17 <7,6,7,(38),(36)

11 2tmS5tm )} 3 1 23,57 13 <5,-

11 2|m,5+tm ) 1 2 2,3,57 13 <5, -

11 24+m,5|m L2 5 23,57 13 <9,-

1 2|\m,S5|m s 100 2,357 13 <17,10,(38)

9 2tm g 1 2,5711,13 17 <4, -

9 2|m,4tm : 1 2 2,57,11,13 17 <5, -

9 4|m,8+tm ; 2 4 2,5,7,11,13 17 <8, -

9 8| m ;4 8  2,57,11,13 17 <13,8,(38)

8 Ttm i1 1 3,5711,13,17 19 <5, -

8 T\m L 7 03,57,11,13,17 19 <13,7,(36)

7 3+m ) 1 1 2,511 17 <7,7,(36)

7 2+m,3m : H 3003 19 < 4, -

7 2|m,3|m r3 6  2,3,511,13 17 <17,6,12,(32)

5 4+m : 3 1 3,711 19 <7,6,7,(32),(36)

5 3tm,4|m 12 4 2,3,11,13 17 <15,8,32)

5 3\m,4|m X 6 4 2,3,7,11,13,17,19 23 < 23,12,(32)

4 3tm 1 5 11 <6, -

4 2+tm,3|m : 2 33,7 11 <20,915,32)

4 2i{m,3|m PR 33,57 11 <£9,6,(32)

3 3m | 1 257 11 <11,6,9,(32),(349)

3 24m3tm ) % 1 1 23 <12,7,11,(36)

3 2{m,4+m,3tm | p 2 2,11,23 47 <13,10,(32)

3 4im,3+m 3 3 2 2,511,17,23,29 41 <19, 8,16, (32)

2 2tm 5 p 17 23 < 14,7,9,11,13,15,21,
(36),(32)

2 2|m, 4t m i 2 3,7,11 19 <17,6,10,14,(32)

2 4\m i1 1 3,57 11 <18,8,12,16,
34,32

4. Comypletion of the Proof. In this section we prove Theorem (1.10) for the nine
pairs (g, m) listed in Proposition (3.1). Davenport [4] handles these cases by
exphcitly giving an element of F . of Order X™ — 1 and order g™ — 1. Alterna-
tively, one can consult the tables of Beard and West [1]. We employ two methods.
The {irst depends on a refinement of Proposition (2.5), the second 1s a counting
argament.

We denote by ¢ a prime power, ¢ > 1, and by m an mteger, m > 1. As before, we
write P = (¢™ — 1)/((g — Dged(g — 1, m)) and we let s be the number of distinct
prime divisors of P. By ¢t we denote the number of distinct irreducible factors of
X" —-1mF][X]

(4.1) PROPOSITION. Suppose that m 1s a power of I, where | 1s a prime dwiding
g—1 Let Q = (¢" - 1)/(I(q"/" — 1)) Suppose that Q 1s a prime number and that

(2 = 1) = 1) < g™

Then ¥, has a prinutwe normal basis over F,.
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Proof One readily checks that Q divides P and 1s larger than P/Q, so that the
prime Q divides P exactly once Let C’ be the subgroup of F¥ of order /(g™ — 1)
and mdex @ Then €’ contans C, and the cychic group F /C of order P 1s the
direct product of the cychc group C’/C of order P/Q and a group of prime order
Q Hence, for any « € F%, the coset aC can 1n a unique way be written as a,a, with
a, € C'/C and af =1 Moreover, we have a € BC if and only 1f aC generates
K} /C, and 1f and only if both «; generates C’/C and «, # 1, here we use (1 14)
and the fact that Q 1s pnime

For a € F,» we define

way= ¥ My

d\P/g ¢(d) x ord(x)=d
with x ranging over F5" Applying (21) to the cyclic group G = C’/C of order
n= P/Q we find that w'(a)=0if a & F. 1s such that «; does not generate C’'/C
We now claim that
(42) W' (a)R(a)=0 tora & A n(BC)
with @ as 1n (2 3) To prove this, suppose that w'(a¢)2(a) # 0 Then a € A and q,
generates C’/C Hence to prove that a € 4 N (BC) 1t suffices by the above, to
show that a, # 1 Suppose that a, = 1 Then a € C’, so the /(¢™/' — 1)th power of
o equals 1, and therefore
a? 'l =¢

for some /th root of unity { & F* This implies that (X m/l— Yo a = 0, contradict-
ing that a € A4 This proves (4 2)

To complete the proof of (4 1) one now copies the proof of Proposition (2 5), with
w replaced by w’ and (2 4) by (4 2) The role of P 1s then played by P/Q, which has
one prime divisor less, so that s 1s replaced by s — 1 Ths proves (41) O

It follows that F,. has a pnmtive normal basis over F, 1f (¢, m) 15 one of the parts
(3,2), (3,4), (5,4), (5,8) In these cases, Proposition (4 1) applies with /=2 and
Q= 2,5,13, 313, respectvely

(4 3) PrROPOSITION The field ¥, has a primutive normal basts over ¥, if
(X" - D +q(g"-1)> 3 p(m/d)q?
dim

Proof The right-hand side 15 the cardinality of the set of elements of . that are
not contamned n any proper subfield Since 4 and B are contained in this set, and
have cardinalities ®(X™ ~ 1) and ¢(g” ~ 1), respectively, the mequality clearly
implies that 4 and B have a nonempty mtersection This proves (43) O

Proposition (4 3) implies that F_ has a primitive normal basis over F, 1f (g, m) 1s
one of the parrs (2, 3), (2,6), (2,15) We leave the calculations to the reader

The remamning two cases (g, m)= (3,8) and (g, m) = (7,6) we treat with a
refinement of thus method

Firstlet ¢ = 3 and m = 8 Let { € K, C Fy be a pnmtive 8th root of unity The
group C has order 4, so D = C U {C 1s a group of order 8, and D4 =4 U {4 We
claim that 4 and {4 have empty intersection To prove this, we note that for any
a € A the trace T(a) of a to F, has Order X2 — 1 1e, T(a) 1s a zero of X - X
but not of X* + X, so T(a)* = -1 If now also {a € A4, then T({a)* = -1 as well
Since T 1s Fy-linear, this leads to the contradiction {4 = 1 This proves our claim
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It follows that DA has cardinality 2 - #4 = 4096. Since B has cardinality
(3% — 1) = 2560, and 4096 + 2560 > 6561 = 3*  the sets DA and B have an
element in common Also BD = B, because 16 divides 3% — 1, so 4 and B have an
element 1n common as well, as required.

Next, let ¢ = 7 and m = 6 As before, we denote by § € F,y € F.e a primutive 8th
root of unity, and by D the group generated by { Since {* € C we agan have
DA = A U {A We calculate #(4 N {A)

For any cube root of unity 7 € F, let ¥, be the set of elements of Order dividing
X? —m, and define the “trace” T, Fyo = V, by T,(«) = (X* + 9°X? + n)o a, this
1s an Fyg-linear map. From X¢ — 1 = I1,(X? — n) 1t follows that the combimed map
F,e = I1,V, 15 an 1somorphism of F;[ X]-modules. Also, a belongs to 4 1f and only
if each T, (a) has Order X* —u; 1e, T,(a) 1s a zero of X* — 49X but not of
X7+ n*X. Furthermore, we have {a € 4 1f and only if each T,({a)={T,(a)
satisfies the same condition From

X% —p= _(X6 - nz)(Xe + ’r)z)((fX)é _ 7}2)((§X)6 + nz)(Xm + 772)

we now see that both a and {« belong to 4 1if and only 1if each T, () 1s a zero of
X?* + 52, Consequently, 4 N {4 has cardinality 24°

We conclude that #DA4 = 2 - #A4 — 24> = 2 - 6% — 243 = 79488. Also, #BC =
@(P) #C = 54432 and 79488 + 54432 > 117649 = 7%, so DA and BC have an
element in common From CA = 4 and BD = B 1t follows that 4 and B have an
element 1n common as well, as required

This completes the proof of the theorem
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