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The fractionally charged quasiparticles appearing in the 5=2 fractional quantum Hall plateau are

predicted to have an extra nonlocal degree of freedom, known as topological charge. We show how this

topological charge can block the tunneling of these particles, and how such topological blockade can be

used to read out their topological charge. We argue that the short time scale required for this measurement

is favorable for the detection of the non-Abelian anyonic statistics of the quasiparticles. We also show how

topological blockade can be used to measure braiding statistics, and to couple a topological qubit with a

conventional one.
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Introduction.—The 5=2 fractional quantum Hall plateau
is expected to be described by the Moore-Read wave
function [1] or its particle-hole conjugate anti-Pfaffian
state [2,3]. This means that every pair of e=4 quasiparticles
appearing in this phase have an extra neutral degree of
freedom, topological charge, which does not affect local
measurements and does not influence the energy of the
system as long as they are well separated.

Topological charge manifests itself in the peculiar braid-
ing statistics of these quasiparticles [4,5]: they are non-
Abelian anyons and their topological degree of freedom
can be manipulated through ordered exchanges of quasi-
particles whose result is independent of the path used for
braiding. Such stability under local perturbations allows
one to exploit non-Abelian anyons to store and process
quantum information in a way that is highly protected from
thermal noise and thus to potentially implement a topo-
logical quantum computer [6,7].

However there is no definite experimental proof that
topological charge indeed exists. Even when two quasipar-
ticles are close to each other, there are no clear cut sig-
natures of the topological charge: this extra degree of
freedom is completely charge neutral, and hence very
hard to detect. The most actively developed tool predicted
to read out the combined state of several non-Abelian
anyons, and to prove they possess fractional statistics, is
non-Abelian Fabry-Perot interferometry [7–12]. However,
the currently existing non-Abelian interference experi-
ments [13–16] are not conclusive. The interferometers
are relatively sensitive to dephasing, since the length of
the trajectory has to be sufficiently large. Moreover they
are described by a rather complicated theory [17] due to the
presence of many types of edge excitations [18,19]. In
addition, the interferometers are sensitive to all the anyons
encircled by the interference loop, some of which may
even be coupled to edge states, further obscuring the
interpretation of the results [20–24]. Other tools exist
designed to probe macroscopic consequences of the

existence of topological charge [25–28]; however, they
do not allow us to follow the behavior of a single anyonic
excitation. Here we propose a setup for measuring the
topological charge that does not suffer from these limita-
tions. Our setup is local, so it is only sensitive to the
topological charge of two anyons, and it does not rely on
using edge states. Instead it is based on the phenomenon of
topological blockade, explained below.
We begin our consideration from the simple observation

that any inherent property of a particle that may impose an
energy penalty, can also prevent its motion. The most
commonly known examples are the electric charge, which
causes Coulomb blockade, and spin, resulting in spin
blockade [29–36]. Less common examples include the
position of a particle, causing elastic blockade [37].
Topological charge makes no exception: if the energy
cost required to move two anyons onto the same region
in space (fusing) is too high due to their topological charge,
then the anyons will not move. Since anyons have charge,
detecting their position is not much harder than that of
usual electrons, and standard techniques such as quantum
point contact charge sensing [30,38] or single electron
transistor probes [39] can be used for this purpose [40].
Blockade measurements are a standard technique in quan-
tum systems, and they are much simpler than the measure-
ment of a force acting on a single quasiparticle, proposed
as an alternative to interferometry in Ref. [41].
The particular setup for the detection of topological

charge that we propose is very similar to that of a
singlet-triplet spin qubit (see Fig. 1), where spin blockade
is successfully used to distinguish a singlet state of two
electrons from a triplet one [32,35]. Two anyons are
trapped in two dots formed by metallic gates [42]. The
energies of the anyons are controlled by gate voltages, and
the charge position is measured by a nearby charge sensor.
In the following we analyze the performance of the pro-

posed topological blockade readout of topological charge
using a model calculation. We continue by discussing
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experimental challenges and important energy scales for
measuring topological blockade. Finally, we propose several
applications of topological blockade: a setup that should
measure non-Abelianbraiding statistics, and a setup allowing
us to entangle a topological qubit with a singlet-triplet qubit.

The model.—A topological qubit, shown in Fig. 1(b),
consists out of two quantum dots trapping a pair of quasi-
particles with charge e=4 (Ising anyons). The energy levels
of the dots can be separately controlled by varying gate
voltages. When the gate voltage difference is small, the
occupation number of both dots is equal, so that the system
is in the (1,1) configuration, where each index describes the
occupation of each dot. When the voltage difference
between the two dots is sufficiently large, a quasiparticle
tunnels from the left dot to the neighboring one, and the
ground state of the system becomes (0,2). Different states
of the qubit are characterized by the fusion channel of two
quasiparticles: vacuum (1) or fermion (�). We consider a
limited gate voltage interval such that the excited orbital
states and the charge (2,0) arrangement are higher in
energy than the four states relevant for the readout:
fjð0; 2Þ1i; jð1; 1Þ1i; jð0; 2Þ�i; jð1; 1Þ�ig.

Similar to the singlet-triplet qubit case [33], the
Hamiltonian of the topological qubit is given by

H ¼ H1 0

0 H�

 !
; with Ha ¼

"a �

� "

 !
: (1)

Here " is the energy of states jð1; 1Þ1i and jð1; 1Þ�i, while
"1 and "� are the energies of the states jð0; 2Þ1i and
jð0; 2Þ�i, respectively. For definiteness we assume that
"� < "1 [41]; however, our conclusions are not limited
to this assumption. The tunneling between different charge
configurations has amplitude �. As any local process, this
tunneling preserves the topological charge.
The energy levels of the Hamiltonian (1) are shown in

Fig. 2 as a function of ", which is controlled by gate
voltages. The two charge configurations (1,1), (0,2)
become degenerate in the � (1) channel when " ¼ "�
(" ¼ "1), and consequently � leads to avoided crossings in
the spectrum. Between the two crossings, there exists an
energy window of width � ¼ "1 � "� where the (0,2)
occupancy is favored with respect to the (1,1) occupancy
if the topological charge is � but not if it is 1. This
identifies the blockaded regime, where charge tunneling
is allowed or blocked depending on the fusion channel
of the anyons. The energy � is similar to the singlet-
triplet exchange splitting in spin blockade. This blocked
region allows for efficient conversion from topological
charge to real charge and hence allows readout of the
topological state.
The topological charge of the double-dot system is sub-

ject to decoherence, due to coupling to the edges or other
impurities in the quantum Hall liquid surrounding the
system, which may cause transitions between the 1 and
� states in the same charge configuration. Assuming this

(a) (b)

(c)

FIG. 1 (color online). (a) Two electrons with charge e (grey
circles) trapped by several gates (rectangles) form a singlet-
triplet qubit. The singlet and triplet states of the qubit acquire
different energies when one of the electrons tunnels. (b) A
topological qubit is formed by two quasiparticles of the
Moore-Read quantum Hall state with charge e=4. They are
trapped by gates (filled circles). When one of these quasiparticles
tunnels to the other, two degenerate wave functions of the qubit
corresponding to the vacuum and fermion fusion channels ac-
quire different energies. (c) A sketch of a possible implementa-
tion of the topological blockade measurement setup featuring
two local gates to form the quantum dots with size �100 nm,
and a charge sensor. The voltage applied to each dot is just
enough to attract a single quasiparticle.

FIG. 2 (color online). Main idea of topological blockade:
Spectrum of the Hamiltonian (1) as ", which states the energy
of the (1,1) charge configuration, is varied. Two avoided cross-
ings occur when " is degenerate with the fusion energies "�, "1
of the anyons. Blue solid (red dashed) lines identify the eigen-
states of the Hamiltonian with topological charge 1 (�). In the
energy window between "� and "1, a blockaded regime occurs,
with the (1,1) charge configuration favorable if the topological
charge is 1 but not if it is �. For " � "� and " � "1, the
charge configurations (1,1) and (0,2) are respectively favored,
independently on the topological charge shared by the anyons
(far-detuned regimes).
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process is independent of ", we introduce a constant decay
rate � and model the time evolution of our system using a
Lindblad master equation

_� ¼ �i½H;�� þ 1

2

X
j

2Lj�L
y
j � fLy

j Lj; �g (2)

with operators L1 ¼ Ly
2 ¼ ffiffiffiffi

�
p jð1; 1Þ�ihð1; 1Þ1j and

L3 ¼ Ly
4 ¼ ffiffiffiffi

�
p jð0; 2Þ�ihð0; 2Þ1j describing the topologi-

cal charge relaxation.
Readout.—The topological charge in the (1,1) configu-

ration at " � ��, can be determined by bringing it adia-
batically through the avoided crossing into the blocked
region, and measuring the final charge configuration.
This requires that the charge manipulation is performed
on a time scale � � h=� (to avoid Landau-Zener transi-
tions at the crossing).

If instead the topological charge relaxes too rapidly to
perform the adiabatic passage, a faster readout procedure is
needed. We describe here a method analogous to the rapid
single-shot measurements of singlet-triplet qubits [35].
The system is initialized at " � "� and the energy is
then increased nonadiabatically to "� "� for a short pulse
of duration �, after which " is driven back to the initial
value with a second fast pulse. The topological charge is
again inferred by a charge measurement of the final occu-
pancies of the dots.

During the pulse, two anyons in the � channel oscillate
between the (1,1) and (0,2) charge configurations with
period h=2�. If � equals half of this period, the transition
probability from jð1; 1Þ�i to jð0; 2Þ�i is maximized. An
analogous charge transition in the vacuum channel is
strongly suppressed because the state jð0; 2Þ1i lies at a
higher energy "1. In the ideal case, the initial topological
charge can be inferred by the final occupancies of the
dot, with (1,1) and (0,2) corresponding to 1 and �,
respectively. Unlike the adiabatic measurement, the time
allowed for the charge measurement in this case is limited
by the electric charge relaxation to the ground state,
ð0; 2Þ ! ð1; 1Þ.

In a more realistic scenario, incoherent processes may
alter the results and the position of the resonance cannot be
known in advance with great accuracy. Figure 3 shows the
probability to measure the charge configuration (0,2) after
a pulse of duration � is performed at an energy ", sweeping
a range of width � centered around ��, for the two differ-
ent initial topological charges. Coherent oscillations domi-
nate in the� channel for � � h=�, leading to fringes with
peaks at ��n ¼ ðnþ 1=2Þh=2�. The brightest peak occurs at
��0 ¼ h=4�, making this the optimal duration of the pulse.

If " is varied for longer times and away from the resonance,
the period of the fringes shortens and their intensity
diminishes. Since this readout method works identically
if "� "1 (only with the roles of 1 and � states inter-
changed), either can be used to detect the topological
charge of the prepared state.

The sum of the charge manipulation time � and the
charge readout time should be much shorter than the
topological charge relaxation time, which is equal to
h=�. The adiabatic charge manipulation requires � �
h=�, while the coherent manipulation requires a faster
time scale �� h=4�; hence, we arrive at the condition
� � �. If single shot readout is desired, the charge readout
time should also be much shorter than the topological
charge relaxation time h=�. However, a quick low fidelity
readout of the charge position is sufficient for the detection
of the topological charge, since the measurements can be
repeated many times. Additionally, in order for the two
topological charges to be distinguishable, the blockaded
region should be larger than the region where charge
tunneling occurs � � �.
The appropriate parameter conditions can be reached by

a careful design of the setup. It has been estimated that an
effective potential in the two-dimensional electron gas
with a width of a few magnetic lengths (lB) can trap single
quasiholes with a typical radius of 3lB � 30 nm [43–45].
Under this assumption, numerical works calculated � �
0:01e2=�lB with an upper bound of 1 K [41,44]. For larger
dots � is reduced since it is bounded from above by the
level spacing. The speed of relaxation of the topological
charge � due to the coupling to disorder-induced anyons

can be estimated as �e�l=�, with � � 2:3lB the character-
istic length scale associated with the quantum Hall liquid
excitation gap [41] and l the distance of the double-dot
system from the nearest impurity. Requiring � � 0:01�
then yields a lower bound l � 100 nm. Finally � is expo-
nentially small in the distance between the dots, so the

FIG. 3 (color online). Probability P to measure the charge
configuration (0,2) when the system starts in the configuration
(1,1) with initial topological charge � (bottom panel) or 1 (top
panel), as a function of pulse duration � and ". Obtained from the
numerical solution of the master equation (2), with parameters
� ¼ 10�, � ¼ 0:1�.
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condition � � � requires the interdot distance to be
larger than �.

These requirements are less stringent than the require-
ments for operation of a non-Abelian interferometer. There
the readout time must still be shorter than h=�; however, it
should also bemuch larger than the time of flight of a neutral
excitation through the interferometer loop. This time of
flight is given by L=v & @L=��, with L � � the length
of the interferometer path. Additionally, � is increased due
to the coupling of the interferometer loop to bulk anyons
[22,24]. The non-Abelian interferometers, however, have
the advantage that they are able to measure the Abelian part
of the braiding statistics [7,15,23], to which topological
blockade is completely insensitive. The interferometers
can also measure the topological charge of more than two
anyons, unlike the topological blockade.

Quasiparticles in the Abelian 331 state [46], which is the
most likely alternative to the Pfaffian state, have finite spin
polarization, and hencemay cause spin blockade. However,
due to the large Zeeman splitting, the equilibrium spin
distribution is highly imbalanced, unlike the topological
charge. This imbalance can be easily detected by perform-
ing a series of repeated blockade measurements.

Using existent technology, the smallest dots can be
formed by local top gates with size �100 nm. This is
similar to the expected quasiparticle size. The effective
confinement potential is expected to be still smoother
than this scale because the 2DEG is located �50 nm
away from the gate. Nevertheless since the splitting is
only suppressed linearly with the size of the ungapped
region, we expect that this will not result in big suppression
of the �. As long as the gate potentials are sufficiently
small, these local gates just attract excess quasiparticles
without forming the edge states. A local charge sensor
similar to the one used in Ref. [40] could be fabricated in
proximity to one of the dots, as shown in Fig. 1(c).

Detection of non-Abelian statistics.—In order to detect
non-Abelian braiding statistics of the anyons, one needs to
combine the topological blockade-based readout device
with a minimal setup for exchanging two anyons [47].
This setup is shown in Fig. 4(a), and it consists of a
topological qubit with two extra dots hosting a single e=4
quasiparticle. The quasiparticles are moved by varying
the potential of the dots. Both braiding and detection can
then be performed in the four dot setup, using the same
protocol proposed in Ref. [9] in the context of interfero-
metric devices.

Coupling with conventional qubits.—Since topological
blockade allows us to translate the topological charge into
the position of the electric charge, it becomes possible to
couple a topological qubit with conventional quantum
systems, similarly to what was done with Majorana qubits
in superconducting systems [48–50]. Both topological and
spin blockade translate the qubit degree of freedom into an
electric charge configuration. In the case of singlet-triplet

qubits, this effect has been used to couple two neighboring
double dots in order to produce two-qubit entanglement
[51]. The same method can be explored to couple capaci-
tively a topological qubit to a singlet-triplet qubit hosted in
a nearby double quantum dot [see Fig. 4(b)]. Independent
measurements on the two qubits can still be performed via
two charge-sensing quantum point contacts. Additionally,
the oscillatory motion of electric charge at the transition
between (1,1) and (0,2) states can also be used to couple
the topological charge to electromagnetic radiation, thus
allowing coupling of a topological qubit with cavity qubits.
Since the gate pattern needed to define the double-dot
hosting the singlet-triplet qubit will likely introduce unde-
sired edges in the quantum Hall liquid, it would be neces-
sary to have the second qubit in a different layer of the
nanostructure. Another difficulty to overcome is the pres-
ence of a strong magnetic field which increases the Zeeman
splitting of the triplet states and makes it comparable with
the exchange splitting in the singlet-triplet system, poten-
tially ruining the operation of the spin qubit.
Conclusions.—In conclusion, we have showed how to

use topological blockade to measure topological charge.
While we focused on the most experimentally relevant case
of the 5=2 fractional quantum Hall plateau, the same
method applies to any non-Abelian phase as long as the
anyons also have electric charge. We have shown that the
topological blockade is more robust than the non-Abelian
interferometry, in part due to being insensitive to the
Aharonov-Bohm phase. The downside is that it cannot
probe the Abelian part of the braiding statistics. Finally,
we have also shown how to use topological blockade to
measure braiding statistics and to couple topological qubits
with a singlet-triplet spin qubit.
We have benefitted from discussions with C.W. J.

Beenakker, C. Marcus, and B. Halperin. This project
was supported by the Dutch Science Foundation NWO/
FOM and the ERC Advanced Investigator Grant. A.Y.
acknowledges support from Microsoft Station Q.

(a) (b)

FIG. 4 (color online). Applications of topological blockade.
(a) Two-qubit system formed out of a topological and a spin
qubit. For both qubits the computational degrees of freedom
correspond to different charge configurations. Entanglement
between the qubits can be induced by a capacitive coupling
between the two double dots. (b) Setup for the detection of non-
Abelian statistics of the � ¼ 5=2 fractional excitations. Three
anyons (A, B, C) are hosted in four dots and can be moved by
varying gate potentials. Two counterclockwise exchanges of B
and C, implemented using the fourth empty dot, act as a NOT
gate on the qubit formed by A and B [9].

PRL 110, 086803 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 FEBRUARY 2013

086803-4



[1] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[2] S.-S. Lee, S. Ryu, C. Nayak, and M. P.A. Fisher, Phys.

Rev. Lett. 99, 236807 (2007).
[3] M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett.

99, 236806 (2007).
[4] C. Nayak and F. Wilczek, Nucl. Phys. B479, 529 (1996).
[5] P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B 83,

075303 (2011).
[6] A. Y. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003).
[7] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[8] E. Fradkin, C. Nayak, A. Tsvelik, and F. Wilczek, Nucl.

Phys. B516, 704 (1998).
[9] S. Das Sarma, M. Freedman, and C. Nayak, Phys. Rev.

Lett. 94, 166802 (2005).
[10] A. Stern and B. I. Halperin, Phys. Rev. Lett. 96, 016802

(2006).
[11] P. Bonderson, A. Kitaev, and K. Shtengel, Phys. Rev. Lett.

96, 016803 (2006).
[12] W. Bishara, P. Bonderson, C. Nayak, K. Shtengel, and

J. K. Slingerland, Phys. Rev. B 80, 155303 (2009).
[13] R. L. Willett, L. N. Pfeiffer, and K.W. West, Proc. Natl.

Acad. Sci. U.S.A. 106, 8853 (2009).
[14] R. L. Willett, L. N. Pfeiffer, and K.W. West, Phys. Rev. B

82, 205301 (2010).
[15] S. An, P. Jiang, H. Choi, W. Kang, S. H. Simon, L. N.

Pfeiffer, K.W. West, and K.W. Baldwin, arXiv:1112.3400.
[16] R. L. Willett, L. N. Pfeiffer, and K.W. West,

arXiv:1204.1993.
[17] P. Fendley, M. P. A. Fisher, and C. Nayak, Phys. Rev. B 75,

045317 (2007).
[18] Y. Gross, M. Dolev, M. Heiblum, V. Umansky, and D.

Mahalu, Phys. Rev. Lett. 108, 226801 (2012).
[19] V. Venkatachalam, S. Hart, L. Pfeiffer, K. West, and A.

Yacoby, arXiv:1202.6681.
[20] B. J. Overbosch and X.-G. Wen, arXiv:0706.4339.
[21] W. Bishara and C. Nayak, Phys. Rev. B 80, 155304

(2009).
[22] B. Rosenow, B. I. Halperin, S. H. Simon, and A. Stern,

Phys. Rev. Lett. 100, 226803 (2008).
[23] B. Rosenow and S.H. Simon, Phys. Rev. B 85, 201302

(2012).
[24] D. J. Clarke and K. Shtengel, New J. Phys. 13, 055005

(2011).
[25] K. T. Law, D. E. Feldman, and Y. Gefen, Phys. Rev. B 74,

045319 (2006).
[26] D. E. Feldman and A. Kitaev, Phys. Rev. Lett. 97, 186803

(2006).
[27] K. Yang and B. I. Halperin, Phys. Rev. B 79, 115317

(2009).
[28] C. Wang and D. E. Feldman, Phys. Rev. B 81, 035318

(2010).

[29] K. Ono, D.G. Austing, Y. Tokura, and S. Tarucha, Science
297, 1313 (2002).

[30] A. C. Johnson, J. R. Petta, J.M. Taylor, A. Yacoby, M.D.
Lukin, C.M. Marcus, M. P. Hanson, and A. C. Gossard,
Nature (London) 435, 925 (2005).

[31] F. H. L. Koppens, J. A. Folk, J.M. Elzerman, R. Hanson,
L. H. Willems van Beveren, I. T. Vink, H. P. Tranitz, W.
Wegscheider, L. P. Kouwenhoven, and L.M.K.
Vandersypen, Science 309, 1346 (2005).

[32] J. R. Petta, A. C. Johnson, J.M. Taylor, E. A. Laird, A.
Yacoby, M.D. Lukin, C.M. Marcus, M. P. Hanson, and
A. C. Gossard, Science 309, 2180 (2005).

[33] J.M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C.M.
Marcus, and M.D. Lukin, Phys. Rev. B 76, 035315 (2007).

[34] S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A.
Yacoby, Nat. Phys. 5, 903 (2009).

[35] C. Barthel, D. J. Reilly, C.M. Marcus, M. P. Hanson, and
A. C. Gossard, Phys. Rev. Lett. 103, 160503 (2009).

[36] H. Bluhm, S. Foletti, D. Mahalu, V. Umansky, and A.
Yacoby, Phys. Rev. Lett. 105, 216803 (2010).

[37] A. A. Koulakov and B. I. Shklovskii, Phys. Rev. B 57,
2352 (1998).

[38] M. Field, C. G. Smith, M. Pepper, D.A. Ritchie, J. E. F.
Frost, G. A. C. Jones, and D.G. Hasko, Phys. Rev. Lett. 70,
1311 (1993).

[39] M. J. Yoo, T. A. Fulton, H. F. Hess, R. L. Willett, L. N.
Dunkleberger, R. J. Chichester, L. N. Pfeiffer, and K.W.
West, Science 276, 579 (1997).

[40] V. Venkatachalam, A. Yacoby, L. N. Pfeiffer, and K.W.
West, Nature (London) 469, 185 (2011).

[41] M. Baraban, G. Zikos, N. Bonesteel, and S.H. Simon,
Phys. Rev. Lett. 103, 076801 (2009).

[42] The charge of the quasiparticle attracted to the gate
voltage does not matter for our considerations: both
dots, which trap e=4 quasiparticles and antidots trapping
e=4 quasiholes work identically.

[43] X. Wan, Z.-X. Hu, E. H. Rezayi, and K. Yang, Phys. Rev.
B 77, 165316 (2008).

[44] M. Storni and R.H. Morf, Phys. Rev. B 83, 195306 (2011).
[45] P. Bonderson, A. E. Feiguin, and C. Nayak, Phys. Rev.

Lett. 106, 186802 (2011).
[46] B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).
[47] M. Freedman, C. Nayak, and K. Walker, Phys. Rev. B 73,

245307 (2006).
[48] L. Jiang, C. L. Kane, and J. Preskill, Phys. Rev. Lett. 106,

130504 (2011).
[49] P. Bonderson and R.M. Lutchyn, Phys. Rev. Lett. 106,

130505 (2011).
[50] F. Hassler, A. Akhmerov, and C.W. J. Beenakker, New J.

Phys. 13, 095004 (2011).
[51] M.D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V.

Umansky, and A. Yacoby, Science 336, 202 (2012).

PRL 110, 086803 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 FEBRUARY 2013

086803-5

http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1016/0550-3213(96)00430-0
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1016/S0550-3213(98)00111-4
http://dx.doi.org/10.1016/S0550-3213(98)00111-4
http://dx.doi.org/10.1103/PhysRevLett.94.166802
http://dx.doi.org/10.1103/PhysRevLett.94.166802
http://dx.doi.org/10.1103/PhysRevLett.96.016802
http://dx.doi.org/10.1103/PhysRevLett.96.016802
http://dx.doi.org/10.1103/PhysRevLett.96.016803
http://dx.doi.org/10.1103/PhysRevLett.96.016803
http://dx.doi.org/10.1103/PhysRevB.80.155303
http://dx.doi.org/10.1073/pnas.0812599106
http://dx.doi.org/10.1073/pnas.0812599106
http://dx.doi.org/10.1103/PhysRevB.82.205301
http://dx.doi.org/10.1103/PhysRevB.82.205301
http://arXiv.org/abs/1112.3400
http://arXiv.org/abs/1204.1993
http://dx.doi.org/10.1103/PhysRevB.75.045317
http://dx.doi.org/10.1103/PhysRevB.75.045317
http://dx.doi.org/10.1103/PhysRevLett.108.226801
http://arXiv.org/abs/1202.6681
http://arXiv.org/abs/0706.4339
http://dx.doi.org/10.1103/PhysRevB.80.155304
http://dx.doi.org/10.1103/PhysRevB.80.155304
http://dx.doi.org/10.1103/PhysRevLett.100.226803
http://dx.doi.org/10.1103/PhysRevB.85.201302
http://dx.doi.org/10.1103/PhysRevB.85.201302
http://dx.doi.org/10.1088/1367-2630/13/5/055005
http://dx.doi.org/10.1088/1367-2630/13/5/055005
http://dx.doi.org/10.1103/PhysRevB.74.045319
http://dx.doi.org/10.1103/PhysRevB.74.045319
http://dx.doi.org/10.1103/PhysRevLett.97.186803
http://dx.doi.org/10.1103/PhysRevLett.97.186803
http://dx.doi.org/10.1103/PhysRevB.79.115317
http://dx.doi.org/10.1103/PhysRevB.79.115317
http://dx.doi.org/10.1103/PhysRevB.81.035318
http://dx.doi.org/10.1103/PhysRevB.81.035318
http://dx.doi.org/10.1126/science.1070958
http://dx.doi.org/10.1126/science.1070958
http://dx.doi.org/10.1038/nature03815
http://dx.doi.org/10.1126/science.1113719
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1103/PhysRevB.76.035315
http://dx.doi.org/10.1038/nphys1424
http://dx.doi.org/10.1103/PhysRevLett.103.160503
http://dx.doi.org/10.1103/PhysRevLett.105.216803
http://dx.doi.org/10.1103/PhysRevB.57.2352
http://dx.doi.org/10.1103/PhysRevB.57.2352
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1126/science.276.5312.579
http://dx.doi.org/10.1038/nature09680
http://dx.doi.org/10.1103/PhysRevLett.103.076801
http://dx.doi.org/10.1103/PhysRevB.77.165316
http://dx.doi.org/10.1103/PhysRevB.77.165316
http://dx.doi.org/10.1103/PhysRevB.83.195306
http://dx.doi.org/10.1103/PhysRevLett.106.186802
http://dx.doi.org/10.1103/PhysRevLett.106.186802
http://dx.doi.org/10.1103/PhysRevB.73.245307
http://dx.doi.org/10.1103/PhysRevB.73.245307
http://dx.doi.org/10.1103/PhysRevLett.106.130504
http://dx.doi.org/10.1103/PhysRevLett.106.130504
http://dx.doi.org/10.1103/PhysRevLett.106.130505
http://dx.doi.org/10.1103/PhysRevLett.106.130505
http://dx.doi.org/10.1088/1367-2630/13/9/095004
http://dx.doi.org/10.1088/1367-2630/13/9/095004
http://dx.doi.org/10.1126/science.1217692

