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ABSTRACT

Multicolor two-dimensional surface photometry of 17 elliptical galaxies is presented. Radial profiles
have been derived for surface brightness, color, ellipticity, position angle, and the residuals from the
fitted ellipses described by cos(n¢) and sin(ng) terms, where n = 3 and 4. The effects of seeing with
noncircular PSFs on the observed brightness profiles and on the ellipticities and position angles have
been investigated analytically. At radii as large as S times the seeing FWHM, seeing can affect the
ellipticity at the 10% level and introduce uncertainty in the position angles of several degrees, particu-
larly for very round ellipticals. The profiles are compared with data from other authors, and the
uncertainties estimated. The agreement is encouraging. The rms mean differences are only 0.02 in
ellipticity and 2° in position angle. Even for the roundest galaxies (¢~0.03), the mean ellipticities and
position angles can be determined to such accuracy. Larger differences remain for the surface-bright-
ness profiles. Systematic gradients of + 0.1 mag per decade in radius still occur between the surface-
brightness profiles from different authors. The main problem in deriving accurate colors is the uncer-
tainty in establishing the background level on the small-format CCD detectors currently used. The
average color gradients in U— R and B— R are —0.23 and — 0.07 mag per decade in radius. The
formal errors in the color gradients are comparable to the gradients for many galaxies, especially for
B — R. The color gradients of all galaxies are equal to the mean within the errors. The color gradients
are consistent with being due to gradients in metallicity. The observed color gradients would result from
a decrease in the metallicity by a factor of ~2 per decade in radius. The profiles of ellipticity, position
angle, and the residuals to the ellipse fitting generally show considerable structure. Deviations from
ellipses at the level of 0.5% are common. The detection of a faint, inclined disklike distortion at a radius
of 70" (=30 kpc for Hy =50 kms~!'Mpc~') in NGC 1700 exemplifies the usefulness of the high-
order terms for detecting low-surface-brightness structures. A phase—amplitude representation of the 3¢
and 4¢ terms has also been found to be useful for identifying faint structures. Several cases have been
found of structures with constant position angle (phase) in galaxies whose major-axis position angle
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varies dramatically.

1. INTRODUCTION

For more than a decade, it has been known that bright
elliptical galaxies are supported by anisotropies in their ve-
locity dispersion, and not by rotation, and that this implies
that ellipticals might have a triaxial or prolate shape (for a
review, see Davies 1987). Because of the ambiguity in the
deprojection of observed surface-brightness distributions,
no significant progress has been made on the question of the
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intrinsic shapes by photometric studies (see, e.g., Schechter
1987). The position-angle twists observed in ellipticals can
be explained as the result of the projection of triaxial figures,
but cannot straightforwardly be used to determine the triax-
iality of ellipticals (e.g., Schechter 1987). Contopoulos
(1956), Binney (1978), and Kondrat’ev and Ozernoi
(1979) have emphasized that one of the consequences of a
triaxial shape is that the projected velocity field shows rota-
tion along the photometric minor axis for some viewing an-
gles. Binney (1985) has constructed a set of kinematic mod-
els, and has shown that observations of minor-axis rotation
would not only prove that galaxies are not oblate rotators,
but would also give information about the intrinsic distribu-
tion of shapes. Furthermore, he showed that one has the
highest chance of finding minor-axis rotation for apparently
round galaxies.

We have started an observational program to measure the
minor-axis rotation of a sample of ellipticals, with the goal of
establishing the shape distribution for elliptical galaxies. As
a first step, we have carried out surface photometry on this
sample to determine accurate ellipticities and position an-
gles. Here we report on the results of this photometric study.

© 1989 Am. Astron. Soc. 538
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The kinematic observations are presented by Franx, Illing-
worth, and Heckman (1989).

Apart from our specific interest in the shapes of these gal-
axies, an important issue that can be addressed with accurate
surface photometry of ellipticals is that of radial color gradi-
ents. The aperture photometry of de Vaucouleurs and de
Vaucouleurs (1972), Sandage and Visvanathan (1978), and
Frogel et al. (1978) indicated color gradients within galax-
ies. With the advent of linear detectors, especially CCDs, it is
now possible to measure intensities accurately, and Boroson
etal. (1983,1987), Davis etal. (1985), Cohen (1986), Jedr-
zejewski (1987), Bender and Mollenhof (1987), and Pele-
tier et al. (1989) have used their CCD data to demonstrate
the existence of systematic color gradients. Thus, to contrib-
ute to this long-term effort, we decided to expand our pro-
gram to include images in several colors (U, B, and R), and
to derive color profiles.

The multicolor photometry is also useful for the detection
of dust. Work by Sadler and Gerhard (1985), Sparks et al.
(1985), Lauer (1985b), and Ebneter, Djorgovski, and Da-
vis (1988) has shown that a significant fraction of ellipticals
(20%—40% ) have structure attributable to absorption by
dust. This structure has been found from the residuals in
model-subtracted images, and from the asymmetries in the
color images.

In this paper, we present surface photometry on 17 north-
ern and southern ellipticals. In Sec. II the selection criteria
for the sample are given, the observations are summarized,
and the reduction process is described. One of the important
problems in surface photometry is the extent to which the
profiles are affected by the blurring of the image due to see-
ing. In Sec. III an analytical expression is derived for the
effects of the point-spread function (PSF) on the intensity,
the ellipticity, and the position-angle profiles for the general
case of a flattened galaxy observed with a noncircularly sym-
metric PSF. The results from the surface photometry are
presented in Sec. IV and discussed in Sec. V.

II. DATA ACQUISITION AND REDUCTION
a) Sample

Our aim was to obtain multicolor photometry of a fairly
wide sample of elliptical galaxies from which we could draw
candidates for our spectroscopic observations. The galaxy
classifications were taken from the RC2 (de Vaucouleurs, de
Vaucouleurs, and Corwin 1976) and the RSA catalogue
(Sandage and Tammann 1981). Our selection criteria em-
phasized flattening, size on the sky, and absolute magnitude.
Round, bright galaxies with absolute magnitudes M, be-
tween — 20 and — 22 were given the highest priority (as-
suming H, = 50 km s~' Mpc ™, as for the rest of this pa-
per). Those galaxies for which no detailed digital surface
photometry was published were observed first in the R band.
On later nights we took the supplementary B and U frames,
and we expanded the sample with U, B, and R data for sever-
al galaxies with some published photometry. We allowed a
small overlap with the samples of Jedrzejewski (1987) and
Peletier et al. (1989) for comparison. The sample is by no
means complete. It is biased towards round galaxies of inter-
mediate absolute magnitude.

We present here the surface photometry for those galaxies
for which we have spectroscopic data, or which are good
candidates for future spectroscopic study. We have also in-
cluded data on a selection of ellipticals observed by others to
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allow comparison of the results. The galaxies are listed in
Table I, where we give catalog classifications, luminosities,
sizes, radio fluxes, and JRAS 100 ym fluxes.

b) Observations

The data were taken with the #1 0.9 m telescope at
KPNO in November 1984, with the 0.9 m telescope at CTIO
in October 1985, and with the 2.2 m telescope at ESO in
December 1985. All the data were taken with RCA CCDs,
with scales varying from 0.351” to 0.860" pixel ™!, giving
fields of view of 110" X 180" to 270" X 440". We have listed
the relevant instrumental parameters in Table I1. The CCDs
had relatively few blemishes. The charge-transfer efficiency
along the serial register was poor in the KPNO CCD, result-
ing in the objects showing a slight asymmetry along the row
direction (weak “tails”). Bright stars resulted in unusual
charge leakage along columns on this detector.

At all observatories, we used Mould or “nearly Mould” B
and R filters. At KPNO and ESO, we used a Schott glass U
filter with CuSO, blocking, and at CTIO a U filter with a
similar bandpass but much lower peak throughput. The U
and B passbands are comparable to Johnson U and B, and
the R passband is comparable to Cousins R. Integration
times were typically 3-5 min in R, 10 min in B, and 2040
min in U. Bright galaxies were observed with shorter expo-
sure times to avoid saturation in the center. A log of the
observations is given in Table III. Most of the B and R expo-
sures had similar signal-to-noise ratios, S/N. The U expo-
sures had systematically lower S/N, particularly those taken
at CTIO, where the U filter had low throughput. Dark
frames were taken for photometric calibration, as were flat-
fields using both a white painted circular “spot” on the dome
and the twilight sky.

¢) Reduction and Generation of Profiles

The raw data were first bias subtracted and divided by the
flatfield frames. Since most of the galaxies cover a large part
of the CCD, special attention was given to low-spatial-fre-
quency variations in the flatfield. The flatfield was found to
vary by up to 1% on large scales during a run. In some cases
we used the twilight-sky exposures to determine the low-
spatial-frequency sensitivity variations. We estimated the
uncertainty in the large-scale response of the CCD to be
~1% from comparison of flatfields taken throughout the
observing run.

The calibrated images still suffered from CCD defects like
bad columns, hot pixels, and cosmic-ray events. We did not
eliminate these blemishes, but listed their locations. These
flagged pixels were ignored in the analysis of the data. We
have applied an ellipse-fitting procedure to these data similar
to the procedures used by other authors (e.g., Kent 1984;
Lauer 1985a; Davis et al. 1985; Jedrzejewski 1987; Peletier et
al. 1989). These authors have shown that the two-dimen-
sional surface photometry of most ellipticals can be parame-
trized by a set of one-dimensional functions: intensity, ellip-
ticity, and position angle as a function of the semimajor-axis
length of the ellipse. Most ellipticals are described to better
than 1% by such a parametrization. For some fraction of
ellipticals, it is necessary to add the deviations from the best-
fitting ellipse, but this is not a major complication. These
deviations are commonly expressed as the amplitude of the
residual sin(3¢), cos(3¢), sin(4¢), cos(4¢4) terms in inten-
sity along the best-fitting ellipse, where ¢ is the position an-
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TABLE I. Sample.

Galaxy Classification Br r. Ta5 vgyp Mp F100 FRradio Environment

RC2 RSA " " ml]y mly
1) (2 @ @6 ©’ MO (9 (10) (11)
NGC 0636 E3/E1 E1 1233 19 58 1865 -20.53 — <b
NGC 1199 E3/E2 E2 1244 29 69 2331 -20.90 — <10 N1199 group .
NGC 1379 EO E0 11.66 42 93 1411 -20.59 — <6 FornaxI.
NGC 1395 E2/E3 E2 1094 45 122 1585 -21.57 390+61 <15
NGC 1399 E1P E1 1055 42 137 1411 -21.70 340+82 342 Brightest in core of Fornax I.
NGC 1404 E1 E2 10.89 27 43 1411 -21.36 290+56 <18 Fornax I.
NGC 1407 EO0/E0Q E0 1057 72 144 1585 -21.94 480+74 34
NGC 1439 E1/E1 El1 1207 41 79 1585 -20.44 — <18
NGC 1549 EO E2 10.58 48 140 1162 -21.25 180455 <13 Pair with 1553. Shells.
NGC 1700 E4/E1IT E3 12.26 14 53 4082 -22.30 <654 <3 Pair with 1699.
NGC 2986 E2/E1 E2 11.51 41 93 2188 -21.70 <192 33 SA spiral at 2.7’.
NGC 7144 EO E0 11.75 40 89 1861 -21.10 3304107 <7 Pair with 7145.
NGC 7145 EO E0 1198 39 79 1861 -20.87 — <4 Shells to NW.
IC 1459 E3 E4 10.88 39 119 1647 -21.71 11804103 890 Pair with I 5255.
NGC 7507 EO E0 11.15 31 97 1553 -21.31 <459 <10 Pair with 7513 at 18'.
NGC 7619 E2/El E3 12,00 32 72 3493 -22.22 — 22 Second brightest Pegasus I.
NGC 7626 E1P/E2P E1 11.99 38 74 3493 -22.23 — 165 Brightest Pegasus I.

Notes: Columns (2) and (3) list the galaxy classification of the RC2 and the RSA. Column (4) gives the
apparent total magnitude Br. Columns (5) and (6) list the effective radius r., and rj5, the radius of the
galaxy at a surface brightness of 25 mag arcsec™%, both in arcsec. Column (7) gives the group velocity, and
column (8) the absolute magnitude Mp calculated from By and v, with Ho= 50 km s™'Mpc ~1. The
values listed in columns (4) to (7) are taken from Burstein et al. (1987) and Davies et al. (1987). The IRAS
100 pm fluxes in column (9) are taken from Jura et al. (1987). The radio fluxes in column (10) are taken
from Disney and Wall (1977) and Dressel and Condon (1978). They are at frequencies ranging from 2.4
to 5 Ghz. The upper limits are the 3 o upper limits from Disney and Wall (1977). The remarks on the
environment of the galaxies are taken from the RC2, and references given in Appendix B.

gle with respect to the major axis of the ellipse. The ampli-
tudes are divided by the derivative r d Intensity/dr so that
their strengths reflect the deviations of the isophotes from
ellipses. Peletier et al. (1989) give examples of the isophotal
shapes when such deviations are present. They, along with
others (e.g., Lauer 1985b; Bender and Mollenhof 1987),
have shown that a majority of ellipticals have deviations
from ellipses at a level of =0.5%.

While this parametrization has the advantage that it gives

a very good fit, and directly returns the relevant parameters
like intensity, ellipticity, and position angle, it does have the
disadvantage that it is determined by an iterative process—it
is thus somewhat slow. An alternative parametrization is to
express the intensity as a series of harmonical terms

k
I(rg) = 3 I,(r) cos {n[¢—¢.("N1}, 1)
n=0

after a suitable choice of the center. The advantage of this

TABLE II. Telescopes and instrumentation.

CTIO ESO

KPNO
date. Nov 14-17,1984
telescope. #1 0.9-m
CCD RCA#1
pixel size(pm) 30x30
format. 320x512
scale(” /pixel) 0.86

readout noise(e”) 75

Oct 8-13, 1985 Dec 17-19, 1985

0.9-m 2.2-m MPI/ESO
RCA#3 RCA#5

30x30 30x30

320x512 320x512

0.49 0.351

40 50
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TABLE III. Log of observations.

Galaxy Band Telescope & PSF é Sky Bkgd rImin Tmin Imin Imaz
Integration FWHM (>0.1) mag error mag e 0O
1) @ O 4) G ® @® 6 (© 1) a1y
NGC636 R K60,K180,E300,E300 1.0 2009 001 40 28 24 85
B K800,K800,E180,E600 1.8 0.15 2226 0.01 72 62 53 85
U K1800,E2000 2.2? 2152 001 88 63 53 85
NGC 1199 R K300,K300 2.5 2022 0.01 100 87 49 94
B B800,B800 2.7 2242 0.01 11.0 94 53 94
NGC 1379 R C600,C600,E180 1.0 2123 005 40 40 44 70
B C300,E240,E300 1.1 2154 005 44 44 48 70
U E1800 1.0 2045 005 40 40 44 53
NGC 1395 R K300,K300,E180 13 1996 002 52 44 26 100
B K800,K800,E600 15 2243 002 60 50 3.0 100
U K2000 2.8 2144 0.02 110 94 56 100
NGC 1399 R C200,C600,E180,E180 1.0 2085 0.07 40 28 24 70
B C500,C1000,E300,E300 1.0 2270 007 40 28 24 70
U E1800 11 2029 007 40 28 24 53
NGC 1404 R C200,C600,E180 0.9 2088 005 36 31 17 70
B C500,C500 14 0.15 2285 005 56 49 34 70
U E1800 11 0.14 2166 005 44 38 26 53
NGC 1407 R K300,C600,E300 14 0.12 1896 001 56 62 52 129
B E600,E900 1.7 2201 005 68 48 58 53
U E1800 15 2090 005 60 42 51 53
NGC 1439 R C200,C600 1.8 0.12 2069 003 72 56 47 49
B C500,C500 1.6 0.10 2216 003 64 45 38 49
U C3000 2.5 0.23 2179 0.07 10.0 11.0 9.0 49
NGC 1549 R C200,C600 1.4 2093 007 56 49 28 70
B C200,C1000,E300 14 2289 007 56 49 28 70
U C2000 2.8 025 2126 005 11.0 130 84 70
NGC 1700 R K150,K150,K300,E600 1.2 2028 001 48 59 16 86
B K400,K600,E600,E900 1.5 2245 001 60 74 21 86
U K2000 2.6 0.19 2145 001 100 130 50 86
NGC 2986 R E180,E300 14 0.10 2073 005 56 49 28 53
B E300,E480 13 2261 005 52 45 25 53
U E1800 13 2185 005 52 45 25 53
NGC 7144 R C200,C600 1.7 0.19 2081 004 68 95 78 55
B C1000 (bad guiding) 3.1 046 2267 0.04 12.0 269 228 55
U C3000 2.0 2196 004 80 81 66 49
NGC 7145 R C200,C600 1.5 0.10 2084 004 60 61 51 59
B C1000 1.7 2266 004 68 68 58 59
U C2000 20 0.17 2193 004 80 105 9.0 49
1C 1459 R €600,C180°,E150° 14 0.12 2090 006 56 63 21 70
B C500,C1802,C300° 1.0 2267 006 40 45 15 70
NGC 7507 R C100,C200,C600 14 2073 005 80 81 66 59
B C500,C500 2.0 2264 005 84 83 72 59
U C2000 ?¢ 2177 0.05 84 83 72 59
NGC 7619 R K394,K300,E180,E180 1.5 20.17 001 60 68 23 129
B E180 2.2 0.15 1909 002 88 —¢ —4 45
NGC 7626 R C200,C600 23 0.17 2067 004 92 85 72 65
B C1500 2.6 0.14 2251 0.04 100 87 7.2 65
U C3000 2.8 0.13 2158 004 110 9.0 78 49

% Data made available by Mario Mateo.

b Data taken by Reynier Peletier taken on the 1.5-m Danish Telescope at ESO.

¢ No star available to measure seeing.

4 No reliable shape parameters because of very high sky level

Notes: Column (2) gives the passband filter, Column (3) the telescope (C=CTIO, E=ESO,K=KPNO) and
integration time in seconds. Column (4) gives the seeing FWHM in arcsec, column (5) the ellipticity & of
the PSF if it was larger than 0.1. Column (6) gives the surface brightness of the sky in magnitudes arcsec™2,
derived from our zero point calibration and the background level on the CCD. The fractional error in the
background determination is given in column (7). Columns (8) to (10) give the radii in arcsec at which the
effects of seeing on surface brightness, ellipticity and position angle are 0.05, 0.02 and 5° respectively. For
round galaxies ( <€>< 0.08) these values are 0.05, 0.01, and 5°. Column (11) gives the maximum radius
out to which the shape of the galaxy was determined accurately.
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parametrization is that it is strictly linear at constant r.
Hence the terms I, (#) and ¢, (#) can be determined imme-
diately from I(r,¢), without iterating. A disadvantage is that
the ellipticity is not part of the parametrization. However, to
first order the ellipticity is related to I, by

2L,(r)
rdl,/dr

The harmonical expansion method has the clear advantage
that it is very fast to calculate, and that its linearity produces
better error estimates. Our preference, however, was to use a
parametrization that included the ellipticity explicitly, like
that used by the authors above. We settled, therefore, on an
approach whereby the harmonical expansion was used as a
preprocessor, as described in more detail below. It is clear
that both methods are a filter on the 2D images, where the
ellipse-fitting procedure is the more restrictive of the two.

The ellipse-fitting program was an adapted version of the
GRASP package, originally written by Mike Cawson (see Da-
vis et al. 1985), and later updated by Lindsey Davis, Robert
Jedrzejewski, and Reynier Peletier. The most significant
change in the version used here is that at each step the formal
errors of all the fitting parameters are determined. The noise
in the data was determined at each iteration from the residu-
als of the fit. In addition, we express the parameters as a
function of an “intermediate” axis m,

m=\f517=a\/1—6, (3)
where a and b are the semimajor and semiminor axes of the
fitted ellipse. The main advantage that accrues from this
choice of variable is that now the errors in the ellipticity do
not correlate with the errors in intensity.

Because of the small angular sizes of our images, we want-
ed to make the fit over the largest possible range in radius m.
Thus, we allowed the program to fit ellipses with varying
centers, ellipticity, and position angle out to the radius at
which only 60% of the ellipse fell within the image. Outside
that radius, the center, ellipticity, and position angle of the
ellipses were fixed, and the intensity was determined until
the ellipse fell completely off the array. This approach had
the advantage that we did not need to use other methods to
determine the intensity near the edge of the image.

The data-analysis procedure consisted of two steps, the
first involving the use of the harmonical parametrization to
allow the removal of stars and bad pixels, and the second the
full ellipse fitting. First, the positions of bad regions and
bright stars on the image were listed. Then the center of the
galaxy was determined accurately by a numerical fit, and the
harmonical expansion method was applied, ignoring the list-
ed bad pixels. A difference image was generated that clearly
showed the residuals from the fit. This image had a mean of
zero, with the stars, bad pixels, and the cosmic-ray events
superimposed, allowing a simple and straightforward detec-
tion algorithm to be used. All pixels deviating by more than
5-10 times the rms noise were also flagged. The harmonical
fitting was repeated, and the residuals were inspected again
to check that all bad pixels and interfering stars had been
found and flagged. This method is more reliable than any
method that tries to determine the bad regions from the
original image, while it takes much less time than a full solu-
tion of the ellipse-fitting program on an image.

In the second step, the ellipse-fitting procedure was ap-
plied to the image, using the parameters from the harmoni-
cal fit as initial values. The end result was an intensity profile
from the center to the edge of the image, with a maximum

e(r) = (2)
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radius of about 300 pixels, or 100" for the ESO data, 150" for
the CTIO data, and 260" for the KPNO data. The structural
parameters [e.g., the ellipticity, the cos(ng) terms, etc.]
were determined from the center to about 150 pixels, corre-
sponding to 50", 75", and 130", respectively. For small gal-
axies the structural parameters and the centers of the ellipses
were only derived out to smaller radii.

We also derived intensity profiles, positions, and struc-
tural parameters for the few bright stars on the residual im-
ages. We measured the seeing for all of the exposures from
these stellar intensity profiles, and determined the relative
pixel scales and orientations of the detectors from the posi-
tions of the stars using the data from the three telescopes
with the three different filters. We found that the scale values
listed in Table II were internally consistent at the level of a
few parts per thousand, and not dependent on the color to
more than that level. We also found that the ESO and CTIO
images were not exactly aligned north-south or east-west.
From the position of the stars on exposures of NGC 1407 we
determined the relative offsets (less than 2°), and from a -
trailed exposure of a star we determined the absolute offset
for the ESO data.

d) Combining Profiles

For several galaxies we had taken multiple exposures in
the same passbands, in some cases with different telescopes.
These proved to be essential for establishing the uncertainty
in our profiles independently of the errors given by the fitting
program.

In general, the intensity profiles were combined by aver-
aging the data, with the inverse formal errors as weights.
Only the profiles from the image with the best seeing were
used in the central 10”. The sky level (see below) was estab-
lished from the profile from the data with the largest field
and the faintest sky; for the intermediate profiles, the sky
level was adjusted to ensure agreement in the overlap region.
The steps followed and the various tests were:

Nonlinearities. Comparison of the intensity profiles
showed no saturation effects or nonlinearities in the detec-
tors. Since the weather conditions were not photometric dur-
ing the observations, we could not use the absolute intensity
ratios of the images to compare them with the exposure
times as a check on nonlinearity. The comparison could not,
therefore, detect all the nonlinear effects in the data. For
example, if the measured intensity /' is related to the real
intensity / by

I:=11+a’ (4)

where a is some small number, then the ratio of two images
with different exposure times is still independent of the in-
tensity, but the ratio itself is not linear with the ratio of the
exposure times. Thus these comparisons can only give lower
limits to such a nonlinearity. However, these CCDs have
been used extensively and no significant nonlinearities have
been reported.

Shape comparison. For nine galaxies, we had profiles
from different telescopes, allowing us to check for systematic
effects. As a check on possible differences between different
telescopes, we analyzed these profiles separately. We found
that the structural parameters agreed very well; the rms
mean position-angle difference was 2°, while the rms mean
ellipticity difference was 0.02.

Background determination. The largest source of uncer-
tainty in the intensity and color profiles results from the
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difficulty in establishing the “sky” level in the data. This was
clearly a problem, since all the profiles from the ESO and
CTIO telescopes showed a gradient in intensity at the outer
radius, i.e., at the edges of the image at a typical radius of
80”-100". It is obvious that we can make significant errors
by taking the intensity in the corners of the array as the
background. To improve this situation, we decided to fit a
power law I =m® plus constant offset (where the radius
m = \Jab was defined above) to the intensity profiles at radii
larger than 50". This choice of radius allowed the fits to be
applied to each CCD dataset over some common range in
radius. The power law index a was chosen to be — 2.5, and
we repeated the fit with an index of — 2 and — 3 to get an
estimate of the error. These indices are typical of elliptical
galaxy intensity profiles near r, (see, e.g., Tonry 1987).
Each point had comparable weight in the fit. This approach
was used to determine backgrounds for all of the profiles.
The fits were visually inspected, and obvious bad points in
the profile were deleted.

For the KPNO data, which extended to 180", the back-
ground differed by less than 1% from the outermost intensi-
ty value, and was independent of the power law index of the
fitted model. For the ESO and CTIO data, which extended
only to 100”-120", the differences between the background
and the outermost intensity value were generally large, in the
most extreme case 10%-15% (for NGC 1399 and NGC
1549) and dependent on power law index. An index of — 2
would give a background lower by 10% for these two galax-
ies. One might try to improve upon this situation by fitting
another model, such as an r'/* law. We have not attempted to
use such a model, because this requires the estimate of an
uncertain scale factor, and because the intensity profiles of
ellipticals differ significantly enough from each other to pro-
hibit an accurate fit with any one such model. Hence we have
used the background as determined above, and we have
made a reasonable estimate of the error in this procedure.
We have estimated the uncertainty for galaxies like NGC
1399 and NGC 1549 to be 7%, for the smaller galaxies ob-
served at ESO and CTIO to be 3%—5%, and for the galaxies
observed at KPNO to be 1%—2%. The lower limit is set by
the accuracy of the flatfield, which we have estimated at 1%.
The uncertainties are listed in Table III in column 7. We
attempted to use aperture photometry in the literature to
constrain and improve our “sky” levels, but found that the
photometry did not have the high level of accuracy that is
required for this approach.

Aperture photometry. Finally, we used published aper-
ture photometry to calibrate the magnitude zero points of
our data. We used the compilation of Lauberts and Sadler
(1984) for the southern galaxies, supplemented by the pho-
tometry of Sandage (1973, 1975), Sandage and Visnavathan
(1978), Persson, Frogel, and Aaronson (1979), Mould
(1981), and Burstein et al. (1987). We used the conversion
relations given by Sandage and Visnavathan (1978) to con-
vert their data to the standard Johnson UBR system. Aper-
ture data whose values deviated significantly (by ~0.08-0.1
mag) from the mean zero-point value, as well as data with
apertures larger than 120", were not included in the calibra-
tion. As a check on the calibration errors caused by the un-
certainty in the background, we repeated the calibration
with the background as one of the free parameters. In most
cases the change in the zero point was negligible, being on
the order of a few hundredths of a magnitude. Since the color
gradients in ellipticals are small, we did not include any color
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terms in the calibration. The error in the calibration is de-
pendent upon the errors in the literature data, and on the
error in the background. The rms mean difference between
the aperture photometry and that derived from our synthetic
apertures is only 0.04 mag. Given this, it seems reasonable to
take the likely error in the zero points to be =~0.05 mag.

Internal comparison. As a check on the overall data-re-
duction procedure, we have derived and calibrated profiles
from the CTIO, ESO, and KPNO telescopes separately for
NGC 636, NGC 1379, NGC 1395, NGC 1399, NGC 1549,
and NGC 1700. We have differenced the profiles for the
same passband, and we also give the color profiles, when
available for any pair of telescopes. The profiles are present-
ed in Fig. 1. We list in Table IV the mean logarithmic gradi-
ent of the differences in the intensity profiles (e.g., (AR /
Alog r}) between the telescopes, and the color gradients
((AC/Alogr)) for each telescope with galaxies in com-
mon. The differences in the same bandpass are generally
smaller than the errors predicted by our background uncer-
tainty. Furthermore, the color gradients measured at the dif-
ferent telescopes agree very well, despite the fact that the
observations had very different scales. The errors of the col-
or profile were calculated by taking the square root of the
sum of the squared errors in each passband. We conclude
that the errors in the color gradients are overestimated in
this way, most probably because the errors in the back-
ground determination are in the same direction for both pro-
files taken in different passbands. In fact, it is interesting to
note the excellent agreement between the reliable colors
from the KPNO data, where the frames are large enough to
allow the “sky” to be well established, and the ESO data,
with its very poorly determined sky levels, as reflected in the
large errors. An optimist would conclude from this that our
sky estimates are subject to errors smaller than those we
indicate. Alternatively, the background uncertainties from
the individual ESO frames may be correlated in sense and
magnitude so as to allow such close agreement with the
KPNO data. Which of these options is more correct must be
decided with larger CCDs. The literature comparisons
shown later suggest that the former option may be more
appropriate.

The last step to be taken is the determination of the inter-
val in radius where effects due to seeing, guiding errors, and
background uncertainty are within prescribed limits. The
effects of background uncertainty can be derived from the
error estimates discussed above, and tabulated in Table III.
The effect of seeing on the intensity profiles and on the struc-
tural profiles such as ellipticity and position angle are not as
straightforward to determine. We deal with this in detail in
the next section.

I11. SEEING EFFECTS ON TWO-DIMENSIONAL SURFACE
PHOTOMETRY

Schweizer (1979, 1981) was the first to stress the impor-
tance of seeing on observed parameters like the core radius
and the central surface brightness of galaxies. He showed
that these effects can be significant even if the observed core
radius is much larger than the seeing, and that they depend
not only upon the FWHM of the stellar point-spread func-
tion (PSF), but also on the wings of the PSF. Further work
(e.g., Bailey and Sparks 1983; Kormendy 1984) confirmed
his analysis. Peletier ez al. (1989) numerically evaluated the
effects of seeing on the observed structure of galaxies, and
found large effects on the ellipticity, and noted that the effect
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FiG. 1. Differences in magnitude between data from different telescopes. The difference between the ESO and CTIO data is plotted in (a),
and between ESO and KPNO in (b). The color gradients of these galaxies from the different telescopes are shownin (c). The very large error
bars seen in some cases arise from the (systematic) uncertainty in the background determinations. The correlation between the errors in the
background for different passbands on a given telescope leads to an overestimation of the errors in the colors, by an amount that cannot be
readily determined.
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TaBLE IV. Comparison of data from different telescopes.
Galaxy ESO-KPNO ESO-CTIO ESO CTIO KPNO
AB AR AB AR A(B-R) A(B—R) A(B-R)
Alog r Alog r Alog r Alog 7 Alog r Alog r Alog r
(1) 2) 3) (4) (5) (6) () ®)
NGC 636  0.05+0.33 0.05+0.35 -0.07+0.32 -0.07+0.02
NGC 1379 0.01+£0.15 0.02+0.10 -0.05+£0.15 -0.04+0.12
NGC 1395 0.07+0.16 0.10+0.23 -0.09+0.16 -0.05+0.01
NGC 1399 0.08+0.08 0.07+0.04 -0.06+0.08 -0.07+0.08
NGC 1549 0.08+0.23
NGC 1700 -0.02+0.18 0.04+0.25 -0.12+0.17 -0.07+0.02
Notes: Columns (2) and (3) give the mean logarithmic gradients of the point-to-point differences in B
and R for the ESO and KPNO data. The gradients have been determined in the interval from 5” to 30".
Columns (4) and (5) give the same gradients for the ESO and CTIO data. Columns (6), (7) and (8) give
the logarithmic color gradients for the data from each telescope separately.
depends upon the ellipticity of the galaxy. The sample of I(x,y) =J(m?), 9
galaxies presented here contains many round galaxies, and  yith
one of our concerns was the degree to which a noncircularly ) )
symmetric PSF affected the observed position angles and m* = (x*/q) + q*. (10)

ellipticities. Guiding errors, focusing errors, bad alignment
of the optics, and charge-transfer effects on the CCD can
cause noncircular PSFs. In the following, we derive analyti-
cal expressions for the effects of a noncircularly symmetric
PSF on intensity, ellipticity, and position angle. The goal
here is not to determine corrections to the observed profiles
for the effects of seeing, but to identify the radii at which the
profiles become unreliable at a well-defined level (e.g.,
10%).

We parametrize a family of PSFs f with similar profiles
but different scales s. It is assumed that the PSF is constant
on similar, concentric ellipses, with

2 12

f(x’y)—_—izg(w_)’ (5)
s 5

with p>1 and

(x’) _ ( cosy  sin ¢) (x) 6)
v/ \—sing cosyp/ \p/’

The parameter p is the elongation of the PSF, and is related
to the ellipticity & of the PSFby § = 1 — 1/p. The angle ¢ is
the position angle of the longest axis of the PSF, measured

anticlockwise from the x axis. The second-order moment G,
of g is defined by

G2=J.rzg(rz)dr, N

which is independent of the scale s, the elongation p, and
angle 3. The second-order moment F, of the PSF is

F2=Jﬂf(r) dr = 5*G,. (8)

We assume that the surface brightness of the galaxy is
constant on similar concentric ellipses, and that the x axis
and the y axis are symmetry axes. We write

Hence the ellipticity of the galaxy is equal to e=1— 1/g.
Note that I denotes the intensity of the galaxy at an arbitrary
point, while J denotes the one-dimensional profile of the gal-
axy. In Appendix A we derive the seeing effects on the ob-
served intensity, ellipticity, and position angle to second or-
derin s. For small ellipticities € and & of the galaxy and of the
PSF, respectively, the errors are

AT = (J' + m*J")s*G,, (11)
Ae= (e — b cos 2;0)-'—5;5'2@, (12)
A® = —singeos oL ¢G, (13)
e J'
where
J' =dJ/dm? J"=dJ'/dm>. (14)

Note that the eror in intensity AJ depends only on the second
moment of the PSF F, = 5°G,, and is independent of the
ellipticity and position-angle profiles of the galaxy, while the
errors in ellipticity and position angle do depend on the ellip-
ticities of the galaxy and PSF, and the position-angle differ-
ence between the two, as would be expected. It is important
to note that for small enough s the higher-order moments of
the PSF are not important. These formulas are valid only if
the surface brightness can be expanded into a power series. It
is obvious that they are not correct for blurring effects on an
intensity distribution with a singularity. However, even in
that case they can be used to estimate the errors well outside
the center of the galaxy, where the effects from the singular-
ity can be ignored.

To exemplify the effects of the seeing, we assume that the
intensity profiles near the centers of ellipticals can be ap-
proximated by a profile similar to the Hubble profile,
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b
1+m*/2’

where 7, is the core radius at which the intensity is half the
central value. The derivatives J' and J " are

Iy (T 2, (Y
I = ——0(—), J"=-—°(—) : (16)
"z o ": Jo

The change in surface brightness is

J — 1 2m? J\(J)?
AL~ LA (—) F
Jo ( r r Jo) Jo :

(=S

c

J(m?) (15)

The change in ellipticity and position angle are

J F.
Ae = —2(e — 5cos 2¢) — =2, (18)
( Y e
. 6 JF
A® =sin 2y — = =2, (19)
sin ¢6J0r§

We define the apparent core radius r,,, as the radius at
which the observed surface brightness is half the central val-
ue. Without blurring, this radius is equal to the core radius 7,
of the Hubble profile. We can estimate the measured core

radius 7. ,,,, as a function of F, by evaluation of AJat r =0
and at r = 7, and linearization of J near r = r,. We obtain
7,
L R & . (20)
7, 7

Formulas (17)—(19) are the expressions we want to use to
estimate the errors in our data due to blurring. These formu-
las are valid to second order in s, and for profiles that are
reasonably like the profiles used in Eq. (15).

It turns out that most of our galaxies were unresolved in
the center, and hence the core radii could not be determined.
In the limit of very small core radii, formulas (17)-(19)
reduce to

AJ _F,

A _F 21

T @D

Ae= — (€ — 8 cos 2¢) (2F,/P), (22)

A@=sin2y 2 Ez. (23)
€

It is obvious that the effects on ellipticity and position angle
decrease at larger radii. The change in surface brightness AJ
decreases as 7~ * at large radii, which implies that the change
in magnitude decreases as 2. It is easy to derive from Eq.
(11) that this will be the case for any power law dependence
of Jon r. Thus, the effects are minimal if we are far from the
center; this is quantified below.

This conclusion relies on the convergence of the series in
Eq. (A7) in Appendix A. We expect no problems if the PSF
does not have strong wings that extend to very large radi. If,
for example, the intensities in the PSF and the galaxy drop
off like power laws at large radii, then the results will not
hold if the PSF drops off less steeply than the galaxy intensi-
ty. In this case the contribution from the light of the center of
the galaxy will exceed the local contribution to the measured
intensity. With the PSFs for our data (see Fig. 3 below) and
the galaxy profiles measured here, characterized by the mod-
el (15), this is not a concern, as noted by other authors (e.g.,
Capaccioli and de Vaucouleurs 1983).

547

The implication of these results is that the second-order
moment of the PSF profile is the important parameter for
determining the effect of seeing, and not the FWHM or the
Gaussian o of the PSF. This becomes important when we
want to compare data taken with different telescopes, which
might have different PSFs. Schweizer (1979, 1981) has cal-
culated numerically the seeing effects of various PSFs on the
observed central surface brightness and core radius. He
found that the effects could vary significantly for PSFs with
the same FWHM but different wings. We have scaled
Schweizer’s PSFs and core radii such that the core radius of
the galaxy was kept constant at unity. We have calculated
the second-order moment of his PSFs, and in Fig. 2 we plot
the change in central surface brightness AJ(0)/J(0) as a
function of the second-order moment F,. Note how well the
values lie along a curve. We have also drawn the line predict-
ed by our second-order approximation. It clearly overesti-
mates the effect of seeing when the core radius is small with
respect to the FWHM of PSF, but gives a good approxima-
tion for small seeing effects in the regime where AJ(0)/
J(0)<0.3.

Figure 3 shows the PSFs for the different telescopes from
our data. Note the similarity between the profiles. We as-
sume that the PSFs for our observations can be parametrized
by one single function, and so we can use the FWHM of the
PSF as a scale factor. For our mean PSF the moment F, is
related to the FWHM by

F, =0.85(FWHM)?, (24)

which is a factor of 2.4 larger than what we would have for a
Gaussian PSF. We have checked the analytical results nu-
merically for a few cases, of which we show two in Fig. 4.
Figures 4(a)—4(c) are a simulation of our highest-resolu-
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F1G. 2. Fractional change in central surface brightness AJ(0)/
J(0) as calculated by Schweizer for a King model with concen-
tration index ¢ = 2.25 versus the second-order moment of the
PSF. The PSFs were normalized with respect to the core radius
of the galaxy. The different symbols denote the PSFs with dif-
ferent wings. The triangles, squares, circles, and stars are
Schweizer’s profiles G, GE2, GEI, and GE.5, respectively.
The dashed line is the analytically predicted second-order
change in the central surface brightness.
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Fi1G. 3. PSFs from ESO, CTIO, and KNPO, all scaled to the same
radius r,, at which the intensity is half the central intensity. The rapid
decline in the seeing profile by three orders of magnitude over a factor
of 10 in radius is noteworthy, as is the uniformity of the seeing profiles
from different telescopes and sites.

tion exposure on the flattened elliptical NGC 1700. The un-
convolved surface-brightness distribution has a core radius
of 1" and an ellipticity of 0.3. The PSF is circularly symmet-
ric here with a FWHM of 1.2”. In Figs. 4(d)—4(f) we simu-
late NGC 7145, a very round elliptical. The unconvolved
distribution has a core radius of 1” and an ellipticity of 0.05.
The PSF is elliptical with an ellipticity § = 0.1 and a FWHM
of 1.5". Neither model had any change of position angle with
radius. Note the drop in ellipticity in the center in both gal-
axies, and the dramatic change in the position angle in the
round galaxy. The effects of the seeing extend to large radii,
~5-10 FWHM. One clearly needs to exercise care in inter-
preting structural changes near the centers of galaxies. We
also show the analytical results from our second-order anal-
ysis, Egs. (17)-(19). Clearly, they inadequately describe
the effects near the center, since the core radius is significant-
ly smaller than the seeing FWHM, but are quite adequate for
establishing the point at which the data become reliable at
thelevel of 10% or + afew degrees in position angle. These
analytical approximations should not be used for correction
of large seeing effects in the data, as noted above. Numerical
techniques, or a more complete analytical analysis, are need-
ed.

IV. RESULTS
a) Final Preparation of the Data

We have calculated the radii at which the seeing changes
the surface brightness by 0.05 mag, the ellipticity by 0.02,
and the position angle by 5°. For very round galaxies, i.e., for
those with (€)<0.08, we chose an ellipticity cutoff of 0.01.
For the PSF we used a lower limit for the ellipticity § equal to
0.1. It proved difficult to measure § from the generally low
S/N stellar objects in the galaxy frames, and so we assumed
that 6 = 0.1 would be a reasonable lower limit. We did not
rely on the position angles measured for the PSF, but used a
value of the angle ¥ of 45° for the estimate of the effects on
position angle [Eq. (23)], and simply used max(e¢,8) in-
stead of (€ — 6 cos 2¢) for the estimate of the seeing on ellip-

J
4E (b) % (€)3 06
’3; \/—‘ 04
€ 2 z—/’/ kL =N
1 :g_ - ! —: .02
0 F—t—++t+rt =
5 (c) —
® of E
- — -40
-5 — s E
g | |||||||| * [T Tl ‘_60
1 2 5 10 1 2 5 10
r () r ()

FI1G. 4. PSF effects on the intensity, ellipticity, and position angle of a
flat galaxy (a—c) and a round galaxy (d—f) that are similar to galaxies in
our sample. The dotted line shows the original intensity, ellipticity, or
position angle, the full line shows the numerical convolution of the see-
ing profile, and the dashed lines are the predicted values from Egs.
(17)-(19). The PSF was assumed to be Gaussian for ease of calcula-
tion, with a second moment equal to the second moment of the PSF of
the observation. The values of the position angle and ellipticity are typi-
cal of NGC 1700 (a—) and NGC 7145 (d-f). The PSF was circular for
(a—c), and elliptical for (d—f), with an ellipticity § = 0.1. For (a~c) the
Gaussian PSF had a FWHM of 1.9”, and had the same second-order
moment as the seeing PSF of the R exposure of NGC 1700 with a
FWHM of 1.2”. The profiles in (d—f) were calculated with a Gaussian
PSF with a FWHM of 2.3". This PSF had the same second-order mo-
ment as the PSF of the R exposure of NGC 7145, which had a FWHM of
1.5". The vertical arrows show the FWHM of the PSF of the observa-
tion.

ticity [Eq. (22)]. The inner cutoff radii calculated with
these criteria are listed in Table III in columns 8-10. The
data were K corrected, and corrected for galactic absorption
using the relations from Davis et al. (1985):

4 = {0 |b|>50°
* 7 lo.1[1/sin(b) — 1] |b] <50°’

U= —4z—1.564,,

8B= —5z—1.334,,

SR= —2z—-0.744,, (25)
where b is the galactic latitude and z is the redshift v/c. The
corrections for each galaxy are listed in Table V. In Figs.
9(a)-9(q) the resulting profiles are drawn, and the data are
listed in Table IX in Appendix B, along with notes on the

individual galaxies. While the full surface-brightness profile
has been plotted, the ellipticity and position-angle profiles
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TABLE V. Average colors and gradients.

Galaxy U B R <B-R> <U-R> S@=R  AL=R)
@) @ O ¢ ®) (6) U] (8)

NGC636  -0.025 -0.081 -0.006 1764000 223000 -008%003 -025 007
NGC 1199 -0.031 -0.039 -0.008 1.89 + 0.00 — -0.11 £ 0.05 —

NGC 1379 -0.019 -0.024 -0.005 169 £ 0.04 209+0.12 -0.06+0.08 -0.12+0.24
NGC 1395 -0.021 -0.026 -0.005 1.86 £ 0.01 239+0.02 -0.06+0.02 -0.28 % 0.08
NGC 1399 -0.019 -0.024 -0.005 1.85+0.01 240+0.10 -0.06+0.02 -0.14+0.21
NGC 1404 -0.019 -0.024 -0.005 1.82+000 2394001 -0.12+0.02 -0.19+0.05
NGC 1407 -0.021 -0.026 -0.005 1934003 257012 000004 -0.1020.18
NGC 1439 -0.021 -0.026 -0.005 1724003 207010 -0.08 007 -0.43 040
NGC1540 -0.084 -0078 -0.036 1722001 211004 -0.07+002 -02720.16
NGC1700 -0.231 -0218 -0097 1742000 225002 -0.07 4002 -032%008
NGC 2986 -0.257 -0.230 -0.115 1.79 £ 0.02 230+ 0.05 -0.04 +£0.05 -0.19+ 0.12
NGC7144 0025 -0031 -0006 1722001 217006 -0.01+009 -03320.15
NGC 7145 -0.025 -0.031 -0.006 1664002 1914008 -0.134006 -0.44 4021
IC1450  -0.022 0027 -0.005 178+£002  —  -0.134004  —

NGC 7507 -0.021 -0.026 -0.005 188 +£0.01 241+0.04 -009+0.04 -0.13x+0.17
NGC 7619 -0.101 -0.104 -0.037 1.87 £ 0.15 — 0.03 + 0.71 —

NGC 7626 -0.101 -0.104 -0.037 185+ 0.02 2444008 -0.11+0.10 -0.09+0.49
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Notes: Columns (2), (3), (4) give the combination of the K correction and correction for galactic
absorption for each band. Columns (5) and (6) give the average B — R and U — R color at r./2
from the r. values in Table I. Columns (7) and (8) give the logarithmic color gradients. The colors
and the gradients are determined from a fit to the data in the radial interval of 5" to 30”. The
errors for the gradients incorporate possible systematic effects due to uncertainties in the background

determination.

have been cut off in the centers at the radii tabulated in Table
I11. The uncertainty due to the background is represented by
the error bars at the outer ends of the surface-brightness
profiles. The color gradients are cut off at a radius of 50",
which was the inner radius of the interval that we used for
the background fitting. For each band, the radius at which
the seeing effects were 0.05 mag was calculated. The cutoff
radius for the color profile was the larger of the two cutoff
radii for each of the bands involved. The errors in the color
profiles incorporate errors due to noise as well as the system-
atic errors due to background subtraction, with the latter
being dominant at large radii. The error in the color from
uncertainty in the background was taken to be half of the
square root of the sum of the squared error estimates of the
separate profiles. This correction by a factor of § was based
on the results of the internal comparison of the color profiles,
which suggested that the errors in the background determin-
ation were in the same sense for all bandpasses, and therefore
partly cancelled in the color profile. We note that for the
great majority of galaxies, the color profiles are very regular,
and do not show any strong changes in slope as expected for
gradients that result from large errors in the background
level. This confirms that the systematic uncertainty due to
the background determination is of comparable sense in
both bandpasses used to derive the color profile. The plotted
errors may still be too large. However, it is very difficult to

establish the magnitude of this overestimation, and thus the
confidence level for the observed gradients. An external
comparison (below) with the work of others gives us some
added confidence that our gradients are of the right sense
and magnitude.

b) Average Values

We have determined the global properties of the surface
brightness and structural profiles and their mean values, and
listed them in Tables V, VI, and VII. In Table V we give
mean color at 7./2, and the logarithmic color gradients
(AC/Alog r). The mean and the gradient were determined
from fitting a line to the colors as a function of log r over the
interval of 5”-30". The mean ellipticity and position angle at
r./2 were derived from the data in the interval of 10”—40",
and tabulated in Table VI, as were their logarithmic gradi-
ents Ae/A log and A®/A log r over the same radius range.
These radial intervals were chosen because of the influence
of systematic effects and noise both at small radii ( <5”) and
large radii (>50") on the observed profiles, and are not
related to any scale length of the galaxy. We first determined
the B and R ellipticities separately, but found no significant
difference for these galaxies. The R data values are tabulated
in Table VI. In Table VII(a) we present mean high-order
(3¢ and 4¢) deviations from ellipses. We have median fil-
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TABLE VI. Average ellipticity, position angle, and their gradients.

Galaxy <e> <0> Ae/Alogr AB/A logr
(1) (2) (3 4) 5

NGC 636 0144+ 001 692410 0.064+0.02 -526+ 2.7
NGC1199 025+0.00 506 +02 -0.11%+0.01 46+ 1.0
NGC 1379  0.03 + 0.00 68+15 0.00+0.00 208+ 8.8
NGC 1395 0.18+0.00 948+0.1 0.08 +0.01 1344+ 08
NGC1399 0.11+000 -706+02 -0.05+0.00 -102% 1.2
NGC 1404 0.13+0.00 -193+0.2 -0.03+0.01 131+ 0.7
NGC 1407 0.05+ 000 552 +05 -0.01 £ 0.00 37+ 16
NGC 1439 0.09+ 000 338+04 0.02£0.01 3.7+ 22
NGC 1549 0.13+0.00 -559+03 -0.01+001 538+ 1.8
NGC 1700 0.25+ 000 882+06 0.07+£0.01 314+ 12
NGC 2986 0.14+0.00 34.1+0.1 0.00 £ 0.01 7.1+ 0.7
NGC 7144 003+£0.00 196407 0.01+0.00 -53.6% 4.0
NGC 7145 0.05+0.00 -51.9+22 -0.04+002 783+ 134
IC 1459 0.26 + 000 38.1+01 0.00+001 133+ 04
NGC 7507 0.04 £ 0.00 -818+1.0 0.01 +0.01 26+ 5.0
NGC 7619 024+ 0.00 352403 -0.15+0.01 30+ 15
NGC 7626 0.13+0.00 123+03 0.13 +£0.00 43+ 1.6

550

Notes: Columns (2) and (3) give the mean ellipticity and position angle at r./2
determined from the R-band data in the interval of 10" to 40”. Columns (4) and
(5) give the logarithmic gradients. The errors are the formal errors from the fit.
Systematic errors will generally be larger than the formal errors for the mean ellipticity

and position angle.

tered the profiles of the residual cos(n¢) and sin(n¢) terms
with a five-point running filter, and determined the ampli-
tudes and phases (see subsec. d). The maxima and radii of
the maxima are listed in Table VIII(b) for the 3¢ and 4¢
amplitudes.

¢) Literature Comparisons

The data are compared to similar CCD data available in
the literature, from Kent (1984), Lauer (1985a), Djor-
govski (1985), Jedrzejewski (1987), Capaccioli et al.
(1988), and Peletier et al. (1989). Our surface-brightness
profiles were differenced point by point, interpolating as nec-
essary, with those of the other authors and plotted as
(us — others) as a function of radius in Fig. 5. The differ-
ences are tabulated in Table VIII. The logarithmic gradient
(e.g., AR /A log r for the R band) and the rms deviation of
the difference profile was derived by fitting over the radius
range 5"-30". We ignored deviations in the zero points, be-
cause they were mainly due to differences in the R band
photometric system used by the different authors. The agree-
ment for the ellipticity and position-angle profiles is good.
We obtain an rms mean ellipticity difference of 0.02 and an
rms mean position-angle difference of 2° with all the above
authors over the radius range 10”"-40", where seeing effects
do not play a role.

The surface-brightness-profile differences are larger than
one might initially expect. The observations by Lauer and
Djorgovski had an even smaller field of view than most of
our data. The resulting background uncertainty is probably

the reason for the differences seen in Table VIII. Djorgovski
included these uncertainties in his listed errors, and we note
that his errors are realistic in most cases. We find a mean
absolute difference in the radial gradient of 0.09 mag per
decade in radius for Djorgovski and 0.14 for Lauer. The
agreement with Jedrzejewski and Peletier et al. is better. The
Bband data from Jedrzejewski compare very well with ours,
but the R band data give a residual gradient for two of the
three galaxies in common, an effect that was also noted by
Peletier ez al. for the ellipticals common to both authors. For
the three galaxies in common in Table VIII, Jedrzejewski’s
B — R gradient differs by 0.07, in the sense that our gradient
is steeper. The rms gradient of the difference profile with
Peletier et al. is only 0.04 mag per decade, within the range
expected from our background uncertainty. However, we
only have two galaxies and three useful profiles in common
(our NGC 7619 B frame suffered from an extremely bright
sky and is thus very uncertain). The current surface-bright-
ness profiles agree at the level of =0.1 mag per decade, with
the newest and larger field data agreeing to probably a factor
of 2 better at ~0.05 mag per decade in radius. Since most of
this difference can probably be attributed to uncertainty in
estimating the background, we expect that future data will
show better agreement as larger CCDs are implemented.
Taken at face value, these results and the error estimates
noted above would lead one to be concerned about the B — R
color gradients which show, in the mean for our sample,
gradients of the order of 0.1 mag per decade. However, as we
also noted above, we expect that some of the systematic er-
rors in estimating the background are common to both col-
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TABLE VII(a). Average residuals.

Galaxy (C3) (S3) (Ci) (Sa) (Cs) (Ss) (Ca) (Sa)
10" < r < 40" 0.7r < r < 1.3r,

1) @ G @ 6 ©® M ©

NGC 636 -01 01 04 05 -01 03 07 06
NGC 1199 -03 0.0 -07 0.2 -04 00 -01 03
NGC1379 0.0 0.0 01 -0.1 01 01 01 -01
NGC139%5 00 -0.1 -01 -0.5 01 -03 -0.7 -0.6
NGC 1399 -01 -01 0.0 -0.1 00 00 03 00
NGC1404 00 00 01 -0.2 00 00 -02 -0.2
NGC 1407 00 0.0 -02 0.1 00 -02 00 04
NGC1439 00 -01 -01 -0.2 02 -02 -01 -0.2
NGC15499 01 -01 -03 0.2 01 -03 04 13
NGC1700 01 -02 09 05 00 -01 11 03

NGC298 01 -01 -02 -0.1 0.1 -06 -04 0.0
NGC 7144 0.0 -01 00 -01 01 01 00 0.0
NGC7145 00 00 0.0 -0.1 00 00 -03 -01
IC 1459 01 01 01 00 03 02 -02 05
NGC 7507 0.0 01 01 -01 00 01 01 -01

NGC7619 -0.2 -03 01 00 -05 -04 02 -01
NGC 7626 -0.2 -03 -01 0.7 -06 -09 02 09

Notes: The amplitude of the residuals are given x100 (i.e., as percent-
ages). The peak C4 in NGC 1700 is 0.05 (5%).

TABLE VII(b). Maximum residual amplitudes.

Galaxy r A3 93 r A4 94 r A3 63 r A4 94
Maximum Second Maximum
(1) 2 G @6 6 (M (@’ (9 (1) 11) (12) 13)
NGC 636 41 08 82 37 10 26 —_—_-  —- - = =
NGC 1199 19 06 62 13 1.2 43 60 1.1 75 60 21 84

NGC 1379 45 03 11 26 03 77 - - = = = -
NGC 1395 66 04 103 66 14 48 - - - - —
NGC 1399 23 02 80 28 03 86 - - = = - -
NGC 1404 45 01 67 8 06 6 - - = = = =
NGC 1407 80 06 78 37 06 23 - - = = = -
NGC 1439 26 04 24 21 05 58 - - = = = -
NGC 1549 28 0.5 106 45 15 18 - - = = = —
NGC 1700 21 04 103 8 14 88 55 1.7 63 55 34 35
NGC 2986 34 05 98 34 05 45 - - = = - —
NGC 7144 26 03 112 23 03 84 - - - = - =

NGC 7145 7 04 49 23 04 64 - - = = = —
IC 1459 3 02 8 3 06 8 45 0.5 9 41 07 29
NGC 7507 17 04 17 21 03 41 e

NGC 7619 41 09 66 55 0.8 74 - - - = - —
NGC 7626 31 1.2 77 31 11 23 _ - = = = -

Notes: The amplitudes are given x100 (i.e., as percentages). The maximum amplitudes
were determined from the median-filtered profiles of the high-order residuals. For 3
galaxies, two distinct maxima are listed. The phases are taken with respect to the major
axis. The peak value of A4 for the structure in NGC 1700 at r = 55" is 0.05 (5%).
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TABLE VIII. Comparison with literature.

553

Galaxy Djor. Lauer Kent Capa. Jedrzejewski Peletier
AR AR AR AB AB AR AB AR
Alog ogr Alogr Alogr Alogr Alogr Alogr Alog r
(1) (2) (3) 4) (5) (6) (7 (8) 9)
NGC 636 -6+7 154 4
NGC 1199 -13 +22 32+ 2 16 +£ 3
NGC 1395 -5+ 4 5+ 3 3+2
NGC 1407 3+3 14+ 3
NGC 1439 3+ 8 7+ 5 -10 + 6
NGC 1549 5+ 2 1+ 3
NGC 1700 9+ 8 8+ 3 8 +2
NGC 2986 -17 + 4
NGC 7144 94+ 4 124 5
NGC 7145 -1+ 5 124+ 6
NGC7619 -13+7 12+ 3 7+ 3 5+ 3
NGC 7626 16+ 6 12+ 6 -1+ 4 44+ 6
(-4@) 1.4 4.6 2.1 1 1.6 1.6 9
(o) 8 4 5 3 4 5 4
Median A -5 14 5 -1 12 -1
(A) -6 15 10 4 1 8 -1

Notes: Column (2) to (9) give the mean logarithmic gradients of the point-to-point differences (A (magy, -
magother)/ A log r ) multiplied by 100. Our data is compared with the data of Djorgovski (1985) [column
(2)), Lauer (1985a) [column (3)], Kent (1984) [column (4)], Capaccioli et al. (1988) [column (5)], Jedrzejewski
(1987) [column (6) and (7)] , and Peletier et al. (1989) [column (8) and (9)]. The errors reflect the uncertainty
of our background determination and that of the literature, if provided. At the bottom, we give the mean
ratio of the absolute difference gradient divided by the expected error, the mean expected error, the median

difference gradient, and the mean difference gradient.

ors, and so the B — R gradients may be more reliable than
the errors would suggest. It is interesting to note that other
authors (see, e.g., Boroson et al. 1983, 1987; Davis et al.
1985; Peletier et al. 1989) find B — R color gradients that
are similar in sense and magnitude in the mean, even though
they too have expressed concern about the effect of the un-
certain background subtraction. Independent confirmation
of these color gradients comes from Frogel ez al. (1978) and
Sandage and Visvanathan (1978). The latter authors found
an average gradient A(U — R)/A log r = — 0.24. The con-
sistency of these results leads us to believe that the mean
U — R color gradient of — 0.23 mag per decade is real, and
that the B — R gradient of — 0.07 mag per decade is likely to
be correct.

d) High-Order Residuals

It is interesting to note that many of the galaxies studied
show residual harmonics sin(ng) or cos(ng), where
n = 3,4, with an amplitude larger than 0.5% at some radius.
The only galaxies without any significant residuals through-
out the observed radial range are NGC 1379 and NGC 7144,
both very round galaxies. It is not clear whether the residuals
inNGC 7507 and NGC 7145 (below 0.4% ) are real. Jedrze-
jewski (1987) and Peletier ef al. (1989) determined residu-

als for a large sample of galaxies. The comparison of our
residuals with theirs for the galaxies in common showed
good agreement; the differences are mostly within the errors
for the residual terms, i.e., typically 0.2% to 0.3%. Small
systematic differences sometimes occur on a similar level.
Bender, Ddébereiner, and Mollenhof (1988) give the
cos(3¢) and cos(4¢) terms of five galaxies, which are also
consistent with ours. This confirms the reality of these struc-
tures and shows that they are not due to detector or calibra-
tion problems.

The standard interpretation of the residual cos(4¢) terms
is that they indicate the presence of a weak disk (e.g., Lauer
1985b; Jedrzejewski 1987; Bender and Mollenhof 1987)
when positive, and indicate boxiness caused possibly by an
overpopulation of particular tube orbits around the rotation
axis (e.g., Binney and Petrou 1985). The correlations be-
tween rotational velocity and cos(4¢) terms found by Carter
(1987) and Bender (1988) lend support to such an interpre-
tation. However, we wish to emphasize that the signs of the
cos(4¢) and sin(4¢) terms are determined by the phase of
the fourth-order residual with respect to the apparent long
axis. Projection effects will cause position-angle differences
between the projected disk and the main body of a triaxial
galaxy (e.g., de Zeeuw and Franx 1989), thereby producing
a phase shift of the residual harmonical terms. If such projec-
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tion effects are important, then we expect to see significant
sin(4¢) terms. It is remarkable that no authors except Pele-
tier et al. have presented the sin (n¢) terms; for some galaxies
they are similar to or stronger than the cos(n¢) terms.

In total, six galaxies have significant sin(4¢) terms. We
have plotted the residual terms of NGC 636, NGC 1199,
NGC 1395, NGC 1549, and NGC 1700 in various represen-
tations in Figs. 6 and 7. In Fig. 6, the residuals are expressed
in cos(n¢) and sin(ng), where ¢ is taken with respect to the
north instead of the major axis of the galaxy. In Fig. 7, we
plot the amplitudes of the residual terms A, and 4, defined
by

4,=C, +5;, (26)
and their phases ®; and ®,, which are given by
sin(n®,) =S,/4,, cos(n®,)=C,/4,, 27)

where C, and S, are the residual cos(n¢) and sin(ng)
terms. In Fig. 7 we have drawn the phases ©,, with respect to
the major axis and with respect to the north. We see that for
NGC 636, NGC 1395, and NGC 1549 the phase changes of
the residual fourth-order terms disappear when the phase is
plotted with respect to the north instead of the major axis.
The galaxy NGC 1549 is one of the most “extreme” in its
fourth-order residuals. At small radii, the cos(4¢) terms are
negative, with a minimum of about — 0.5%, they change
sign at a radius of 30", and have an amplitude of about
+ 1% at larger radii. The sin(4¢) terms increase slowly
with radius. This galaxy shows a large position-angle twist;
the phase changes between the sin(4¢) and cos(4¢) terms
could be at least partly related to this shift. This can clearly
be seen in Figs. 6 and 7, where the phases of the cos(4¢) and
sin(4¢) terms are very stable when plotted with respect to a
fixed position angle (north). We may therefore interpret
these residuals as the result of a superposition of two compo-
nents, of which the brighter one has a constant position an-
gle. This example shows that the interpretation of the signs
of the residuals is not straightforward, in general, and espe-
cially in the case of a galaxy with a large position-angle twist.
NGC 1700 has the largest residuals in this sample. In the
center, we see small positive cos(4¢) residuals. At 50", the
position angle starts to change, and the fourth-order har-
monical residuals start to rise as well, reaching a maximum
of 5% at 70”. A contour plot (Fig. 8) reveals that the con-
tours are square at this radius. This feature is actually visible
on the Palomar Sky Survey. It is surprising to see that again
the phases of the cos(4¢) and sin(4¢) terms are almost con-
stant when plotted relative to the north, instead of to the
major axis. This behavior can be modeled by the superposi-
tion of a galaxy with constant position angle at 90° and a
ring- or disk-like component at an angle of 40° from the ma-
jor axis of the galaxy. We fixed the position angle of the
galaxy at 90°, and ran the profile-fitting program again. The
residuals of the fit showed the second component clearly. We
determined its surface brightness by averaging the residual
intensities at a radius of 70”. We found colors
(B—R)yipg = 1454005  (U—R)y, =1.82402,
which were similar to the colors of the main galaxy,
(B—R)g = 1.6 and (U—R),, = 1.8 at 50”. This sug-
gests that the stellar populations are comparable. Whether
the ringlike component is a relic of galaxy formation or the
result of a subsequent interaction is unclear.
We would inject an element of caution here by noting that
no models of triaxial galaxies have been published yet in
which the effects of large apparent position-angle twists on
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the isophotal shapes are evaluated. Hence we cannot exclude
the possibility that the effects described above may be partly
due to the position-angle twist. The above example does
show, however, that we have to be careful when interpreting
the fourth-order residuals. A superposition of a disk or a ring
on an elliptical galaxy can give either positive or negative
cos(4¢) and/or sin(4¢) terms, depending on the apparent
orientation of the disk with respect to the apparent major
axis of the galaxy. If galaxies are triaxial, then the subcom-
ponent can appear to be misaligned merely by projection
effects (see, e.g., de Zeeuw and Franx 1989). Hence, a super-
position of a disk can produce boxlike distortions.

We note that seven galaxies of our sample of 17 galaxies
show residual third-order harmonical terms on the order of
0.5% or higher. The galaxies discussed below with known
dust absorption belong to these seven. The deviations from
ellipses occur generally at radii larger than 30”. These are
possible due to dust, but may also reflect real distortions in
the galaxies.

e) Dust Absorption

It is established that a considerable fraction (20%—40%)
of ellipticals show signs of dust absorption (e.g., Ebneter and
Balick 1985; Lauer 1985b; Sadler and Gerhard 1985; Sparks
et al. 1985; Ebneter, Djorgovski, and Davis 1988). A large
fraction of the galaxies of our sample has been searched for
dust absorption by these authors. The galaxy NGC 1199 has
a well-known dust lane near the center. It is clearly visible in
an image that is the difference of the original data frame and
one generated using the parameters from the ellipse fitting.
The dust absorption causes the negative cos(4¢) residuals at
radii smaller than 30" (another example where the interpre-
tation of these terms is not “standard”). At larger radii, the
cos(4¢) terms are positive, possibly indicating the presence
of a weak disk. At large radii, the third-order terms may be
significant, but this is not certain because of the low surface
brightness of the galaxy. The galaxy IC 1459 has a slightly
asymmetric color image. This was found previously by
Sparks et al. (1985). In the case of NGC 7507, we found a
shift in the center of the ellipses which was different in B and
R. This subtle effect shows up in the color image after heavy
smoothing, and it is probably real because Sparks et al.
(1985) find the same asymmetry in their color map of the
galaxy. None of the other galaxies in our sample showed
similar evidence of dust absorption.

V. DISCUSSION

The quality of two-dimensional surface photometry from
CCD data generally appears to be high, with the major re-
maining problem being uncertainty in the background
(“sky”) level on these small-format devices. While this
makes it difficult to determine color gradients with a high
level of confidence, particularly in B — R, other structural
characteristics appear to be well determined—with one
further caveat concerning the seeing. The sensitivity of the
ellipticity and position-angle profiles to the seeing, even at
radii much larger than the FWHM of the seeing PSF, was a
striking result of an analytical derivation of the effects of
seeing. The ellipticity decreases by 10% even at radii of five
times the FWHM of the seeing PSF. Furthermore, for very
round galaxies the position angles in the inner regions will be
seriously perturbed by even quite small noncircularities in
the seeing PSF. For example, an elliptical with an ellipticity
of 0.05 developed 5° of position-angle change at 5 times the
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FIG. 6. High-order residuals (cos and sin 3¢ and 4¢) for NGC 636, NGC 1199, NGC 1395, NGC
1549, and NGC 1700, plotted with respect to a fixed position angle (north), instead of the major
axis of the galaxy. Compare these with the residuals in Fig. 9, which are given with respect to the
major-axis position angle.
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FIG. 6. (continued)

FWHM of the seeing (= 120 of the seeing). These results
indicate that caution is required in interpreting the ellipticity
and position-angle profiles, as well as the surface-brightness
profiles in the inner 10”"-15" of galaxies. The concern about
the seeing notwithstanding, it is striking how accurately and
reproducibly we can now determine position angles and el-
lipticities for even very round galaxies—in fact, for galaxies
with ellipticities as small as 0.03.

The structural profiles and the high-order residuals de-
scribed by the cos and sin 3—4¢ harmonics show consider-
able detail, which reproduces well in all colors and compares
well with the data in the literature. In particular, some galax-
ies show large position-angle twists, which are naturally ex-
plained by changes in the axial ratios of triaxial galaxies. In
general, triaxial galaxies with changing axial ratios will show
twists in projection, but Franx (1988) has shown that there
exists a large class of triaxial models that have changing axial
ratios but show no twist when projected. These nontwisting

models do have changing ellipticities in projection, as is com-
monly seen amongst ellipticals. Axisymmetric models are a
small subset of this class. Thus, as has been noted before,
conclusions regarding the intrinsic shape based only on the
projected shape are fraught with uncertainty. In particular,
on the basis of this material alone we cannot conclude that
the nontwisting galaxies are oblate, even if the fraction of
nontwisting ellipticals appears to be high.

The power of the high-order harmonical terms, notably
the cos(4¢) and the sin(4¢) terms, to indicate the presence
of weak disk- or ring-like structures was exemplified by the
detection of a skew ringlike structure in NGC 1700. In gen-
eral, such weak disk- or ring-like structures will result in
measurable fourth-order terms, whose phase will depend on
the angle between the disk or ring and the main body of the
galaxy. Thus, negative cos(4¢) terms could indicate a skew
ring or disk, and not only the usually assumed “boxiness.”
Careful inspection of the residuals and especially the posi-
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FIG. 7. Amplitudes and phases of the high-order residual terms (3¢ and 4¢) for NGC 636, NGC 1199, NGC
1395, NGC 1549, and NGC 1700. The phases labeled NORTH are plotted with respect to a fixed position angle
(north), while the phases labeled MAJOR are plotted with respect to the major axis of the galaxy. The constant
phase of some features is striking, when compared to the large changes in major-axis position angle.
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F1G. 7. (continued)

tion-angle profile might allow one to distinguish the pres-
ence of a ring/disk or the more symmetrical boxiness. Re-
siduals beyond fourth order could be useful here as well,
given adequate S/N. In this latter case of boxiness, it has
been suggested that the negative cos(4¢) terms are due to a
relatively high population of thin tube orbits or boxes in gal-
axies, caused possibly by mergers or acquisitions of low-lu-
minosity galaxies (see, e.g., Binney and Petrou 1985; Whit-
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F1G. 8. Contours of constant B surface brightness of NGC 1700. The

contours are drawn at intervals of 0.5 mag. The outermost contour corre-
sponds to a surface brightness of 25 mag arcsec 2. The amplitude of the

distortion at 50”"-70" is apparent.

more and Bell 1988; Statler 1988). It is not clear whether the
low-level harmonical terms (<0.5% ) that we find for many
galaxies have any special meaning. They may be related to
the subcomponents that are apparent in the kinematics of
some ellipticals (e.g., IC 1459—Franx and Illingworth
1988).

Color gradients appear to be almost universal in our sam-
ple, with a mean U — R gradient of — 0.23 mag per decade
in radius, and a mean B — R gradient of — 0.07. Some un-
certainty still exists because of the uncertainty in the back-
ground subtraction. In only one galaxy do we find a very
clear signature of absorption by dust, NGC 1199, while for
two other galaxies (IC 1459, NGC 7507) we find a slightly
asymmetric color image. However, the high detection rate of
100 um emission from ellipticals with JRAS data (Juraetal.
1987) suggests that a sizeable fraction may have dust that is
not found in the surface photometry. On the basis of this
photometric data alone, we cannot exclude the possibility
that the color gradients could in part be caused by dust ab-
sorption; one would require that the dust column density
decrease slowly with radius. Such a nearly uniform distribu-
tion of dust across the galaxy would be highly unlikely.
Hence the color gradients are thought to be produced by
metallicity and/or age gradients within the galaxy. It is well
known that the strengths of metal absorption lines in ellipti-
cals show radial gradients (Faber 1977; Gorgas and Efstath-
iou 1987; Davies and Sadler 1987), with the stronger metal
absorption lines being found in the centers. It is likely that
such gradients reflect metallicity and/or metallicity-driven
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population changes. With the color-metallicity relation
from Arimoto and Yoshii (1987), we derive a mean metalli-
city gradient from our mean U — R gradient of A log Z/
Alogr= —0.28.The change in metallicity is about a factor
of 2 per decade in radius, in the sense that the outer parts
have a lower metallicity. For a more extensive discussion of
the interpretation of these color gradients, we refer to a
forthcoming paper (Franx and Illingworth 1989).
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servatory and, particularly, the Space Telescope Science In-
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APPENDIX A: SECOND-ORDER EXPANSION OF SEEING
EFFECTS

The effects of the seeing on the observed profiles of intensi-
ty, ellipticity, and position angle are derived for the case of a
noncircularly symmetric PSF. It is assumed that the seeing
effects are small. The seeing function for PSF is of the form
[see also Eq. (5)]

2 ’
fxp) = Tg(f—ﬁ’i&i), (A1)

5
with p>1 and

(;) - ( —C(;slf ¥ 22 ﬁ)(;) ' (A2)

The parameter p is the elongation of the PSF, and is related
to the ellipticity & of the PSF by § = 1 — 1/p. The angle ¢ is
the position angle of the longest axis of the PSF, measured
anticlockwise from the x axis. The moments of the seeing
function F;; are defined by

Fuzj f XY (x,) dx dy. (A3)

We require that f be normalized, hence F,,, = 1. In the fol-
lowing, we also require that F,; = F,, =0, which can be
achieved by a shift of the function with respect to the origin.
The moments F;; are related to the moments G;; of g by

F,;=5%G,,. (A4)
Now assume that the surface brightness / of the galaxy

around an arbitrary point (x,,),) can be expanded as a pow-
er series in Ox, 8y, with 6x = x — x4, 6y =y — y,,

I= z 2 I,,6x'6y. (AS)
i=0j=
By taking the ith derivative with respect to 6x and the jth
derivative with respect to 8y, we derive for the terms 7;;
1 9% 9/

ij S ( X,y )

T il ox' gy X=X Y=o
After convolution with a PSF f (x,y), the observed surface
brightness I’ (x,p,) is

(A6)

560
1" (x0,)0)
= [ 1%~ w7 0 dx
= f f 3 i — D)LY (xy) dx dy
= i i (= D'™LF,. (A7)

Thus the observed surface brightness 7’ can be expressed as

= i i I;Gys (= 1)
=050
=1Ioo + (LoGoo +1,,Gy, + 1,6, )8 + O(5).

(A8)

The error in the observed surface brightness AI=1" — I'isto
second order in s

Al = (1,,G,o + 1., G,y +1,,G,, )5 (A9)

Hence, to second order the error A/ depends only on the
second-order moment of the PSF. We proceed to derive the
effect of the error A on the intensity, ellipticity, and position
angle measured by the ellipse-fitting program.

The moments F;; of the PSF can be calculated as a func-
tion of the elongation p and angle ¥ of the PSF by evaluation
of

Fo= " | wremaxay
“ - 1 ’ s i
=f f — (x' cos ¢ — ' sin ¢)
— oo — o0 s
X (x' sin ¢ + y' cos ¢)’g( + 124 )dx’ dy'. (A10)
Ly

We obtain for the second-order moments

1.2
F, = %(p cos? ¢ + sm_gb)ssz,
P

Fys _i<psm P ¢) G, (All)
2 P
1. 1\,
F,, =—sinycosf{p — —|s°G,,
2 p
where
G,= f rg(r) dr, (A12)

which is independent of the elongation p and angle 3. The
second-order moment F, of the PSF is defined to be

FzzszGZ:fﬂF(r)dr. (A13)
We assume that the surface brightness of the galaxy is con-

stant on similar concentric ellipses, and that the x axis and
the y axis are symmetry axes. We write

I(x,y) =J(m?), (A14)
with
2 x’ 2
m =?+qy- (A15)

Hence the ellipticity of the galaxy is equal toe=1— 1/g.
Note that I denotes the intensity of the galaxy at an arbitrary
point, while J denotes the one-dimensional profile of the gal-
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axy. The second-order expansion coefficients at an arbitrary
point are now

1 92 (x2 2x%
Lo=——J—+ ) —J' +__J”
20 =500 qy p e

q
I,,:ig—J( +qy) 4xyJ ", (A16)
Ox dy \gq
1 92

2
] =___J(X_+ 2)= JI+222JII’
02 =7 EX: 7 qy q y'q
whereJ ' and J ” are the first and second derivatives of J(m?)
with respect to m> The change in surface brightness AT is

now for small s
2
Al = l[_l__(p cos® ¥ + sin 1/;)
2lq )4
2
+ q(p sin’ ¢ + ioE—!é'-)]J 's’G,
o=
p

+ 2xy sin ¢ cos 1//([) — —1—>
p

2
+ q2y2(p sin® o + —"M)]J "$G, (A17)
p
The change in measured surface brightness, ellipticity, and
position angle can be derived from the harmonical terms of
ATalongtheellipse I = constant. Alongtheellipse,J andJ ”
are constant, which simplifies the calculations considerably.
The changes in ellipticity A€ and in position angle AO are
related to the harmonical terms by (e.g., Jedrzejewski 1987)

—2C,(1 —¢)
2miJ’
28,(1 —¢€)

T omi [(1—e)2—1] "

where the factors C, and S, are the amplitudes of the

cos(2¢) and sin(2¢) harmonical terms. The change in mea-

sured surface brightness, ellipticity, and position angle can
be calculated in a straightforward way:

o= Lot 529

Ae = , (A18)

(A19)

+q(psm v+ cos® ¢)J(J’+m2J”)ssz, (A20)
p
in2
Ae‘: __l_[_]_(p cosz¢+illl_¢)

2Llgq P

—q(p sin® ¢ + cos” ¢) —1—£-s262, (A21)
p /g

A® = — sin ¢ cos 1//(—11——1@ S 5°G,. (A22)

(g—V/gq) J’
For small ellipticity € of the galaxy and § of the PSF, the
errors are to first order in €,6

= (J' + mJ")$G,, (A23)

Ae = (€ — 8§ cos 21)) J7'I'_ 5*G,, (A24)

A® = —sin ¢ cos ¢ s %2— 5°G,. (A25)
€
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These formulas are used and discussed in Sec. III.

APPENDIX B: DATA ON INDIVIDUAL GALAXIES

The data are listed in Tables IX(a)-I1X(q). The surface
brightness and ellipticity are given over the full radial range.
The errors for the ellipticity are not given at radii where the
seeing effects are strong. The seeing effects are included in
the errors for every third datum for the surface brightness,
color, surface brightness, ellipticity, and position angle.
Lower limits are given for the errors in surface brightness,
color, ellipticity, position angle, and residual harmonical
terms of 0.01, 0.01, 0.01, 1°, and 0.1%, respectively, when-
ever the estimated errors fall below these values. The system-
atic errors are thought to be of this order or larger.

Figures 9(a)-9(q) give the profiles of R intensity, B — R
and U — R colors, ellipticity, position angle, and cosine and
sine 3¢ and 4¢ terms. The apparent shape profiles for B and
R are plotted, except for NGC 7619, where the B data were
corrupted by a very high sky level. Error bars give the formal
errors from the fit for the apparent-shape profiles. The larger
error bars on every third point reflect the additional uncer-
tainty due to the seeing for the ellipticity, position angle, R
surface brightness, and the colors. The error bars for the
intensity and colors also include the estimated systematic
errors due to possible errors in the background determina-
tion. Comments on the individual galaxies follow:

NGC 636. The position angle changes from 70° to 10°. The
isophotes deviate from ellipses by 1%. Significant third- and
fourth-order residuals were found. The fourth-order struc-
ture has constant phase, even though the major-axis position
angle changes by 60°.

NGC 1199. This galaxy has a dust lane near the center,
found before by Ebneter and Balick (1985) and Ebneter,
Djorgovski, and Davis (1988). The negative cos(4¢) terms
near the center are probably related to this dust lane. The
galaxy has ““disklike” distortions on the order of 2% in the
outer parts. We also measure significant third-order residu-
als on a level of 1% and higher in the outer regions. The
position angle changes less than 10°.

NGC 1379. A very round galaxy (€ <0.05) in Fornax.
The isophotes do not show any significant deviation from
ellipses, which is rare in our sample. The position angle
changes by 20°.

NGC 1395. This galaxy is very regular at radii smaller
than 20", but shows a twist outside that range, and devia-
tions from ellipses on the order of 1% at larger radii. The
fourth-order structure shows little phase shift. Detected by
IRAS at 100 pm.

NGC 1399. The central galaxy in Fornax I. The shape is
very regular, except for an isophote twist starting at 25" and
increasing outwards. This galaxy may continue to twist at
larger radii. Its core is probably resolved. The luminosity
profile is very shallow at large radii (see also Killeen and
Bicknell 1988). We measure very low distortions only at
30", which may be due to a bright star. Detected at 100 zm
and at 5 GHz.

NGC 1404, A fairly regular galaxy, with deviations from
ellipses up to 0.5%, and a position-angle twist of 10°. The
ellipticity differences in B and R near the center are due to
differences in the seeing. Detected by JRAS.

NGC 1407. The largest galaxy in our sample. Note the
small ellipticity (0.05) and the constant position angle. The
isophotes deviate from ellipses on a low level (up to 0.5%).
It is the only galaxy for which we may have found a positive
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FI1G. 9. Profiles of R surface brightness (g ), colors (U — R and B — R), ellipticity (€), position angle (®), and the cos and sin 3¢ and 4¢ residuals
(C;,8;,C,,S,) plotted against radii in arcseconds for our sample galaxies. The error bars for the surface brightness and colors include systematic errors
from the background uncertainty. Every third error bar in the surface brightness, color, ellipticity, and position angle includes the estimated effect of
the PSF. Both the B (O) and the R(A) data are shown for the shape and residual profiles.
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FIG. 9. (continued)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1989AJ.....98..538F&amp;db_key=AST

[T98DAL L 198, [53BF D

574

U-R

B-R

U-R

B-R

FRANX ET AL.: PHOTOMETRY OF ELLIPTICALS

NGC 7144

Mp=-21.10 1"=0.18 kpc

16
18
20
22
24

2.4

LBLBURRLLL NN R R RLLL I L LERERLLLL B B ARLL

1 ||||||_|] 1 ||||uﬂ:
1 10 1001 10 100
r (II) r (u)
NGC 7145
Mp=-20.87 1"=0.18 kpec

16
18
20
22
24

2.4

LI LLL B R AL LLL I

T

10 1001 10

r () r (")

.02
.01

-.01
-.02
.02
.01

-.01
—-.02
.02
.01

-.01
-.02
.02
.01
0
-.01
-.02

.02
.01

-.01
-.02
.02
.01

-.01
-.02
.02
.01

-.01
-.02
.02
.01

-.01
-.02

Cc3

S3

C4

S4

Cc3

S3

C4

S4

FI1G. 9. (continued)

NGC 7507

Mp=—-21.31 1"=0.15 kpc

16

WSLELRALLL B R L I L LA RLILL B RLLLL B

L 11 Illu] IR
1 10 1001 10 100
r (u) r ( u)
NGC 7619
Mp=—-22.22 1"=0.34 kpc
16 T LI Illllll T Irl1lll 7] L IIIIIII T llllllll_
18 |- ]
20 - -qhﬁﬁs - i
22 !'l
24 - :
il ]
24 [ .H
2 ;_' ‘.mlll””” WA _
1.8 I n
3
.2 — “-“IJ - —E‘QM
A=
n
80 i
60
40 Pty ‘%‘ﬁ
0 1 IIIIIuJ Lt n 1 IIlIlL|J 1 Illl
1 10 1001 10 100
r (u) r ( n)

.02
.01

-.01
-.02
.02
.01

-.01
-.02
.02
.01

-.01
-.02
.02
.01

-.01
-.02

.02
.01

-.01
-.02
.02
.01

-.01
-.02
.02
.01
0
-.01
-.02
.02
— .01
0
—.01
-.02

574

c3

S3

C4

S4

c3

S3

C4

S4

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1989AJ.....98..538F&amp;db_key=AST

rT980AT.- - . J98. T538F

575 FRANX ET AL.: PHOTOMETRY OF ELLIPTICALS

NGC 7626
1"=0.34 kpc

LBLBLAELLL BB I

Mp=—22.23

.02

.01

0 c3
-.01
-.02

.02

.01

-.01
-.02
.02
.01

lfllllllll

-.01
-.02
.02

-+ — .01
M 3 0 sS4
— =.01

ol ||||:|_|J:-|Ir ool T —-02
10 1001 10 100

r () r ()

FI1G. 9. (continued)
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B — R gradient, but we note that a constant colorin B — R is
fully consistent with the data. Detected by JRA4S and at radio
wavelengths.

NGC 1439. Normal elliptical from the surface photome-
try. Indication of a disklike distortion in the inner parts.

NGC 1549. Again, a combination of deviations from el-
lipses and a position-angle twist. The deviations were found
before by Jedrzejewski (1987) and are discussed in the text.
Malin and Carter (1983) reported faint shells. Again, the
fourth-order structure has constant phase, while the major-

575

axis position angle changes by nearly 40°. Detected at 100

pum.
NGC 1700. The galaxy with the strongest deviations from

ellipses (5%) at a radius of 70", or 28 kpc. Figure 7 shows
that the contours are nearly square at this radius. This gal-
axy is the most distant in our sample. If it were at a distance
of Fornax or Virgo, the square isophotes would have fallen
off the CCD! The position-angle twist and the high-order
residuals are consistent with a superposition of a galaxy at
constant position angle 90°, and a second ring or disklike
component inclined at 40° with respect to the galaxy.

NGC 2986, Normal elliptical, with significant, but low,
residual harmonical terms, both third and fourth order. De-
tected at radio wavelengths.

NGC 7144. Very round elliptical. The position angle
changes by 30°. Note that the B exposure had a guiding error.
We have included it because we had no other B exposure,
and because it shows the dramatic effects of a noncircular
PSF. The magnitude of the effect was estimated quite well
with our simple formulas for blurring. Marginal detection at
100 pm.

NGC 7145. Very round elliptical with a large position-
angle twist. Malin and Carter (1983) reported shells at large
radii.

IC 1459. Normal elliptical from the surface photometry,
but with a counter-rotating core (e.g., Franx and Illing-
worth 1988). There are some deviations from ellipses at a
low level (<0.005). A slightly asymmetric color image sug-
gests the presence of dust. This galaxy has the highest JRAS
100 pm flux of all, and the highest radio flux.

NGC 7507. Very round elliptical with a twist of 20°. A
slightly asymmetric color image, indicating dust absorption.
Marginal deviations from ellipses.

NGC 7619. Normal elliptical with small distortions
(<1%). The B exposure is of poor quality because of an
extremely bright sky during the exposure. Radio source.

NGC 7626. Normal elliptical with distortions on a level of
1% in the third- and fourth-order harmonical residuals.
This elliptical was found to have a kinematically distinct
core (Jedrzejewski and Schechter 1988). Radio source.
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