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Ewald sum of the Rotne-Prager tensor
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The lattice sum of the Rotne-Prager hydrodynamic mobility tensor is cast into a rapidly
converging form by an Ewald summation technique. The result has a direct application to the
problem of how to deal with the long ränge of hydrodynamic interactions in Computer simulations
of macromolecular Solutions.

A widely used technique for dealing with long-ranged
interactions in Monte Carlo or molecular dynamics calcula-
tions is to impose periodic boundary conditions on the cell
containing the System (by translating the cell to fill the
whole of space) and then to sum the interactions ofthat cell
with each of its images.' For computational purposes it is
essential that this lattice sum is cast into a form which con-
verges rapidly. For Coulomb interactions this is the well-
known Ewald sum.2 Hydrodynamic interactions, surpris-
ingly enough, though having the same long ränge, have not
been dealt with by this technique. Instead, truncations of
these interactions have been proposed in the literature3'4;
these suifer, however, from a slow convergence with increas-
ing interaction ränge. A related approach5 has been to as-
sume that hydrodynamic interactions in a Suspension are
eifectively screened, with an empirically determined screen-
ing length. This assumption, however convenient it may be,
is nonetheless physically incompatible with freely moving
suspended particles.6 That the lattice summation technique
has not yet been used in Computer simulations of hydrody-
namically interacting Systems, can be ascribed to lack of an
analogous Ewald sum for hydrodynamic mobility tensors. It
is the purpose of the present note to provide such a formula
for the long-ranged part of the two-sphere mobility tensor,
which is the so-called Rotne-Prager ten«or.7

Consider a three-dimensional periodic lattice in which
each unit cell (volume V, numbered by the index /) contains
N spherical particles (radius a, numbered by the index /).
The lattice points are given by the vectors r, and the particles
have position vectors R,/ = R, + r,. We denote the force on
a particle by F, and assume that the total force on the parti-
cles in a unit cell vanishes:

(D

Now consider the lattice sum
(N \

S, = γ ( γ Μ,, ,,-F, ,
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/ \, = 1 /
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where z'0 is a given particle in cell /0 and M is the Rotne-
Prager mobility tensor,

M,O;O>„ = (6πηα)-[{^αχ-ι(1 + xx)

+ ia3jc-3(l-3xx)} for
(3a)

M,, ,, = (677770)-'!. (3b)
O'O.'O'O v ' '

Here the vector χ (with magnitude χ and direction χ = Χ/Λ: )
represents the Separation vector R;/ — R /o. The solvent vis-
cosity is denoted by 77, and l is the unit tensor. Because of the
long ränge of the RP tensor, the series (2) converges only
slowly. Using the Ewald summation technique,2 in the ver-
sion of Nijboer and de Wette,8·9 this series can be rewritten
into a rapidly converging form.

The final result (derived below) is given by

+ Σ ZM<I><R.'-R*A>'F.

^ Σλ ι— l
Σ M(2)(kA).F, cos{kA.(R, -R,o)>

(4)

with the defmitions

(4£7aV + 3ξ3α^ - 20<f V/-2 - \ξα + 14ξ3α3

-ξ2r2)} + n{(\ar~l - |a3/--3)erfc(^)

- 3|W + 16J-W + ga - 2ξ3α3 - 3£e3r-V~I/2 exp( -ξ V2)},

-4? V/·4

(5)

(6)

The expression (4) consists of two lattice sums, one in real "function,
space over lattice vectors r,, and one in reciprocal space over

reciprocal lattice vectors kA [satisfyingexp (/kAT,) = l for erfc(jc) = l - erf(x) = 2ττ~1 / 2 Γ" exp( - t2)dt.
all /]. The first series contains the complement of the error Jx
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Both series converge exponentially fast, with the conver-
gence rate controlled by the parameter ξ > 0. For optimal
convergence, ξ should be chosen neither too small nor too
large; ξ = π1 /2 V ~ ' /3 is a good choice in the case of a simple
cubic lattice.

To arrive at the result (4), we first note an alternative
representation of the two-sphere RP tensor (3a):

,^,, = (ία + i«3V2) ( V21 - W) R, - R,o/o

(7)

where V = d/d(R:l — R,0/0). We may therefore write

6πηαΜ,ο,ο,, = M(1)(R,; - R,O;O)

+ M(2)(R(/ -R,, ),
l \ / / /Q/Q ' >

with

(8)

(9)

M(2)(r) = (|a 2l- VV){rerf(|»}, (10)

and ξ > 0 an arbitrary parameter. We now substitute the de-
composition (8) into Eq. (2),

= F"'+ ? ,?,
(J,0 Φ (/,„/„)

-M(2)(r = 0)-F,o

(11)

The first series on the right-hand side of Eq. (11) is rapidly
converging. The second series converges rapidly on the reci-
procal lattice. The transformation to reciprocal space is per-
formed by means of the formula8

(12)

with the Fourier transform of a function g defined by

g(k)= Jdre*-rg(r).

We may therefore write

where the terms with kA = 0 vanish by virtue of Eq. ( l ) .
It remains to calculate M ( 1 )(r), M(2)(k), and

M(2)(r = 0). The expression (5) for M ( 1 )(r) follows
straightforwardly upon carrying out the differentiations in
Eq. (9). To obtain the Fourier transform of M(2)(r) we per-
form partial integrations,

M(2)(k) = - (l - kk) (a -

X

2)\k 2 'r erf(jv)

(14)

Evaluation of the remaining scalar integral10 yields Eq. (6).
Finally M(2)(r = 0) can be most conveniently calculated by
integrating the Fourier transform,

M(2)(r = 0) = (27r)- 3 f</kM ( 2 ) (k)

= l7r-'/2(6|a-fJ-V), (15)

where we have used the result (6).
This completes the derivation of the Ewald sum of the

Rotne-Prager tensor. In dilute Systems, where the assump-
tion of pairwise additivity of the hydrodynamic interactions
is justified, the RP tensor contains all the long-range contri-
butions to the mobility: Corrections fall oif at least äs fast äs
the inverse fourth power of the interparticle Separation,''
and therefore do not give rise to convergence problems. In
more concentrated Systems, to be sure, many-body hydrody-
namic interactions have been shown to play an important
role.12 There is, nonetheless, theoretical and experimental
evidence13·14 that to a certain extent these contributions may
be accounted for through an eifective pair mobility, which is
just the RP tensor—but with the solvent viscosity replaced
by the concentration-dependent eifective viscosity of the
Suspension. As a final remark, we note that —although the
above analysis was performed for a monodisperse solution—
the extension to a System with spherical particles of diiferent
radiia, ( /= 1,2,...,7V) isimmediate":Oneneedonlyreplace
in each of the above equations the radius α to the first power
by a,o, and the radius a to the third power by ΐα,ο (α2

ο + α2).
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