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Diffusion-controlled coarsening (Ostwald ripening) of a precipitate is analyzed for the case of an
open System, immersed in a reservoir of constant solute concentration. Equivalence of the
evolution of such open Systems and closed Systems studied previously is established in the limit of
infinite Systems. The cause of this equivalence is screening of the bulk of the System from the
reservoir by diffusive interactions between the precipitated particles. The applicability to large,
but finite Systems is discussed.

l. INTRODUCTION

Ostwald ripening, or coarsening, of a precipitate is the
final stage of phase Separation in a solution, during which the
larger particles of the precipitate grow at the expense of the
smaller particles, which disappear. As recognized by
Ostwald,' the driving force for the process which now bears
his name is the increased solubility of the smaller particles
due to surface tension between the precipitate and the solute.
If we assume that the solute is in local equilibrium with the
precipitate, then this solubility difference induces a solute
concentration gradient and leads to a diffusive flux from the
smaller to the larger particles. One speaks of diffusion-con-
trolled growth (äs opposed to growth controlled by slow de-
position of solute atoms at the particle surfaces).

The theory of Ostwald ripening began with the works of
Lifshitz and Slyosov2 and of Wagner.3 Since then a detailed
theoretical understanding of this phenomenon has been ob-
tained (see the recent review article by Voorhees4). The pres-
ent paper deals with one aspect of the problem which, how-
ever, has received only little attention. This is the issue of the
process occurring in closed vs open Systems.

The assumption of a closed System plays an essential
role in the Lifshitz-Slyosov-Wagner theory2·3 (and subse-
quent theories, see Ref. 4), since it allows a determination of
the (average) solute concentration from properties of the pre-
cipitate, by invoking the law of conservation of mass in the
closed system. Obviously, such a procedure is not possible in
the case of an open System in contact with a reservoir, since
the possibility of transport of solute between the System and
the reservoir has to be accounted for (cf. Ref. 5). What, then,
is the Status of the theory of Ostwald ripening for open Sys-
tems? We investigate this issue here for the case of an open
System immersed in a reservoir of constant solute concentra-
tion.

In See. II we formulate the equations which determine
the coarsening of the precipitate on a microscopic level of
description.4·6"8 The Solutions of these equations are deter-
mined by a "transport matrix," which is Symmetrie and
positive definite and which in the limit of an infinite System
satisfies a certain sum rule. These properties of the transport
matrix, proven in See. III, reflect the tendency toward mini-
malization of the surface to volume ratio of the precipitate,
äs well äs a drastic decrease of the effective ränge of diffusive

couplings (screening9}. In See. IV the equivalence of Ostwald
ripening in open and closed infinite Systems is established, on
the basis of the results of the previous section. In large, but
finite Systems this equivalence is estimated to hold for per-
iods much longer than the characteristic coarsening time
scale, provided the size of the system is initially much greater
than the screening length of diffusive interactions (typically
of the order of the interparticle Separation).

We conclude in See. V with a direct microscopic deriva-
tion of Wagner's3 mean-field evolution equation for the par-
ticle-size distribution function in dilute open Systems.

II. FORMULATION OF THE THEORY

Consider a solution in which precipitated particles grow
or dissolve by diffusion of solute through the solution. The
basic assumptions of the theory of Ostwald ripening in two-
phase Systems are summarized by Voorhees.4

The precipitate is assumed to consist of immobile
spherical particles with position vectors R, and radii a, (i)
(/' = l,2,....TV) which evolve in time according to

? = -vQ„ i=
dt (1)

Here υ is the molar volume of the precipitate and Qt is the
integral over the surface of particle /' of the molar solute flux.
In terms of the molar concentration field c(r,t} of the solute
we have

dSh; -Vc, (2)
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where D is the diffusion coefficient of the solute, S, the sur-
face of particle /, and n, a unit vector perpendicular to that
surface and pointing outward.

The solute concentration field is determined from the
quasistatic diffusion equation

DV2c = 0, (3)

supplemented by local equilibrium boundary on the surfaces
of the particles

c = c^(at) = c. (l +d/a,) on S,. (4)

The solute concentration in equilibrium with a plane surface
is denoted by ca, and d denotes the capillary length. (In a
typical solution d~ 10~7 cm.3) We consider the case of an
open system immersed in a solute reservoir of constant con-
centration c0, so that we have an additional boundary condi-
tion "at infinity,"
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CO = constant, far from particles. (5)

Use of the quasistatic approximation to the diffusion
equation [Eq. (3)] is justified if the characteristic relaxation
time TD of the diffusive field is much shorter than the coar-
sening time scale TC = a3/Dvcmd [Ref. 3, Eq. (VI. 11)], in
which the particle-size distribution function changes appre-
ciably (a denotes the average particle radius). We estimate
TD = a2/D(/>; with φ the volume fraction of the precipitate;
this is the time it takes a perturbation of the concentration to
diifuse over a distance of the order of the effective ränge

λζζα/τίφ of the diffusive interactions. [For this estimate of
the screening length λ, see Eq. (29) in See. III.] The require-
ment TD-^TC thusimplies therestriction vcx d/αφ<ζ\ οη the
System for the quasistatic approximation to be valid. Since
typically vc„ /φ ~ 10~', this criterion is met for a sufficient-
ly small ratio d /a S 10~'.

We also draw attention to the fact that the assumption
of local equilibrium at the particle surfaces [Eq. (4)] pre-
sumes mass transport across the precipiate-solute interface
to be fast on the time scale rD, thereby restricting the theory
to diffusion-controlled (rather than reaction-controlled)
growth.3

Equations (l)-(5) form the starting point of our analysis
of Ostwald ripening in open Systems. These equations differ
from those given by Voorhees4 for the case of a closed Sys-
tem, by the existence of a constant external concentration c0

[Eq. (5)]. In a closed System, Eq. (5) must be replaced by a no-
flux boundary condition on the walls of the vessel containing
the solution. In order to avoid complications arising from
the finiteness of the System, a boundary condition at infinity,

c—>c0(t), far from particles (6)

is adopted instead in the literature—where the time depen-
dent external concentration c0(t} is to be chosen in such a way
that conservation of mass in the closed System is ensured.10

The source strengths ß, defined in Eq. (2) depend linear-
ly on the values of ceq(ay) — c0 (j = 1,2,...,N) through a rela-
tionof the form

ß, = (7)

where each element of the transport matrix Z depends on the
positions and radii of all the N particles. (For one isolated
particle i, Zu = 4πΰα,.) In the next section we shall derive
some general properties of the matrix Z, essential for our
analysis.

III. GENERAL PROPERTIES OF THE TRANSPORT
MATRIX

From Eqs. (2)-(5) one can show that the transport ma-
trix Z defined in Eq. (7) has the following properties: (i) Z is
Symmetrie, Zt] = Z]t; (ii) Z is positive definite,
2;>7 x,Z,jXj >0 for all x=£Q; (iii) in the limit of an infinite
System Σ, Z,7 and Σ, Z,_, both vanish.

The symmetry and positive definiteness of Z follow im-
mediately from the identities

& dSc, Ä, · Vc2 = - Γ dV^c,) · (Vc
Js, JK„

r
= V φ dSc2h, · Vcj,

ι Js,
(8)

valid for any two Solutions c^r), c2(r) of the Laplace equation
(3) which vanish at infinity. [In Eq. (8), Fex denotes the vol-
ume outside the particles.] Indeed, if c^r^c'1', c2(r)^c[2) on
S, (i = l,2,...,N ), and Q (,l\ Q |2) are the corresponding source
strengths [defined according to Eq. (2)] we have from Eq. (8),

and, taking cl — c2J

(10)

Substituting for Q, = Σ, Z„c, [Eq. (7) with c0 = 0] we then
obtain the required symmetry and positive definiteness of
the transport matrix Z.

Before giving a proof of the third property of the trans-
port matrix, it is useful to discuss the relation between this
property and the concept of screening of diffusive interac-
tions, developed by Felderhof and Deutch.9 Consider to this
end the hypothetical Situation that ceq (a, } = c0 for all i^j, so
that ö, = Z,j [ceqK) — co] · If S„, is a Iar8e surface which
completely encloses the System, then we obtain

= -D -Vc, (H)

where h x is a unit vector perpendicular to S^ and pointing
outward. In a macroscopic System, the perturbation of the
concentration caused by particle j is screened by the pres-
ence of the other particles,9 so that c(r) — c0 goes to zero
exponentially far from particle j. As a consequence, the inte-
gral of Vc over the large surface S„ in Eq. (11) gives zero
contribution, leading to the vanishing of Σ, ZtJ (and also of
Σ, Zljt by virtue of the symmetry of Z).

We now proceed to a proof of this third property of the
transport matrix. For simplicity, we restrict ourselves here
to the so-called monopolar (or point-particle) approximation
of diffusive interactions. This restriction can, however, be
removed, and the validity of the result is not limited to this
approximation. (This is to be expected, since the monopolar
approximation describes the long-range form of diffusive in-
teractions, whereas the screening effect results precisely
from these long-range contributions.)

In the monopolar approximation the transport matrix
can be written in the form (cf. Refs. 6-8)

where the matrix G has elements

G„=a,|R,-R, l-ö„). (13)

It is convenient to write Eq. (12) in an operator representa-
tion11
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>')=2 <5(r - R,.,.) δ(ρ - α,·) Z,/(r' - R,) δ(ρ' - «,)
i, i

= 4irDp'{n -ng(l+ ng}-ln}(r,p\r',p'}.

Here n is a diagonal operator,

n(r,p\r',p') = n(r^) <5(r - r') δ(ρ -ρ'),

(14)

(15)

which gives the microscopic density in position and radius
space; the propagator g is a convolution operator in position
space,

g(r,p\T',p')=pr'-r\~le(\r'-r\-p-p'), (16)

with

θ(χ}=\ ifx>0, θ(χ) = 0 ifx<0. (17)

For later use we record the formula (k = |k|),

the renormalized propagator]. Substitution of expression
(18) for g into Eq. (24) gives

/-oo

lim φ 47T/7Ä: ~2 cos [k (p + /?')] fip)n0(p)
k-*OJo

= lim Λ: l C1+
\ Jo

~2 cos[&(jO +/o')]«0(/o) ,

(25)

sMrV/) = (2ir)-3Jrfk, *'(r' ~ r) cos[k (p +/?')].

We proceed by writing the microscopic density field
n(r,p) äs the sum of its average n0{p) and fluctuations δη(τ,ρ).
(It is assumed here that the System is infinitely large and
macroscopically homogeneous in space, so that the average
density does not depend on r.) Substituting n = n„ + δη into
Eq. (14), and introducing the renormalized propagator g*,

we have the identities

= 4πΟρ'{(\ - «<£*)(! + ö/igT'nJMrV'). J dr> J0 4°'zMr>W)

and hence

Λ<*> /Γ°°
x=\ dppf(p}n0(p] \ dppn0(p)= p f ( p ) / p , (26)

Jo / Jo

äs we set out to prove.
In the above proof, explicit evaluation of the renormal-

ized propagator g11 is avoided. The long-range form of this
propagator may be shown [using Eqs. (18) and (19] to be the
Deybe-Hückel form discussed in Ref. 9,

gR(r,p\r',p')~p\T-r\-l^p(- r'-r\/Ä), (27)

with the screening length/l of diifusive interactions given by

λ = (4πρΝ/Γ)-1/2[\ + ff (N/V)] (28)

(7V is the total number of particles, V the volume of the Sys-

tem). In terms of the volume fraction ψ=§ r~f?N /V of the
precipitate we have the useful approximation for dilute Sys-
tems

We conclude this section by recording a general formula
following from Eqs. (20) and (21) [using also the symmetry
z(r,p\r',p')=z(r',P'r,p)],

(20)

The required result now follows immediately from the for-
mula (proven below)

= lirDp J dr' JQ" dp' [ f(p'} - Pf (p}/ p ]

H: (30)

dpf(p)n0{p)gR(r,p\r',p')= p f ( p ) / p , (21) which we shall need later on.

where f(p] is an arbiträry function ofyo and the bar denotes
an average with respect to n0(p),

=f dpf(p}n0(p}/\ dpn0{p). (22)
Jo / Jo

Integrating Eq. (20) over r and/3, and using Eq. (21) with
/=!, wefind

ΓΑ Γ dpz(r,p\r',p') = 0,
J Jo

(23)

which implies the third property, Σ,· Ztj = 0, of the trans-
port matrix.

It remains to prove Eq. (21). We do this by showing that

x= p f ( p } / p solves the equation

dpf(p)n0(p)g(r,p\r',p'}

f l + (dr { dpn0(p)g(r,p\r',p')} (24)
\ J Jo /

[from which Eq. (21) then follows in view of definition (19) of

= χ

IV. EQUIVALENCE OF OPEN AND CLOSED SYSTEMS

As discussed in See. II [see Eqs. (1), (4), and (7)] the
diffusion-controlled coarsening (Ostwald ripening) of a pre-
cipitate is described by the following evolution equation for
the radii a, of the precipitated particles:

(31)

where v is the molar volume of the precipitate, c^ the molar
solute concentration in equilibrium with a plane surface, and
d the capillary length of this problem3; Δ=(οΜ — c0)/coo
equals the diiference between c „ and the external concentra-
tion c0 (see below), relative to cm .

In an open System immersed in a solute reservoir, Δ is a
constant determined by the concentration c0 of the solute in
the reservoir [Eq. (5)]. In a closed System, on the other hand,
Δ is taken to be time dependent so äs to ensure conservation
of mass in the System [Eq. (6)].*° The equivalence of these
two situations in the limit of infinite Systems results from the
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third property of the transport matrix Z derived in See. III,
which states that Σ7· Ζ,·7· = Σ,· ZtJ = 0 in this limit. There-
fore, the evolution of the system, äs determined by Eq. (31), is
independent of Δ and thus identical for open and closed infi-
nite Systems.

This remarkable irrelevance of the external concentra-
tion has its physical origin in the phenomenon ofscreening9

(see See. III); the bulk of the system is, in effect, screened
from the solute concentration field in the reservoir by the
diffusive interactions between the particles. The influence of
the reservoir is only feit in a penetration layer at the boun-

daries of the System of depth/l~a/^, which is the screen-
ing length of the diffusive interactions [with φ the volume
fraction of the precipitate and a the average particle radius,
cf. Eq. (29].

The above result of equivalence of open and closed Sys-
tems holds strictly in the limit of infinite system size. We
expect, however, the influence of the finiteness of the System
to be negligible äs long äs the system size L is much larger
than the screening length λ. We shall deal with this issue in
the remainder of this section.

Two effects should be distinguished which cause an in-
crease of the ratio λ /L from its initial value at time t = 0.
First, coarsening of the precipitate tends to increase the aver-
age radius at constant volume fraction, leading to an increase

of λ^,ζ/^φ. From the Lifshitz-Slyosov-Wagner growth
law2·3 we obtain the estimate

(32)

with the coarsening time scale rc = a(Q)3/Dvca d (D is the
diffusion coefficient of the solute). Here, and in the following
estimate, numerical coefficients of order unity are disregard-
ed.

Second, in an ««cfersaturated reservoir (c0 <c00, Δ > 0),
the precipitate at the boundaries of the System dissolves,
causing the effective size of the system to decrease. Let Vp be
the volume of the precipitate and Sp the surface area exposed
to the solute concentration field in the reservoir. Assuming a
system of approximately spherical shape (with radius L ), we
have Vp = $ irL 3φ, Sp = 4-rrL 2λ 3φ/α ( = total surface area
of particles in penetration layer of depth/l). We furthermore
determine the average molar flux Ψ of solute from the system
to the reservoir by *P=D(c0 0 —c0)Xaverage curva-
ture = D (cx - c0) \ dSp/dVp = Dcm Δ3Λ /aL (the factor
dSp/dVp is the quotient of surface and volume change with
an increase of length scale). Inserting the above expressions
into the balance equation dVp/dt = — vSp*V, we find

-§-£(*)= -9Dvc„W/af/L(t),
dt

(33)

which gives upon Integration the estimate (using

λ/αχ \/^φ = constant)

\ l / 2 (34)

with

From Eqs. (32) and (34) we obtain the requirement λ (t}/
in the form

{l+>/^'" ü, (35)•MO -MO)
L(t) L(0)(l-K[Ä(0)/L(0)]2t/rc)

with Α·=Δα(0)/6?. If the initial ratio λ (0)/L (0) of screening
length to system size is sufficiently small, then this ratio in-
creases in times äs (t /rc)

1/3; a tenfold increase takes a time
103rc, which is already much longer than the characteristic
time scale TC of the coarsening process.

We conclude with a numerical example. Consider an
undersaturated reservoir with c0^,ca (Δ~ 1) and a precipi-
tate with a(0)~10~6 cm, c?~10~~7 cm, L (O)—l cm, and

φ~10~2. Then we have λ (0)~α(0)/^[φ ~10~5 cm and
κ~ 10. If we regard a ratio λ (t )/L (t)~ 10~3 äs sufficiently
small for finite system size effects to be negligible, then we
find from Eq. (35) that these effects may indeed be neglected
fortimesi^!06rc.

V. CONCLUDING REMARKS

In this last section we present some additional conse-
quences of the general properties of the coarsening equations
derived in See. III.

First of all, we wish to show how these properties afford
a direct microscopic derivation of the evolution equation for
the particle-size distribution function in the case of a dilute
system. Consider to this end the equation for the time deriva-
tive of the microscopic density field of particles
n(r,p,t) = Σ, <5(r - R,.)<5[> - a , ( t ) ] , äs it follows from Eq.
(31),

XΓJo
p>0. (36)

The kernel ζ(τ,ρ\τ',ρ') has been defined in Eq. (14). Using
formula (30) of See. III we obtain from Eq. (36), in the limit of
zero volume fraction of the precipitate, an equation for the
time evolution of the particle-radius distribution function
n0(p,t ) [which is the average of n(r,p,t ) in a spatially homo-
geneous System]. We find12

We are now in the position to determine the time scale
on which the efFect of a finite system size may be neglected.

.
dt dp

withp(i) the average radius. In agreement with the general
argument presented in the previous section, Δ ηο longer ap-
pears in this equation, which holds therefore for open and
closed infinite Systems alike.

In the case of a closed System, Eq. (37) has been obtained
by Wagner3 (on the basis of a mean-field theory) and by To-
kuyama and Kawasaki7 (from a microscopic starting point).
For corrections resulting from the finite volume fraction of
the particles, we refer to the latter paper7 (cf. also Ref. 13)
and to the work of Marqusee and Ross14; for a solution of Eq.
(37), see Ref. 3.

Equation (37) differs from the evolution equation for a
closed System given by Lifshitz and Slyosov,2 in that their
equation allows for a Variation in time of the volume fraction
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φ of the precipitate, whereas Eq. (37) implies that
φ==* π So dp p3n0(p,t) is constant in time. The Solutions of
both equations coincide, however, in the regime of validity of
the quasistatic diffusion equation [Eq. (3)]. To see this, note
that the Lifshitz-Slyosov equation2 predicts a total increase
Δφ in the volume fraction of order A^~y[ceq(a)
~ coo l = vc«, d /a (a is the initial average radius of the parti-

cles). The criterion Δφ/φ^Ι, therefore, coincides with the
requirement vc^/αφ^,Ι necessary for the quasistatic ap-
proximation to be valid, cf. See. II. (For a related discussion
of this point, see Ref. 15.)

It follows immediately from Eq. (37) that the surface to
volume ratio of the precipitate is a decreasing function of
time. This can be shown to be a general result, not restricted
to the dilute regime. First, for the time derivative of the total
volume we have the expression [cf. Eq. (31)]

d_

dt

which vanishes for a macroscopic System by virtue of the
third property of the transport matrix (see See. III). Second,
for the time derivative of the total surface area we have

4 3— πα, = — vc
3

(38)

(39)

The first term between brackets on the right-hand side of Eq.
(39) vanishes (see above), whereas the second term is positive
because of the positive definiteness of Z (See. III). That the
surface to volume ratio of the precipitate decreases in time,
then follows from Eqs. (38) and (39)—irrespective of the vol-
ume fraction.

These observations further illustrate the importance of
the general relations of See. III, which place the theory of

Ostwald ripening for open Systems on äs firm a footing äs the
well-established theory for closed Systems.
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